MFnMesh Class Reference
[OpenMaya - API module for common classesFunctionSet classes]

#include <MFnMesh.h>
Inheritance diagram for MFnMesh:
Inheritance graph
[legend]
Collaboration diagram for MFnMesh:
Collaboration graph
[legend]

List of all members.


Detailed Description

Polygonal surface function set.

Note on Terminology: The following terms are used interchangeably:

object-relative indices - they range between 0..(numVertices()-1)

face-relative indices - they range between 0..(polygonVertexCount(faceId)-1)

This function set provides access to polygonal meshes. Objects of type MFn::kMesh, MFn::kMeshData, and MFn::kMeshGeom are supported. MFn::kMesh objects are shapes in the DAG, MFn::kMeshGeom objects are the raw geometry that the shapes use, and MFn::kMeshData objects are the data that is passed through dependency graph connections.

NOTE: If the function set has been initialized with a MFn::kMesh object then it must have geometry attached.

Mesh Construction Meshes are created by specifying a vertex list, a list of vertex counts per-polygon, and a list of vertices that make up the polygons. Edge data is also maintained for the mesh and can be returned to the caller. The following lists are used by the create method to construct a mesh:

There are several cases in which the create method will alter the data passed in: use the appropriate vertices. Texture Coordinates (UV's) You can optionally specify texture (uv) coordinates. UV coordinates are 2-d coordinates used for mapping textures to the polygons of a mesh. All of the uv coordinates are stored in one or more named UV sets. The default mesh uv list stores uv coordinates in an array indexed from 0 to numUVs()-1. UV's are referenced on a per-polygon per-vertex basis, so for a polygon with 4 vertices there would be 4 uv's. The uv values for a polygon are set by specifying the index of the uv for each vertex of the polygon. This index is the uv's position in the master uv array. UV's are optional so polygons do not have to have uv values associated with them. There may be only 1 or 2 polygons in a mesh that have uv coordinates set, or all of the polygons may have uv's. UV's can also be shared so several different polygons may reference the same uv's. If you are creating a UV for the first time or changing the order of the UV then you need to set the UV using one of the setUV methods and then assign new indices using one of the assignUV methods. It is not necessary to call assignUV if editing the position of an existing UV.

Color per vertex You can optionally specify color per vertex information using this class. It is possible to create and manipulate color per vertex information using the methods available. Many of the color per vertex methods have a default parameter: colorSet. If unspecified, the method will operate on the current color set.

Normals Some of the Normals in Maya are now user-settable. If the vertex normals are not set or locked, they are computed by maya when the mesh changes. If set or locked, the normals remain frozen relative to the object, unless the user unlocks them. There are 3 types of normals for a mesh:

For a cube, the list would contain 24 normals (4 vertices * 6 polygons) since the edges for a cube are hard and the per-vertex per-polygon normals cannot be shared. For a sphere or torus, which has smooth edges, the normals can be shared, and thus the normal list contains the same number of normals as vertices. Blind Data MFnMesh allows you to create Blind Data types, and to create and access mesh component level blind data, but not object level blind data. Object level data may be assigned through the polyBlindData command or the Blind Data Editor. However, object level blind data is just an ordinary compound dynamic attribute directly on the object. The parent attribute name is BlindDataNNNN where NNNN is the blind data typeID. e.g. if your typeId is 1001 your object will have a compound dynamic attr called BlindData1001.

Handling Components There are also three iterator classes which provide more specific control over the vertices, edges, and polygons of a mesh and are useful when dealing with components. See MItMeshPolygon, MItMeshEdge, and MItMeshVertex.

Examples:

animCubeNode.cpp, apiMeshCreator.cpp, blindDataMesh.cpp, blindDataShader.cpp, cleanPerFaceAssignmentCmd.cpp, cvColorShader.cpp, D3DGeometryItem.cpp, D3DViewportRenderer.cpp, findTexturesPerPolygonCmd.cpp, flipUVCmd.cpp, getPointAndNormal.cpp, GLSLShaderNode.cpp, hairCollisionSolver.cpp, hwColorPerVertexShader.cpp, hwManagedTextureShader.cpp, intersectCmd.cpp, listPolyHolesCmd.cpp, meshMapUtils.cpp, meshOpFty.h, meshOpFtyAction.cpp, meshRemapCmd.cpp, meshReorderCmd.cpp, meshReorderCmd.h, objExport.cpp, OpenGLViewportRenderer.cpp, particleAttrNode.cpp, polyPrimitiveCmd.cpp, polyWriter.cpp, polyWriter.h, shellNode.cpp, splitUVCmd.cpp, splitUVFtyAction.cpp, and testNobjectNode.cpp.


Public Types

enum   MColorRepresentation { kAlpha = 1, kRGB = 3, kRGBA = 4 }
  Specifies which color components are used by a colorSet. More...
enum   SplitPlacement { kOnEdge, kInternalPoint, kInvalid }
  Specifies how a point along split is to be determined. More...
enum   BoolOperation { kIntersection = 1, kDifference, kUnion }
  Boolean operators. More...

Public Member Functions

virtual MFn::Type  type () const
  Function set type.
virtual  ~MFnMesh ()
  Destructor.
  MFnMesh ()
  Default constructor.
  MFnMesh (MObject &object, MStatus *ReturnStatus=NULL)
  Constructor.
  MFnMesh (const MDagPath &object, MStatus *ret=NULL)
  Constructor.
MObject  create (int numVertices, int numPolygons, const MFloatPointArray &vertexArray, const MIntArray &polygonCounts, const MIntArray &polygonConnects, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MObject  create (int numVertices, int numPolygons, const MPointArray &vertexArray, const MIntArray &polygonCounts, const MIntArray &polygonConnects, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MObject  create (int numVertices, int numPolygons, const MFloatPointArray &vertexArray, const MIntArray &polygonCounts, const MIntArray &polygonConnects, const MFloatArray &uArray, const MFloatArray &vArray, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MObject  create (int numVertices, int numPolygons, const MPointArray &vertexArray, const MIntArray &polygonCounts, const MIntArray &polygonConnects, const MFloatArray &uArray, const MFloatArray &vArray, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MObject  generateSmoothMesh (MObject parentOrOwner=MObject::kNullObj, MMeshSmoothOptions *options=NULL, MStatus *ReturnStatus=NULL)
MStatus  getSmoothMeshDisplayOptions (MMeshSmoothOptions &options) const
MStatus  setSmoothMeshDisplayOptions (const MMeshSmoothOptions &options)
MObject  addPolygon (const MPointArray &vertexArray, bool mergeVertices=true, double pointTolerance=1.0e-10, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MObject  addPolygon (const MPointArray &vertexArray, int &faceIndex, bool mergeVertices=true, double pointTolerance=1.0e-10, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MStatus  deleteFace (int index, MDGModifier *modifier=NULL)
MStatus  deleteEdge (int index, MDGModifier *modifier=NULL)
MStatus  deleteVertex (int index, MDGModifier *modifier=NULL)
MStatus  split (MIntArray &placements, MIntArray &edgeList, MFloatArray &edgeFactors, MFloatPointArray &internalPoints)
MStatus  subdivideFaces (MIntArray &faceList, int divisionCount)
MStatus  subdivideEdges (MIntArray &edgeList, int divisionCount)
MStatus  extrudeFaces (MIntArray &faceList, int extrusionCount, MFloatVector *translation, bool extrudeTogether)
MStatus  extrudeEdges (MIntArray &edgeList, int extrusionCount, MFloatVector *translation, bool extrudeTogether)
MStatus  duplicateFaces (MIntArray &faceList, MFloatVector *translation)
MStatus  extractFaces (MIntArray &faceList, MFloatVector *translation)
MStatus  collapseFaces (MIntArray &faceList)
MStatus  collapseEdges (MIntArray &edgeList)
int  numVertices (MStatus *ReturnStatus=NULL) const
int  numEdges (MStatus *ReturnStatus=NULL) const
int  numPolygons (MStatus *ReturnStatus=NULL) const
int  numFaceVertices (MStatus *ReturnStatus=NULL) const
int  polygonVertexCount (int polygonId, MStatus *ReturnStatus=NULL) const
int  numUVs (MStatus *ReturnStatus=NULL) const
int  numUVs (const MString &uvSet, MStatus *ReturnStatus=NULL) const
int  numColors (MStatus *ReturnStatus=NULL) const
int  numColors (const MString &colorSet, MStatus *ReturnStatus=NULL) const
int  numNormals (MStatus *ReturnStatus=NULL) const
bool  hasColorChannels (const MString &colorSet, MStatus *ReturnStatus=NULL) const
bool  hasAlphaChannels (const MString &colorSet, MStatus *ReturnStatus=NULL) const
MColorRepresentation  getColorRepresentation (const MString &colorSet, MStatus *ReturnStatus=NULL) const
bool  isColorClamped (const MString &colorSet, MStatus *ReturnStatus=NULL) const
MStatus  setIsColorClamped (const MString &colorSet, bool clamped)
MStatus  getTriangles (MIntArray &triangleCounts, MIntArray &triangleVertices) const
MStatus  booleanOp (BoolOperation op, MFnMesh &mesh1, MFnMesh &mesh2)
bool  closestIntersection (const MFloatPoint &raySource, const MFloatVector &rayDirection, const MIntArray *faceIds, const MIntArray *triIds, bool idsSorted, MSpace::Space space, float maxParam, bool testBothDirections, MMeshIsectAccelParams *accelerator, MFloatPoint &hitPoint, float *hitRayParam, int *hitFace, int *hitTriangle, float *hitBary1, float *hitBary2, float tolerance=1e-6, MStatus *ReturnStatus=NULL)
bool  anyIntersection (const MFloatPoint &raySource, const MFloatVector &rayDirection, const MIntArray *faceIds, const MIntArray *triIds, bool idsSorted, MSpace::Space space, float maxParam, bool testBothDirections, MMeshIsectAccelParams *accelerator, MFloatPoint &hitPoint, float *hitRayParam, int *hitFace, int *hitTriangle, float *hitBary1, float *hitBary2, float tolerance=1e-6, MStatus *ReturnStatus=NULL)
bool  allIntersections (const MFloatPoint &raySource, const MFloatVector &rayDirection, const MIntArray *faceIds, const MIntArray *triIds, bool idsSorted, MSpace::Space space, float maxParam, bool testBothDirections, MMeshIsectAccelParams *accelerator, bool sortHits, MFloatPointArray &hitPoints, MFloatArray *hitRayParams, MIntArray *hitFaces, MIntArray *hitTriangles, MFloatArray *hitBary1, MFloatArray *hitBary2, float tolerance=1e-6, MStatus *ReturnStatus=NULL)
MStatus  sortIntersectionFaceTriIds (MIntArray *faceIds, MIntArray *triIds)
MStatus  freeCachedIntersectionAccelerator ()
MString  cachedIntersectionAcceleratorInfo (MStatus *ReturnStatus=NULL)
bool  intersect (const MPoint &raySource, const MVector &rayDirection, MPointArray &points, double tolerance=1.0e-10, MSpace::Space space=MSpace::kObject, MIntArray *polygonIds=NULL, MStatus *ReturnStatus=NULL) const
MStatus  getClosestPointAndNormal (const MPoint &toThisPoint, MPoint &theClosestPoint, MVector &theNormal, MSpace::Space space=MSpace::kObject, int *closestPolygon=NULL) const
MStatus  getClosestPoint (const MPoint &toThisPoint, MPoint &theClosestPoint, MSpace::Space space=MSpace::kObject, int *closestPolygon=NULL) const
MStatus  getClosestNormal (const MPoint &toThisPoint, MVector &theNormal, MSpace::Space space=MSpace::kObject, int *closestPolygon=NULL) const
MStatus  getConnectedShaders (unsigned int instanceNumber, MObjectArray &shaders, MIntArray &indices) const
MStatus  getConnectedSetsAndMembers (unsigned int instanceNumber, MObjectArray &sets, MObjectArray &comps, bool renderableSetsOnly) const
MObject  copy (const MObject &source, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
MStatus  updateSurface ()
MStatus  syncObject ()
const float *  getRawPoints (MStatus *) const
const float *  getRawNormals (MStatus *) const
MStatus  getPoints (MFloatPointArray &vertexArray, MSpace::Space space=MSpace::kObject) const
MStatus  getPoints (MPointArray &vertexArray, MSpace::Space space=MSpace::kObject) const
MStatus  setPoints (MFloatPointArray &vertexArray, MSpace::Space space=MSpace::kObject)
MStatus  setPoints (MPointArray &vertexArray, MSpace::Space space=MSpace::kObject)
MStatus  getVertices (MIntArray &vertexCount, MIntArray &vertexList) const
MStatus  getPolygonVertices (int polygonId, MIntArray &vertexList) const
MStatus  getPolygonTriangleVertices (int polygonId, int triangleId, int triangleVertices[3]) const
MStatus  setPoint (int vertexId, const MPoint &pos, MSpace::Space space=MSpace::kObject)
MStatus  getPoint (int vertexId, MPoint &pos, MSpace::Space space=MSpace::kObject) const
MStatus  getNormals (MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject) const
MStatus  setNormals (MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject)
MStatus  getFaceVertexNormal (int faceIndex, int vertexIndex, MVector &normal, MSpace::Space space=MSpace::kObject) const
MStatus  getFaceVertexNormals (int faceIndex, MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject) const
MStatus  getNormalIds (MIntArray &normalIdCounts, MIntArray &normalIds) const
MStatus  getFaceNormalIds (int faceIndex, MIntArray &normals) const
MStatus  setFaceVertexNormal (MVector &normal, int faceIndex, int vertexIndex, MSpace::Space space=MSpace::kObject, MDGModifier *modifier=NULL)
MStatus  setVertexNormal (MVector &normal, int vertexIndex, MSpace::Space space=MSpace::kObject, MDGModifier *modifier=NULL)
MStatus  setFaceVertexNormals (MVectorArray &normalArray, MIntArray &faceList, MIntArray &vertexList, MSpace::Space space=MSpace::kObject)
MStatus  setVertexNormals (MVectorArray &normalArray, MIntArray &vertexList, MSpace::Space space=MSpace::kObject)
MStatus  getVertexNormal (int vertexId, MVector &normal, MSpace::Space space=MSpace::kObject) const
  This method is obsolete.
MStatus  getVertexNormal (int vertexId, bool angleWeighted, MVector &normal, MSpace::Space space=MSpace::kObject) const
MStatus  getVertexNormals (bool angleWeighted, MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject) const
MStatus  getPolygonNormal (int polygonId, MVector &normal, MSpace::Space space=MSpace::kObject) const
bool  isNormalLocked (int normalId, MStatus *ReturnStatus=NULL) const
MStatus  lockVertexNormals (MIntArray &vertexList)
MStatus  lockFaceVertexNormals (MIntArray &faceList, MIntArray &vertexList)
MStatus  unlockVertexNormals (MIntArray &vertexList)
MStatus  unlockFaceVertexNormals (MIntArray &faceList, MIntArray &vertexList)
int  getTangentId (int faceIndex, int vertexIndex, MStatus *ReturnStatus=NULL) const
MStatus  getTangents (MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL) const
MStatus  getFaceVertexTangent (int faceIndex, int vertexIndex, MVector &tangent, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL) const
MStatus  getFaceVertexTangents (int faceIndex, MFloatVectorArray &tangents, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL) const
MStatus  getBinormals (MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL) const
MStatus  getFaceVertexBinormal (int faceIndex, int vertexIndex, MVector &normal, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL) const
MStatus  getFaceVertexBinormals (int faceIndex, MFloatVectorArray &normals, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL) const
bool  isPolygonConvex (int faceIndex, MStatus *ReturnStatus=NULL) const
MStatus  getEdgeVertices (int edgeId, int2 &vertexList) const
bool  isEdgeSmooth (int edgeId, MStatus *ReturnStatus=NULL) const
MStatus  setEdgeSmoothing (int edgeId, bool smooth=true)
MStatus  cleanupEdgeSmoothing ()
MStatus  getCreaseEdges (MUintArray &edgeIds, MDoubleArray &creaseData) const
MStatus  setCreaseEdges (const MUintArray &edgeIds, const MDoubleArray &creaseData)
MUintArray  getInvisibleFaces (MStatus *ReturnStatus=NULL) const
MStatus  setInvisibleFaces (const MUintArray &faceIds, bool makeVisible=false)
MStatus  getCreaseVertices (MUintArray &vertexIds, MDoubleArray &creaseData) const
MStatus  setCreaseVertices (const MUintArray &vertexIds, const MDoubleArray &creaseData)
int  numUVSets (MStatus *ReturnStatus=NULL) const
MString  createUVSetWithName (const MString &uvSetName, MDGModifier *modifier=NULL, MStatus *ReturnStatus=NULL, const MUintArray *instances=NULL)
MString  copyUVSetWithName (const MString &fromName, const MString &toName, MDGModifier *modifier=NULL, MStatus *ReturnStatus=NULL)
MStatus  renameUVSet (const MString &origName, const MString &newName, MDGModifier *modifier=NULL)
MStatus  deleteUVSet (const MString &setName, MDGModifier *modifier=NULL, MSelectionList *currentSelection=NULL)
MStatus  setCurrentUVSetName (const MString &setName, MDGModifier *modifier=NULL, MSelectionList *currentSelection=NULL)
MString  currentUVSetName (MStatus *ReturnStatus=NULL, int instance=-1) const
MStatus  getUVSetNames (MStringArray &setNames) const
MStatus  getUVSetFamilyNames (MStringArray &familyNames) const
MStatus  getUVSetsInFamily (const MString &familyName, MStringArray &setNames) const
bool  isUVSetPerInstance (const MString &name, MStatus *ReturnStatus=NULL) const
MStatus  getFaceUVSetNames (int polygonId, MStringArray &setNames) const
MStatus  getAssociatedUVSetTextures (const MString uvSetName, MObjectArray &textures) const
MStatus  getAssociatedUVSetInstances (const MString &uvSetName, MIntArray &instances) const
MStatus  setUVs (const MFloatArray &uArray, const MFloatArray &vArray, const MString *uvSet=NULL)
MStatus  setSomeUVs (const MIntArray &uvIds, const MFloatArray &uArray, const MFloatArray &vArray, const MString *uvSet=NULL)
MStatus  getUVs (MFloatArray &uArray, MFloatArray &vArray, const MString *uvSet=NULL) const
MStatus  setUV (int uvId, float u, float v, const MString *uvSet=NULL)
MStatus  getUV (int uvId, float &u, float &v, const MString *uvSet=NULL) const
MStatus  getPointAtUV (int polygonId, MPoint &theClosestPoint, float2 &uvPoint, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL, float tolerance=0.0)
MStatus  getUVAtPoint (MPoint &pt, float2 &uvPoint, MSpace::Space space=MSpace::kObject, const MString *uvSet=NULL, int *closestPolygon=NULL)
MStatus  getPolygonUV (int polygonId, int vertexIndex, float &u, float &v, const MString *uvSet=NULL) const
MStatus  getPolygonUVid (int polygonId, int vertexIndex, int &uvId, const MString *uvSet=NULL) const
MStatus  assignUV (int polygonId, int vertexIndex, int uvId, const MString *uvSet=NULL)
MStatus  assignUVs (const MIntArray &uvCounts, const MIntArray &uvIds, const MString *uvSet=NULL)
MStatus  clearUVs (const MString *uvSet=NULL)
MStatus  getAssignedUVs (MIntArray &uvCounts, MIntArray &uvIds, const MString *uvSet=NULL) const
MStatus  getUvShellsIds (MIntArray &uvShellIds, unsigned int &nbUvShells, const MString *uvSet=NULL) const
int  numColorSets (MStatus *ReturnStatus=NULL) const
MString  createColorSetWithName (const MString &colorSetName, MDGModifier *modifier=NULL, const MUintArray *instances=NULL, MStatus *ReturnStatus=NULL)
MStatus  deleteColorSet (const MString &colorSetName, MDGModifier *modifier=NULL, MSelectionList *currentSelection=NULL)
MStatus  setCurrentColorSetName (const MString &setName, MDGModifier *modifier=NULL, MSelectionList *currentSelection=NULL)
MString  currentColorSetName (int instance=-1, MStatus *ReturnStatus=NULL) const
MStatus  getColorSetNames (MStringArray &setNames) const
MStatus  getColorSetFamilyNames (MStringArray &familyNames) const
MStatus  getColorSetsInFamily (const MString &familyName, MStringArray &setNames) const
bool  isColorSetPerInstance (const MString &name, MStatus *ReturnStatus=NULL) const
MStatus  getAssociatedColorSetInstances (const MString &setName, MIntArray &instances) const
MStatus  setFaceColor (MColor &color, int index)
MStatus  setFaceColor (MColor &color, int index, MColorRepresentation rep)
MStatus  setVertexColor (MColor &color, int index, MDGModifier *modifier=NULL)
MStatus  setVertexColor (MColor &color, int index, MDGModifier *modifier, MColorRepresentation rep)
MStatus  setFaceVertexColor (MColor &color, int faceIndex, int vertexIndex, MDGModifier *modifier=NULL)
MStatus  setFaceVertexColor (MColor &color, int faceIndex, int vertexIndex, MDGModifier *modifier, MColorRepresentation rep)
MStatus  setFaceVertexColor (int faceIndex, int localVertexIndex, MColor &color, MDGModifier *modifier=NULL)
MStatus  setFaceVertexColor (int faceIndex, int localVertexIndex, MColor &color, MDGModifier *modifier, MColorRepresentation rep)
MStatus  setFaceColors (MColorArray &colors, MIntArray &faceList)
MStatus  setFaceColors (MColorArray &colors, MIntArray &faceList, MColorRepresentation rep)
MStatus  setVertexColors (MColorArray &colors, MIntArray &vertexList, MDGModifier *modifier=NULL)
MStatus  setVertexColors (MColorArray &colors, MIntArray &vertexList, MDGModifier *modifier, MColorRepresentation rep)
MStatus  setFaceVertexColors (MColorArray &colors, MIntArray &faceList, MIntArray &vertexList, MDGModifier *modifier=NULL)
MStatus  setFaceVertexColors (MColorArray &colors, MIntArray &faceList, MIntArray &vertexList, MDGModifier *modifier, MColorRepresentation rep)
MStatus  removeFaceColors (MIntArray &faceList)
MStatus  removeVertexColors (MIntArray &vertexList)
MStatus  removeFaceVertexColors (MIntArray &faceList, MIntArray &vertexList)
MStatus  getVertexColors (MColorArray &colors, const MString *colorSet=NULL, const MColor *defaultUnsetColor=NULL)
MStatus  getFaceVertexColors (MColorArray &colors, const MString *colorSet=NULL, const MColor *defaultUnsetColor=NULL)
MStatus  getFaceVertexColorIndex (int faceIndex, int localVertexIndex, int &colorIndex, const MString *colorSet=NULL)
MStatus  setColors (const MColorArray &colors, const MString *colorSet=NULL)
MStatus  setColors (const MColorArray &colors, const MString *colorSet, MColorRepresentation rep)
MStatus  setSomeColors (const MIntArray &colorIds, const MColorArray &colors, const MString *colorSet=NULL)
MStatus  setSomeColors (const MIntArray &colorIds, const MColorArray &colors, const MString *colorSet, MColorRepresentation rep)
MStatus  getColors (MColorArray &colors, const MString *colorSet=NULL, const MColor *defaultUnsetColor=NULL) const
MStatus  getColorIndex (int faceIndex, int localVertexIndex, int &colorIndex, const MString *colorSet=NULL)
MStatus  setColor (int colorId, const MColor &color, const MString *colorSet=NULL)
MStatus  setColor (int colorId, const MColor &color, const MString *colorSet, MColorRepresentation rep)
MStatus  getColor (int colorId, MColor &color, const MString *colorSet=NULL, const MColor *defaultUnsetColor=NULL) const
MStatus  assignColor (int polygonId, int vertexIndex, int colorId, const MString *colorSet=NULL)
MStatus  assignColors (const MIntArray &colorIds, const MString *colorSet=NULL)
MStatus  clearColors (const MString *colorSet=NULL)
int  getHoles (MIntArray &holeInfoArray, MIntArray &holeVertexArray, MStatus *ReturnStatus=NULL)
bool  onBoundary (int polygonId, MStatus *ReturnStatus=NULL) const
bool  isBlindDataTypeUsed (int blindDataId, MStatus *ReturnStatus=NULL) const
MStatus  createBlindDataType (int blindDataId, MStringArray longNames, MStringArray shortNames, MStringArray formatNames)
bool  hasBlindDataComponentId (int compID, MFn::Type compType, int blindDataId, MStatus *ReturnStatus=NULL) const
bool  hasBlindData (MFn::Type compType, int blindDataId, MStatus *ReturnStatus=NULL) const
bool  hasBlindDataComponentId (int compID, MFn::Type compType, MStatus *ReturnStatus=NULL) const
bool  hasBlindData (MFn::Type compType, MStatus *ReturnStatus=NULL) const
MStatus  getBlindDataTypes (MFn::Type compType, MIntArray &blindDataIds) const
MStatus  getBlindDataAttrNames (int blindDataId, MStringArray &longNames, MStringArray &shortNames, MStringArray &formatNames) const
MStatus  getFaceVertexBlindDataIndex (int faceIndex, int vertexIndex, int &blindDataIndex) const
MStatus  getBlindDataFaceVertexIndices (int blindDataIndex, int &faceIndex, int &vertexIndex) const
MStatus  getIntBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, int &data) const
MStatus  getIntBlindData (MFn::Type compType, int blindDataId, MString attrName, MIntArray &compIDs, MIntArray &data) const
MStatus  getFloatBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, float &data) const
MStatus  getFloatBlindData (MFn::Type compType, int blindDataId, MString attrName, MIntArray &compIDs, MFloatArray &data) const
MStatus  getDoubleBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, double &data) const
MStatus  getDoubleBlindData (MFn::Type compType, int blindDataId, MString attrName, MIntArray &compIDs, MDoubleArray &data) const
MStatus  getBoolBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, bool &data) const
MStatus  getBoolBlindData (MFn::Type compType, int blindDataId, MString attrName, MIntArray &compIDs, MIntArray &data) const
MString  stringBlindDataComponentId (int compID, MFn::Type compType, int blindDataId, MString attrName, MStatus *ReturnStatus=NULL) const
MStatus  getStringBlindData (MFn::Type compType, int blindDataId, MString attrName, MIntArray &compIDs, MStringArray &data) const
MString  binaryBlindDataComponentId (int compID, MFn::Type compType, int blindDataId, MString attrName, MStatus *ReturnStatus=NULL) const
MStatus  getBinaryBlindData (MFn::Type compType, int blindDataId, MString attrName, MIntArray &compIDs, MStringArray &data) const
MStatus  setIntBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, int data)
MStatus  setIntBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, int data)
MStatus  setIntBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MIntArray &data)
MStatus  setFloatBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, float data)
MStatus  setFloatBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, float data)
MStatus  setFloatBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MFloatArray &data)
MStatus  setDoubleBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, double data)
MStatus  setDoubleBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, double data)
MStatus  setDoubleBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MDoubleArray &data)
MStatus  setBoolBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, bool data)
MStatus  setBoolBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, bool data)
MStatus  setBoolBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MIntArray &data)
MStatus  setStringBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, MString data)
MStatus  setStringBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MString data)
MStatus  setStringBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MStringArray &data)
MStatus  setBinaryBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, MString data)
MStatus  setBinaryBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MString data)
MStatus  setBinaryBlindData (MIntArray &compIDs, MFn::Type compType, int blindDataId, MString attrName, MStringArray &data)
MStatus  setBinaryBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, char *data, int length)
MStatus  clearBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName)
MStatus  clearBlindData (MFn::Type compType, int blindDataId, MString attrName)
MStatus  clearBlindData (MFn::Type compType)
MStatus  clearBlindData (int compID, MFn::Type compType, int blindDataId)
MStatus  clearBlindData (MFn::Type compType, int blindDataId)
void  setCheckSamePointTwice (bool check=true)
bool  getCheckSamePointTwice (void)
MStatus  createInPlace (int numVertices, int numPolygons, const MFloatPointArray &vertexArray, const MIntArray &polygonCounts, const MIntArray &polygonConnects)
MStatus  copyInPlace (const MObject &source)
MString  createColorSetWithName (const MString &colorSetName, MDGModifier *modifier, MStatus *ReturnStatus)
  This method is obsolete.
MString  currentColorSetName (MStatus *ReturnStatus) const
  This method is obsolete. This method is not available in Python.
MObject  generateSmoothMesh (MObject parentOrOwner, MStatus *ReturnStatus)
  This method is obsolete.
  MFnMesh (const MObject &object, MStatus *ret=NULL)
  Constructor.
MObject  addPolygon (MPointArray &vertexArray, double polyTolerance, bool mergeVertices=true, double pointTolerance=1.0e-10, bool forceGeometry=true, MObject parentOrOwner=MObject::kNullObj, MStatus *ReturnStatus=NULL)
  This method is obsolete. This method is not available in Python.
bool  intersect (MPoint &raySource, MVector &rayDirection, MPointArray &points, MStatus *ReturnStatus=NULL) const
  This method is obsolete. This method is not available in Python.
bool  intersect (const MPoint &raySource, const MVector &rayDirection, MPointArray &points, MStatus *ReturnStatus=NULL) const
  This method is obsolete. This method is not available in Python.
MStatus  getBlindDataAttrNames (int blindDataId, MStringArray &longNames, MStringArray &shortNames) const
bool  hasBlindData (int compID, MFn::Type compType, int blindDataId, MStatus *ReturnStatus=NULL) const
  This method is obsolete. This method is not available in Python.
bool  hasBlindData (int compID, MFn::Type compType, MStatus *ReturnStatus=NULL) const
  This method is obsolete. This method is not available in Python.
MStatus  createUVSet (MString &uvSetName, MDGModifier *modifier=NULL, const MUintArray *instances=NULL)
  This method is not available in Python.
MStatus  copyUVSet (const MString &fromName, MString &toName, MDGModifier *modifier=NULL)
  This method is not available in Python.
MStatus  getCurrentUVSetName (MString &setName, int instance=-1) const
  This method is not available in Python.
MStatus  createColorSet (MString &colorSetName, MDGModifier *modifier=NULL, const MUintArray *instances=NULL)
  This method is not available in Python.
MStatus  createColorSet (MString &colorSetName, MDGModifier *modifier, bool clamped, MColorRepresentation rep, const MUintArray *instances=NULL)
  This method is not available in Python.
MStatus  getCurrentColorSetName (MString &setName, int instance=-1) const
  This method is not available in Python.
MStatus  getStringBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, MString &data) const
  This method is obsolete. This method is not available in Python.
MStatus  getBinaryBlindData (int compID, MFn::Type compType, int blindDataId, MString attrName, MString &data) const
  This method is obsolete. This method is not available in Python.

Static Public Member Functions

static MMeshIsectAccelParams  uniformGridParams (int xDiv, int yDiv, int zDiv)
static MMeshIsectAccelParams  autoUniformGridParams ()
static MString  globalIntersectionAcceleratorsInfo ()
static void  clearGlobalIntersectionAcceleratorInfo ()

Protected Member Functions

virtual const char *  className () const
  Class name.

Member Enumeration Documentation

Specifies which color components are used by a colorSet.

Enumerator:
kAlpha  Alpha only.
kRGB  Red, green and blue only.
kRGBA  Red, green, blue and alpha.

Specifies how a point along split is to be determined.

Enumerator:
kOnEdge  Split at a position along an edge.
kInternalPoint  Split at a point within a face.
kInvalid   

Boolean operators.

Enumerator:
kIntersection  Boolean interesection.
kDifference  Boolean difference.
kUnion  Boolean union.

Constructor & Destructor Documentation

MFnMesh::~MFnMesh (  )  [virtual]

Destructor.

Class destructor.

MFnMesh::MFnMesh ( MObject object,
MStatus ReturnStatus = NULL  
)

Constructor.

Class constructor that initializes the function set to the given MObject.

Parameters:
[in]  object  The MObject to attach the function set to
[out]  ReturnStatus  the return status
Status Codes:

MFnMesh::MFnMesh ( const MDagPath object,
MStatus ReturnStatus = NULL  
)

Constructor.

Class constructor that initializes the function set to the given constant MDagPath object.

Parameters:
[in]  object  The const MDagPath to attach the function set to
[out]  ReturnStatus  The return status
Status Codes:

MFnMesh::MFnMesh ( const MObject object,
MStatus ReturnStatus = NULL  
)

Constructor.

Class constructor that initializes the function set to the given MObject.

Parameters:
[in]  object  The MObject to attach the function set to
[out]  ReturnStatus  the return status
Status Codes:

Member Function Documentation

MFn::Type MFnMesh::type (  )  const [virtual]

Function set type.

Return the class type : MFn::kMesh

Reimplemented from MFnDagNode.

const char * MFnMesh::className (  )  const [protected, virtual]

Class name.

Return the class name : "MFnMesh"

Reimplemented from MFnDagNode.

MObject MFnMesh::create ( int  numVertices,
int  numPolygons,
const MFloatPointArray vertexArray,
const MIntArray polygonCounts,
const MIntArray polygonConnects,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

Creates a new polygonal mesh given an array of vertices and polygon connection information and sets this function set to operate on the new surface.

This method is meant to be as efficient as possible and thus assumes that all the given data is topologically correct.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

Parameters:
[in]  numVertices  number of vertices
[in]  numPolygons  number of polygons
[in]  vertexArray  point (vertex) array. This should include all the vertices in the mesh, and no extras. For example, a cube could have the vertices: { (-1,-1,-1), (1,-1,-1), (1,-1,1), (-1,-1,1), (-1,1,-1), (-1,1,1), (1,1,1), (1,1,-1) }
[in]  polygonCounts  array of vertex counts for each polygon. For example the cube would have 6 faces, each of which had 4 verts, so the polygonCounts would be {4,4,4,4,4,4}.
[in]  polygonConnects  array of vertex connections for each polygon. For example, in the cube, we have 4 vertices for every face, so we list the vertices for face0, face1, etc consecutively in the array. These are specified by indexes in the vertexArray: e.g for the cube: { 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 6, 5, 0, 3, 5, 4, 0, 4, 7, 1, 1, 7, 6, 2 }
[in]  parentOrOwner  parent of the polygon that will be created
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • Array length does not match given item count
  • parentOrOwner was not valid
  • There was no model present to add the object to
Examples:

MObject MFnMesh::create ( int  numVertices,
int  numPolygons,
const MPointArray vertexArray,
const MIntArray polygonCounts,
const MIntArray polygonConnects,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

Creates a new polygonal mesh given an array of vertices and polygon connection information and sets this function set to operate on the new surface.

This method is meant to be as efficient as possible and thus assumes that all the given data is topologically correct.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

Parameters:
[in]  numVertices  number of vertices
[in]  numPolygons  number of polygons
[in]  vertexArray  point (vertex) array. This should include all the vertices in the mesh, and no extras. For example, a cube could have the vertices: { (-1,-1,-1), (1,-1,-1), (1,-1,1), (-1,-1,1), (-1,1,-1), (-1,1,1), (1,1,1), (1,1,-1) }
[in]  polygonCounts  array of vertex counts for each polygon. For example the cube would have 6 faces, each of which had 4 verts, so the polygonCounts would be {4,4,4,4,4,4}.
[in]  polygonConnects  array of vertex connections for each polygon. For example, in the cube, we have 4 vertices for every face, so we list the vertices for face0, face1, etc consecutively in the array. These are specified by indexes in the vertexArray: e.g for the cube: { 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 6, 5, 0, 3, 5, 4,0, 4, 7, 1, 1, 7, 6, 2 }
[in]  parentOrOwner  parent of the polygon that will be created
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • Array length does not match given item count
  • parentOrOwner was not valid
  • There was no model present to add the object to

MObject MFnMesh::create ( int  numVertices,
int  numPolygons,
const MFloatPointArray vertexArray,
const MIntArray polygonCounts,
const MIntArray polygonConnects,
const MFloatArray uArray,
const MFloatArray vArray,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

Creates a new polygonal mesh given an array of vertices, polygon connection information, UV information, and sets this function set to operate on the new surface.

This method is meant to be as efficient as possible and thus assumes that all the given data is topologically correct.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

The uv arrays must be of equal size. After using this method to create the mesh and the UV values, you can call assignUVs to assign the corresponding UV ids to the geometry.

Parameters:
[in]  numVertices  number of vertices
[in]  numPolygons  number of polygons
[in]  vertexArray  point (vertex) array. This should include all the vertices in the mesh, and no extras. For example, a cube could have the vertices: { (-1,-1,-1), (1,-1,-1), (1,-1,1), (-1,-1,1), (-1,1,-1), (-1,1,1), (1,1,1), (1,1,-1) }
[in]  polygonCounts  array of vertex counts for each polygon. For example the cube would have 6 faces, each of which had 4 verts, so the polygonCounts would be {4,4,4,4,4,4}.
[in]  polygonConnects  array of vertex connections for each polygon. For example, in the cube, we have 4 vertices for every face, so we list the vertices for face0, face1, etc consecutively in the array. These are specified by indexes in the vertexArray: e.g for the cube: { 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 6, 5, 0, 3, 5, 4,0, 4, 7, 1, 1, 7, 6, 2 }
[in]  uArray  The array of u values to be set
[in]  vArray  The array of v values to be set
[in]  parentOrOwner  parent of the polygon that will be created
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • Array length does not match given item count
  • parentOrOwner was not valid
  • There was no model present to add the object to

MObject MFnMesh::create ( int  numVertices,
int  numPolygons,
const MPointArray vertexArray,
const MIntArray polygonCounts,
const MIntArray polygonConnects,
const MFloatArray uArray,
const MFloatArray vArray,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

Creates a new polygonal mesh given an array of vertices, polygon connection information, UV information, and sets this function set to operate on the new surface.

This method is meant to be as efficient as possible and thus assumes that all the given data is topologically correct.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

The uv arrays must be of equal size. After using this method to create the mesh and the UV values, you can call assignUVs to assign the corresponding UV ids to the geometry.

Parameters:
[in]  numVertices  number of vertices
[in]  numPolygons  number of polygons
[in]  vertexArray  point (vertex) array. This should include all the vertices in the mesh, and no extras. For example, a cube could have the vertices: { (-1,-1,-1), (1,-1,-1), (1,-1,1), (-1,-1,1), (-1,1,-1), (-1,1,1), (1,1,1), (1,1,-1) }
[in]  polygonCounts  array of vertex counts for each polygon. For example the cube would have 6 faces, each of which had 4 verts, so the polygonCounts would be {4,4,4,4,4,4}.
[in]  polygonConnects  array of vertex connections for each polygon. For example, in the cube, we have 4 vertices for every face, so we list the vertices for face0, face1, etc consecutively in the array. These are specified by indexes in the vertexArray: e.g for the cube: { 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 6, 5, 0, 3, 5, 4,0, 4, 7, 1, 1, 7, 6, 2 }
[in]  uArray  The array of u values to be set
[in]  vArray  The array of v values to be set
[in]  parentOrOwner  parent of the polygon that will be created
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • Array length does not match given item count
  • parentOrOwner was not valid
  • There was no model present to add the object to

MObject MFnMesh::generateSmoothMesh ( MObject  parentOrOwner = MObject::kNullObj,
MMeshSmoothOptions options = NULL,
MStatus ReturnStatus = NULL  
)

Creates a new polygonal mesh using either the Smooth Mesh Preview attributes of this mesh or a set of options specified in an MMeshSmoothOptions object. Unlike the MFnMesh::create functions, this function does not set this function set to operate on the new surface.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

Parameters:
[in]  parentOrOwner  parent of the polygon that will be created
[in]  options  Set of options to use when generating the smoothed mesh
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • parentOrOwner was not valid
  • There was no model present to add the object to

MStatus MFnMesh::getSmoothMeshDisplayOptions ( MMeshSmoothOptions options  )  const

Retrieve the current display smoothing options for the mesh

Parameters:
[out]  options  storge for the options
Returns:
Status code
Status Codes:

MStatus MFnMesh::setSmoothMeshDisplayOptions ( const MMeshSmoothOptions options  ) 

Sets the current display smoothing options for the mesh

Parameters:
[in]  options  Options to set
Returns:
Status code
Status Codes:

MObject MFnMesh::addPolygon ( const MPointArray vertexArray,
bool  mergeVertices = true,
double  pointTolerance = 1.0e-10,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

Adds a new polygon to this polygonal mesh.

If there is no current geometry then a new polygonal mesh is created and parentOrOwner is used to specify the owner of the new surface. If parentOrOwner is NULL or a DAG parent is specified, then a new transform will be created in the DAG and returned. If the parentOrOwner is kMeshData then the new surface will become its data and the geometry will be returned.

If we are adding to an existing polygonal mesh then parentOrOwner is ignored and the geometry is returned.

Parameters:
[in]  vertexArray  array of ordered vertices that make up the polygon
[in]  mergeVertices  If true then if a vertex falls within pointTolerance of an existing vertex then the existing vertex is reused.
[in]  pointTolerance  specifies how close verticies have to be to before they are merged. This merging is only done if mergeVerticies is true.
[in]  parentOrOwner  the DAG parent or kMeshData the new surface will belong to
[out]  ReturnStatus  status code
Returns:
The transform if one is created, otherwise the geometry.
Status Codes:

MObject MFnMesh::addPolygon ( const MPointArray vertexArray,
int &  faceIndex,
bool  mergeVertices = true,
double  pointTolerance = 1.0e-10,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

Adds a new polygon to this polygonal mesh. Return an index of the created polygon.

If there is no current geometry then a new polygonal mesh is created and parentOrOwner is used to specify the owner of the new surface. If parentOrOwner is NULL or a DAG parent is specified, then a new transform will be created in the DAG and returned. If the parentOrOwner is kMeshData then the new surface will become its data and the geometry will be returned.

If we are adding to an existing polygonal mesh then parentOrOwner is ignored and the geometry is returned.

Parameters:
[in]  vertexArray  Array of ordered vertices that make up the polygon.
[out]  faceIndex  Index of the newly added polygon.
[in]  mergeVertices  If true then if a vertex falls within pointTolerance of an existing vertex then the existing vertex is reused.
[in]  pointTolerance  Specifies how close verticies have to be to before they are merged. This merging is only done if mergeVerticies is true.
[in]  parentOrOwner  The DAG parent or kMeshData the new surface will belong to.
[out]  ReturnStatus  Status code.
Returns:
The transform if one is created, otherwise the geometry.
Status Codes:

MStatus MFnMesh::deleteFace ( int  faceId,
MDGModifier modifier = NULL  
)

Delete this face. The method will return failure if an attempt is made to delete the last polygonal face in the object.

Parameters:
[in]  faceId  The face to delete
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::deleteEdge ( int  edgeId,
MDGModifier modifier = NULL  
)

Delete this edge.

Parameters:
[in]  edgeId  The edge to delete
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::deleteVertex ( int  vertexId,
MDGModifier modifier = NULL  
)

Delete this vertex.

Parameters:
[in]  vertexId  The object-relative (mehs-relative/global) vertex index to delete
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::split ( MIntArray placements,
MIntArray edgeList,
MFloatArray edgeFactors,
MFloatPointArray internalPoints  
)

This function splits a set of edges and faces in a continuous manner.

The elements of the placements array must be elements of the SplitPlacement enumeration. For each SplitPlacement::kOnEdge element in the placements array, an equivalent edge ID and factor must be included in the edgeList and edgeFactors arrays. Similarly for SplitPlacement::kInternalPoint elements and the internalPoints array. The equivalent elements must be in the same order in all three arrays so that the first SplitPlacement::kOnEdge element in the placements array maps to the first elements in the edgeList and edgeFactors arrays. If one of the vertices cannot be created, the whole algorithm fails. The same edge cannot be split more than once.

The split must also start and end on an edge. This means that the first and last elements in the placements array must be SplitPlacement::kOnEdge values. If the placements array does not start and end on an edge then the code will still succeed but the mesh will not be split.

NOTE: the algorithm used by this method is the same as the polySplit command and has similar limitations.

Parameters:
[in]  placements  array that contains elements of the SplitPlacement enumeration. They represent where to place the new vertices for the split.
[in]  edgeList  array of edge IDs to be split, in order of their appearance in the split. There must be as many elements in this array as there are SplitPlacement::kOnEdge elements in the placements array.
[in]  edgeFactors  array of factors in the range [0,1] that represent how far along each edge must the split be done. This array must have the same number of elements as the edgeList array.
[in]  internalPoints  array of positions for the vertices that will be added inside existing faces. There must be as many elements in this array as there are SplitPlacement::kInternalPoint elements in the placements array. This array can be empty. Internal points should be specified on the face between the previous edge id and the next edge id.
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange One or more of the edge IDs are not on the mesh.
  • MS::kValueOutOfRange One or more of the edge factors are not within the [0,1] range
  • MS::kInvalidParameter The split algorithm could not be completed successfully or the array sizes are not appropriate.
  • MS::kNotFound The given placements list is empty.
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::subdivideFaces ( MIntArray faceList,
int  divisionCount  
)

This function subdivides multiple faces. This method only accepts faces that are three of four-sided. The operation adds a vertex in the middle of each given face and connects it to the middle of every edge in the given face. This results in three or four new faces for each original face.

Parameters:
[in]  faceList  array of face IDs to subdivide
[in]  divisionCount  number of subsequent subdivisions to do
Returns:
Status Code
Status Codes:
  • MS::kValueOutOfRange The given subdivision count is less than 1
  • MS::kIndexOutOfRange The given faceIDs are not on the mesh
  • MS::kInvalidParameter The given information cannot result in the subdivision of the faces.
  • MS::kNotFound The given face list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::subdivideEdges ( MIntArray edgeList,
int  divisionCount  
)

This function subdivides edges at regular intervals. The divisionCount argument is the number of subdivisions per edges and represents the number of new vertices created on each edge.

For example, a divisionCount of 2 will add a new vertex on every edge in the edgeList 33% along the edges and a new vertex at 67% along the edges.

Parameters:
[in]  edgeList  array of edge component IDs to be subdivided
[in]  divisionCount  number of subsequent subdivisions to do
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given edge IDs are not on the mesh
  • MS::kValueOutOfRange The given subdivision count is less than 1
  • MS::kInvalidParameter The subdivisions could not be completed successfully.
  • MS::kNotFound The given edge list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::extrudeFaces ( MIntArray faceList,
int  extrusionCount,
MFloatVector translation,
bool  extrudeTogether  
)

This function extrudes a set of faces. The resulting mesh will have extra parallelograms coming out of the edges of the given polygons going to the new extruded edges. The extrusionCount argument is the number of subsequent extrusions per polygon and represents the number of faces that will be created for each edge of the polygons in the list.

Parameters:
[in]  faceList  array of face component IDs to be extruded
[in]  extrusionCount  number of subsequent extrusions to do
[in]  translation  translation vector to apply to the extruded elements. This is a world-space translation. Use NULL if not required.
[in]  extrudeTogether  sets whether the components should be extruded individually or together, as if one complex component was being extruded.
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given face IDs are not on the mesh
  • MS::kValueOutOfRange The given extrusion count is less than 1
  • MS::kInvalidParameter The extrusion could not be completed successfully.
  • MS::kNotFound The given face list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::extrudeEdges ( MIntArray edgeList,
int  extrusionCount,
MFloatVector translation,
bool  extrudeTogether  
)

This function extrudes edges. The resulting mesh will have extra parallelograms coming out of the given edges and going to the new extruded edges. The extrusionCount argument is the number of subsequent extrusions per edges and represents the number of polygons that will be created from each given edge to the extruded edges.

Parameters:
[in]  edgeList  array of edge component IDs to be extruded
[in]  extrusionCount  number of subsequent extrusions to do
[in]  translation  translation vector to apply to the extruded elements. This is a world-space translation. Use NULL if not required.
[in]  extrudeTogether  sets whether the components should be extruded individually or together, as if one complex component was being extruded.
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given edge IDs are not on the mesh
  • MS::kValueOutOfRange The given extrusion count is less than 1
  • MS::kInvalidParameter The extrusion could not be completed successfully.
  • MS::kNotFound The given edge list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::duplicateFaces ( MIntArray faceList,
MFloatVector translation  
)

This function duplicates a set of faces and detaches them from the rest of the mesh. The resulting mesh will contain one more independant piece of geometry.

Parameters:
[in]  faceList  array of face component IDs to be duplicated
[in]  translation  translation vector to apply to the duplicated elements. This is a world-space translation. Use NULL if not required.
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given face IDs are not on the mesh
  • MS::kInvalidParameter The duplication could not be completed successfully.
  • MS::kNotFound The given face list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::extractFaces ( MIntArray faceList,
MFloatVector translation  
)

This function detaches a set of faces from the mesh so that the resulting mesh will contain one more independant piece of geometry and leaves a hole where the faces use to be.

Parameters:
[in]  faceList  array of face component IDs to be extracted
[in]  translation  translation vector to apply to the extracted elements. This is a world-space translation. Use NULL if not required.
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given face IDs are not on the mesh
  • MS::kInvalidParameter The extraction could not be completed successfully.
  • MS::kNotFound The given face list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::collapseFaces ( MIntArray faceList  ) 

This function collapse faces into vertices. Non-adjacent faces will be collapsed individually so that each pieces of adjacent faces turn into one vertex.

Parameters:
[in]  faceList  array of face component IDs to be collapsed
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given face IDs are not on the mesh
  • MS::kInvalidParameter The collapse could not be completed successfully.
  • MS::kNotFound The given face list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

MStatus MFnMesh::collapseEdges ( MIntArray edgeList  ) 

This function collapse edges into vertices. The two vertices that create each given edge are replaced in turn by one vertex placed at the average of the two initial vertex.

Parameters:
[in]  edgeList  array of edge component IDs to be collapsed
Returns:
Status Code
Status Codes:
  • MS::kIndexOutOfRange The given edge IDs are not on the mesh
  • MS::kInvalidParameter The collapse could not be completed successfully.
  • MS::kNotFound The given edge list is empty
  • MS::kObjectDoesNotExist The base stucture was not initialized properly
  • MS::kShapeHasNoGeometry The mesh shape has no geometry to work on
Examples:

int MFnMesh::numVertices ( MStatus ReturnStatus = NULL  )  const

Returns the number of vertices in the vertex list for this mesh. This number will be the same as the length of the vertex array returned with the getPoints method.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of vertices of the mesh
Status Codes:

int MFnMesh::numEdges ( MStatus ReturnStatus = NULL  )  const

Returns the number of edges for this mesh.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of edges for this mesh
Status Codes:

int MFnMesh::numPolygons ( MStatus ReturnStatus = NULL  )  const

Returns the number of polygons for this mesh.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of polygons for this mesh
Status Codes:

int MFnMesh::numFaceVertices ( MStatus ReturnStatus = NULL  )  const

Returns the number of face-vertices for this mesh.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of face-vertices for this mesh
Status Codes:

int MFnMesh::polygonVertexCount ( int  polygonId,
MStatus ReturnStatus = NULL  
) const

Returns the number of vertices for the specified polygon.

Parameters:
[in]  polygonId  The polygon index
[out]  ReturnStatus  Status code
Returns:
The number of vertices for the specified polygon
Status Codes:

int MFnMesh::numUVs ( MStatus ReturnStatus = NULL  )  const

Returns the number of texture (uv) coordinates for this mesh. The uv's are stored in a list which is referenced by polygons requiring textures on a per-polygon per-vertex basis. This method returns the number of elements in this list.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of texture coordinates
Status Codes:
Examples:

int MFnMesh::numUVs ( const MString uvSet,
MStatus ReturnStatus = NULL  
) const

Returns the number of texture (uv) coordinates for this mesh. The uv's are stored in a list which is referenced by polygons requiring textures on a per-polygon per-vertex basis. This method returns the number of elements in this list.

Parameters:
[in]  uvSet  UV set to work with
[out]  ReturnStatus  Status code
Returns:
The number of texture coordinates
Status Codes:

int MFnMesh::numColors ( MStatus ReturnStatus = NULL  )  const

Returns the number of (vertex) color for this mesh. The color are stored in a list which is referenced by polygons requiring color on a per-polygon per-vertex basis. This method returns the number of elements in this list.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of colors
Status Codes:
Examples:

int MFnMesh::numColors ( const MString colorSet,
MStatus ReturnStatus = NULL  
) const

Returns the number of colors (vertex data) for this mesh. The colors are stored in a list which is referenced by polygons requiring textures on a per-polygon per-vertex basis. This method returns the number of elements in this list.

Parameters:
[in]  colorSet  Color set to work with
[out]  ReturnStatus  Status code
Returns:
The number of colors
Status Codes:

int MFnMesh::numNormals ( MStatus ReturnStatus = NULL  )  const

Returns the number of per-polygon per-vertex normals for this mesh. This number will correspond to the length of the normal array returned by getNormals( normalArray, space ).

This method is not threadsafe.

Parameters:
[out]  ReturnStatus  Status code
Returns:
The number of per-polygon per-vertex normals
Status Codes:

bool MFnMesh::hasColorChannels ( const MString colorSet,
MStatus ReturnStatus = NULL  
) const

This method returns if the color set has RGB components.

Parameters:
[in]  colorSet  Color set to work with
[out]  ReturnStatus  Status code
Returns:
  • true The color set has RGB components
  • false The color set doesn't have RGB components
Status Codes:

bool MFnMesh::hasAlphaChannels ( const MString colorSet,
MStatus ReturnStatus = NULL  
) const

This method returns true if the color set has Alpha component.

Parameters:
[in]  colorSet  Color set to work with
[out]  ReturnStatus  Status code
Returns:
  • true The color set has Alpha component
  • false The color set doesn't have Alpha component
Status Codes:

MFnMesh::MColorRepresentation MFnMesh::getColorRepresentation ( const MString colorSet,
MStatus ReturnStatus = NULL  
) const

This method returns the color representation (RGB/RGBA/A) of a color set.

Parameters:
[in]  colorSet  Color set to work with
[out]  ReturnStatus  Status code
Returns:
  • kAlpha The color set contains only Alpha component
  • kRGB The color set contains only RGB components
  • kRGBA The color set contains RGBA components
Status Codes:
Examples:

bool MFnMesh::isColorClamped ( const MString colorSet,
MStatus ReturnStatus = NULL  
) const

This method returns if the color set has its R,G,B,and A components clamped in the range from 0 to 1.

Parameters:
[in]  colorSet  Color set to work with
[out]  ReturnStatus  Status code
Returns:
  • true All components in the color set are clamped
  • false All components in the color set are not clamped
Status Codes:
Examples:

MStatus MFnMesh::setIsColorClamped ( const MString colorSet,
bool  clamped  
)

Set the color set to be clamped.

Parameters:
[in]  colorSet  Color set to work with
[in]  clamped  If the color set should be set clamped
Returns:
If the operation is successful.
Status Codes:
  • true clamped.
  • false unclamped.

MStatus MFnMesh::getTriangles ( MIntArray triangleCounts,
MIntArray triangleVertices  
) const

Returns the number of triangles for every polygon face and the vertex Ids of each triangle vertex. The triangleVertices array holds each vertex for each triangle in sequence, so is three times longer than the triangleCounts array

This method is not threadsafe.

Parameters:
[out]  triangleCounts  The number of triangles for each polygon face
[out]  triangleVertices  The triangle vertex Ids for each triangle
Returns:

MStatus MFnMesh::booleanOp ( BoolOperation  op,
MFnMesh mesh1,
MFnMesh mesh2  
)

Computes the boolean between two meshes. The result is stored in the current MFnMesh instance. The current instance must point to a valid mesh, which can be empty. Such as mesh can result from using MFnMeshData::create() for example.

Parameters:
[in]  op  Operation to perform (kIntersection, kDifference or kUnion)
[in]  mesh1  The first mesh in the boolean operation
[in]  mesh2  The second mesh in the boolean operation
Returns:
Status Code
Status Codes:

MMeshIsectAccelParams MFnMesh::uniformGridParams ( int  xDiv,
int  yDiv,
int  zDiv  
) [static]

Creates a MMeshIsectAccelParams configuration object to pass to the methods MFnMesh::closestIntersection(), MFnMesh::anyIntersection(), or MFnMesh::allIntersections(). This object specifies that a uniform voxel grid structure should be used by the intersection routines to speed up their operation. This object specifies the number of voxel cells to be used in the x, y, and z dimensions. The grid acceleration structure will be cached with the mesh, so that if the same MMeshIsectAccelParams configuration is used on the next intersect call, the acceleration structure will not need to be rebuilt.

To see details of the acceleration structure, including build time and memory usage, refer to the cachedIntersectionAcceleratorInfo() method.

Parameters:
[in]  xDiv  Number of voxels in the x direction
[in]  yDiv  Number of voxels in the y direction
[in]  zDiv  Number of voxels in the z direction

MMeshIsectAccelParams MFnMesh::autoUniformGridParams (  )  [static]

Creates a MMeshIsectAccelParams configuration object to pass to the methods MFnMesh::closestIntersection(), MFnMesh::anyIntersection(), or MFnMesh::allIntersections(). This object specifies that a uniform voxel grid structure should be used by the intersection routines to speed up their operation, and that the system should automatically determine the number of voxel cells to use based on the density of triangles in the mesh. The grid acceleration structure will be cached with the mesh, so that if the same MMeshIsectAccelParams configuration is used on the next intersect call, the acceleration structure will not need to be rebuilt.

To see details of the acceleration structure, including build time and memory usage, refer to the cachedIntersectionAcceleratorInfo() method.

Examples:

bool MFnMesh::closestIntersection ( const MFloatPoint raySource,
const MFloatVector rayDirection,
const MIntArray faceIds,
const MIntArray triIds,
bool  idsSorted,
MSpace::Space  space,
float  maxParam,
bool  testBothDirections,
MMeshIsectAccelParams *  accelParams,
MFloatPoint hitPoint,
float *  hitRayParam,
int *  hitFace,
int *  hitTriangle,
float *  hitBary1,
float *  hitBary2,
float  tolerance = 1e-6,
MStatus ReturnStatus = NULL  
)

Finds the closest intersection of a ray starting at raySource and travelling in rayDirection with the mesh. If faceIds is non-NULL and triIds is NULL, then only the faces specified by faceIds will be considered for intersection. If both faceIds and triIds are non-NULL, then each pair of entries will be taken as a (face,triangle) pair to be considered for intersection, where triangles are numbered on each face starting from 0. Thus, the face-triangle pair (10,0) means the first triangle on face 10. If both faceIds and triIds are NULL, then all face-triangles in the mesh will be considered.

The maxParam and testBothDirections flags can be used to control the radius of the search around the raySource point.

If accelParams is NULL, the search proceeds by testing all applicable face-triangles looking for intersections. If an MMeshIsectAccelParams structure is passed in via this parameter, the mesh builds an intersection acceleration structure based on the description provided by the parameter object. This acceleration structure is used to speed up the intersection operation, sometimes by a factor of several hundred over the non-accelerated case. Once created, the acceleration structure is cached, and will be reused the next time this method (or anyIntersection() or allIntersections()) is called with an identically-configured MMeshIsectAccelParams object. If a different MMeshIsectAccelParams object is used, then the acceleration structure will be deleted and re-created according to the new settings. Once created, the acceleration structure will persist until either the object is destroyed (or rebuilt by a construction history operation), or if the freeCachedIntersectionAccelerator() method is called. The cachedIntersectionAcceleratorInfo() and globalIntersectionAcceleratorsInfo() methods provide useful information about the resource usage of individual acceleration structures, and of all such structures in the system.

If the ray hits the mesh, the details of the closest intersection point to the raySource will be returned via the hitPoint, hitRayParam, hitFace, hitTriangle, hitBary1, and hitBary2 parameters. These parameters completely describe where the hit occurred.

Parameters:
[in]  raySource  Starting point for the ray
[in]  rayDirection  Direction of the ray
[in]  faceIds  (see above) if non-NULL, describes a subset of faces to consider for intersection.
[in]  triIds  (see above) if non-NULL, then along with faceIds describes a set of face-triangles to consider for intersection. If triIds is non-NULL, then faceIds must be non-NULL as well, otherwise an error will be generated.
[in]  idsSorted  should be true if the faceIds or faceIds/triIds arrays are properly sorted into ascending order. For face-triangle pairs, the arrays must be sorted by ascending face ids, then by ascending triangle ids within each face. The routine sortIntersectionFaceTriIds() can be used to perform this task. It is not important to sort ids unless an acceleration structure is being used. When using an acceleration structure in conjunction with a limited set of faces or face-triangles, it is ESSENTIAL to sort the indices, otherwise performance will be severely degraded.
[in]  space  specifies the space in which raySource and rayDirection are specified, as well as the space in which the hit point will be returned.
[in]  maxParam  specifies the maximum radius within which hits will be considered. This radius is specified as a multiple of the length of the rayDirection vector, so any hits beyond raySource+maxParam*rayDirection will not be considered. This value must be positive.
[in]  testBothDirections  specifies that hits in the negative rayDirection should also be considered. The maxParam value still applies to limit the search radius, which means that if testBothDirections is true, then only hits that lie between raySource-maxParam*rayDirection and raySource+maxParam*rayDirection will be considered.
[out]  hitPoint  receives the 3d coordinates of the closest intersection, in the space specified by the space parameter.
[out]  hitRayParam  if non-NULL, points to a value that will be filled in with the parametric distance along the ray to the hit point, if one was found. That is, hitPoint = raySource+(*hitRayParam)*rayDirection. If no hit was found, the referenced value will not be modified.
[out]  hitFace  if non-NULL, points to a value that will be filled in with the face id of the hit point, if one was found. If no hit was found, the referenced value will not be modified.
[out]  hitTriangle  if non-NULL, points to a value that will be filled in with the 0-based index of the triangle that was hit within the face given by *hitFace. If no hit was found, the referenced value will not be modified,
[out]  hitBary1  if non-NULL, points to a value that will be filled in with the first barycentric coordinate of the hit point within the triangle defined by hitFace and *hitTriangle. If v1, v2, and v3 are the vertices of that triangle, then the barycentric coordinates are such that hitPoint = (*hitBary1)*v1 + (*hitBary2)*v2 + (1-*hitBary1-*hitBary2)*v3; If no hit was found, the referenced value will not be modified,
[out]  hitBary2  if non-NULL, points to a value that will be filled in with the second barycentric coordinate of the hit point within the triangle defined by hitFace and *hitTriangle. If no hit was found, the referenced value will not be modified,
[in]  tolerance  numerical tolerance for the intersection operation. For numerical reasons, it is wise to allow the intersection routine to consider hits that lie a tiny bit outside mesh triangles. This parameter defines how close a ray has to be to hitting a triangle in order for a hit to register. Obviously, hits within the triangle are always considered, but we also consider hits that are up to a distance of tol*edgeLength away from the triangle, where "edgeLength" is the length of the edge of the triangle that is closest to the ray. This tolerance value is also used to collapse multiple nearly-identical hits that may arise due to numerical imprecision when a ray passes extremely close to a mesh vertex. Any two hits that are less than tol multiplied by the length of rayDirection apart will be considered the same hit, and treated interchangeably.
[out]  ReturnStatus  Status code
Returns:
  • true The given ray intersects the mesh, and the closest intersection of the ray with the mesh is given by the value returned in hitPoint.
  • false The given ray does not intersect this mesh
Status Codes:
  • MS::kSuccess The method was successful.
  • MS::kInvalidParameter There was an error with the parameters passed to the method. Either MSpace::kWorld was specified for a mesh with no world-space transformation, or the mesh had no data, or triIds was non-NULL without a corresponding faceIds array.
  • MS::kFailure An object error has occurred.

bool MFnMesh::anyIntersection ( const MFloatPoint raySource,
const MFloatVector rayDirection,
const MIntArray faceIds,
const MIntArray triIds,
bool  idsSorted,
MSpace::Space  space,
float  maxParam,
bool  testBothDirections,
MMeshIsectAccelParams *  accelParams,
MFloatPoint hitPoint,
float *  hitRayParam,
int *  hitFace,
int *  hitTriangle,
float *  hitBary1,
float *  hitBary2,
float  tolerance = 1e-6,
MStatus ReturnStatus = NULL  
)

Finds any intersection of a ray starting at raySource and travelling in rayDirection with the mesh. If faceIds is non-NULL and triIds is NULL, then only the faces specified by faceIds will be considered for intersection. If both faceIds and triIds are non-NULL, then each pair of entries will be taken as a (face,triangle) pair to be considered for intersection, where triangles are numbered on each face starting from 0. Thus, the face-triangle pair (10,0) means the first triangle on face 10. If both faceIds and triIds are NULL, then all face-triangles in the mesh will be considered.

The maxParam and testBothDirections flags can be used to control the radius of the search around the raySource point.

If accelParams is NULL, the search proceeds by testing all applicable face-triangles looking for intersections. If an MMeshIsectAccelParams structure is passed in via this parameter, the mesh builds an intersection acceleration structure based on the description provided by the parameter object. This acceleration structure is used to speed up the intersection operation, sometimes by a factor of several hundred over the non-accelerated case. Once created, the acceleration structure is cached, and will be reused the next time this method (or closestIntersection() or allIntersections()) is called with an identically-configured MMeshIsectAccelParams object. If a different MMeshIsectAccelParams object is used, then the acceleration structure will be deleted and re-created according to the new settings. Once created, the acceleration structure will persist until either the object is destroyed (or rebuilt by a construction history operation), or if the freeCachedIntersectionAccelerator() method is called. The cachedIntersectionAcceleratorInfo() and globalIntersectionAcceleratorsInfo() methods provide useful information about the resource usage of individual acceleration structures, and of all such structures in the system.

If the ray hits the mesh, the details of the found intersection point to the raySource will be returned via the hitPoint, hitRayParam, hitFace, hitTriangle, hitBary1, and hitBary2 parameters. These parameters completely describe where the hit occurred.

Parameters:
[in]  raySource  Starting point for the ray
[in]  rayDirection  Direction of the ray
[in]  faceIds  (see above) if non-NULL, describes a subset of faces to consider for intersection.
[in]  triIds  (see above) if non-NULL, then along with faceIds describes a set of face-triangles to consider for intersection. If triIds is non-NULL, then faceIds must be non-NULL as well, otherwise an error will be generated.
[in]  idsSorted  should be true if the faceIds or faceIds/triIds arrays are properly sorted into ascending order. For face-triangle pairs, the arrays must be sorted by ascending face ids, then by ascending triangle ids within each face. The routine sortIntersectionFaceTriIds() can be used to perform this task. It is not important to sort ids unless an acceleration structure is being used. When using an acceleration structure in conjunction with a limited set of faces or face-triangles, it is ESSENTIAL to sort the indices, otherwise performance will be severely degraded.
[in]  space  specifies the space in which raySource and rayDirection are specified, as well as the space in which the hit point will be returned.
[in]  maxParam  specifies the maximum radius within which hits will be considered. This radius is specified as a multiple of the length of the rayDirection vector, so any hits beyond raySource+maxParam*rayDirection will not be considered. This value must be positive.
[in]  testBothDirections  specifies that hits in the negative rayDirection should also be considered. The maxParam value still applies to limit the search radius, which means that if testBothDirections is true, then only hits that lie between raySource-maxParam*rayDirection and raySource+maxParam*rayDirection will be considered.
[out]  hitPoint  receives the 3d coordinates of the intersection, in the space specified by the space parameter.
[out]  hitRayParam  if non-NULL, points to a value that will be filled in with the parametric distance along the ray to the hit point, if one was found. That is, hitPoint = raySource+(*hitRayParam)*rayDirection. If no hit was found, the referenced value will not be modified.
[out]  hitFace  if non-NULL, points to a value that will be filled in with the face id of the hit point, if one was found. If no hit was found, the referenced value will not be modified.
[out]  hitTriangle  if non-NULL, points to a value that will be filled in with the 0-based index of the triangle that was hit within the face given by *hitFace. If no hit was found, the referenced value will not be modified,
[out]  hitBary1  if non-NULL, points to a value that will be filled in with the first barycentric coordinate of the hit point within the triangle defined by hitFace and *hitTriangle. If v1, v2, and v3 are the vertices of that triangle, then the barycentric coordinates are such that hitPoint = (*hitBary1)*v1 + (*hitBary2)*v2 + (1-*hitBary1-*hitBary2)*v3; If no hit was found, the referenced value will not be modified,
[out]  hitBary2  if non-NULL, points to a value that will be filled in with the second barycentric coordinate of the hit point within the triangle defined by hitFace and *hitTriangle. If no hit was found, the referenced value will not be modified,
[in]  tolerance  numerical tolerance for the intersection operation. For numerical reasons, it is wise to allow the intersection routine to consider hits that lie a tiny bit outside mesh triangles. This parameter defines how close a ray has to be to hitting a triangle in order for a hit to register. Obviously, hits within the triangle are always considered, but we also consider hits that are up to a distance of tol*edgeLength away from the triangle, where "edgeLength" is the length of the edge of the triangle that is closest to the ray. This tolerance value is also used to collapse multiple nearly-identical hits that may arise due to numerical imprecision when a ray passes extremely close to a mesh vertex. Any two hits that are less than tol multiplied by the length of rayDirection apart will be considered the same hit, and treated interchangeably.
[out]  ReturnStatus  Status code
Returns:
  • true The given ray intersects the mesh, and the found intersection of the ray with the mesh is given by the value returned in hitPoint.
  • false The given ray does not intersect this mesh
Status Codes:
  • MS::kSuccess The method was successful.
  • MS::kInvalidParameter There was an error with the parameters passed to the method. Either MSpace::kWorld was specified for a mesh with no world-space transformation, or the mesh had no data, or triIds was non-NULL without a corresponding faceIds array.
  • MS::kFailure An object error has occurred.
Examples:

bool MFnMesh::allIntersections ( const MFloatPoint raySource,
const MFloatVector rayDirection,
const MIntArray faceIds,
const MIntArray triIds,
bool  idsSorted,
MSpace::Space  space,
float  maxParam,
bool  testBothDirections,
MMeshIsectAccelParams *  accelParams,
bool  sortHits,
MFloatPointArray hitPoints,
MFloatArray hitRayParams,
MIntArray hitFaces,
MIntArray hitTriangles,
MFloatArray hitBary1s,
MFloatArray hitBary2s,
float  tolerance = 1e-6,
MStatus ReturnStatus = NULL  
)

Finds all intersections of a ray starting at raySource and travelling in rayDirection with the mesh. If faceIds is non-NULL and triIds is NULL, then only the faces specified by faceIds will be considered for intersection. If both faceIds and triIds are non-NULL, then each pair of entries will be taken as a (face,triangle) pair to be considered for intersection, where triangles are numbered on each face starting from 0. Thus, the face-triangle pair (10,0) means the first triangle on face 10. If both faceIds and triIds are NULL, then all face-triangles in the mesh will be considered.

The maxParam and testBothDirections flags can be used to control the radius of the search around the raySource point.

If accelParams is NULL, the search proceeds by testing all applicable face-triangles looking for intersections. If an MMeshIsectAccelParams structure is passed in via this parameter, the mesh builds an intersection acceleration structure based on the description provided by the parameter object. This acceleration structure is used to speed up the intersection operation, sometimes by a factor of several hundred over the non-accelerated case. Once created, the acceleration structure is cached, and will be reused the next time this method (or anyIntersection() or allIntersections()) is called with an identically-configured MMeshIsectAccelParams object. If a different MMeshIsectAccelParams object is used, then the acceleration structure will be deleted and re-created according to the new settings. Once created, the acceleration structure will persist until either the object is destroyed (or rebuilt by a construction history operation), or if the freeCachedIntersectionAccelerator() method is called. The cachedIntersectionAcceleratorInfo() and globalIntersectionAcceleratorsInfo() methods provide useful information about the resource usage of individual acceleration structures, and of all such structures in the system.

If the ray hits the mesh, the details of the intersection points will be returned via the hitPoint, hitRayParam, hitFace, hitTriangle, hitBary1, and hitBary2 parameters. These parameters completely describe where the hit occurred.

Parameters:
[in]  raySource  Starting point for the ray
[in]  rayDirection  Direction of the ray
[in]  faceIds  (see above) if non-NULL, describes a subset of faces to consider for intersection.
[in]  triIds  (see above) if non-NULL, then along with faceIds describes a set of face-triangles to consider for intersection. If triIds is non-NULL, then faceIds must be non-NULL as well, otherwise an error will be generated.
[in]  idsSorted  should be true if the faceIds or faceIds/triIds arrays are properly sorted into ascending order. For face-triangle pairs, the arrays must be sorted by ascending face ids, then by ascending triangle ids within each face. The routine sortIntersectionFaceTriIds() can be used to perform this task. It is not important to sort ids unless an acceleration structure is being used. When using an acceleration structure in conjunction with a limited set of faces or face-triangles, it is ESSENTIAL to sort the indices, otherwise performance will be severely degraded.
[in]  space  specifies the space in which raySource and rayDirection are specified, as well as the space in which the hit point will be returned.
[in]  maxParam  specifies the maximum radius within which hits will be considered. This radius is specified as a multiple of the length of the rayDirection vector, so any hits beyond raySource+maxParam*rayDirection will not be considered. This value must be positive.
[in]  testBothDirections  specifies that hits in the negative rayDirection should also be considered. The maxParam value still applies to limit the search radius, which means that if testBothDirections is true, then only hits that lie between raySource-maxParam*rayDirection and raySource+maxParam*rayDirection will be considered.
[in]  sortHits  if true, then hits will be sorted in ascending ray-parametric order, so hits behind the raySource will be first (if testBothDirections is true), moving proceeding closer to the raySource, followed by hits in front of the raySource, proceeding by increasing distance from the raySource. If false, hits will be presented in no particular order in the return arrays.
[out]  hitPoints  an array that receives the 3d coordinates of the intersections, in the space specified by the space parameter.
[out]  hitRayParams  if non-NULL, points to an array that will be filled in with the parametric distances along the ray to the hit points, if any were found. That is, for the i'th hit, hitPoints[i] = raySource+(*hitRayParams[i])*rayDirection. If no hit was found, the referenced values will not be modified.
[out]  hitFaces  if non-NULL, points to an array that will be filled in with the face ids of the hit points, if any were found. If no hits were found, the referenced values will not be modified.
[out]  hitTriangles  if non-NULL, points to an array that will be filled in with the 0-based indices of the triangles that were hit within the faces given by *hitFaces. If no hits were found, the referenced values will not be modified,
[out]  hitBary1s  if non-NULL, points to an array that will be filled in with the first barycentric coordinates of the hit points within the triangles defined by hitFaces and *hitTriangles. For the i'th hit, If v1, v2, and v3 are the vertices of that triangle, then the barycentric coordinates are such that hitPoint[i] = (*hitBary1s)[i]*v1 + (*hitBary2s)[i]*v2 + (1-(*hitBary1s)[i]-(*hitBary2s)[i])*v3; If no hits were found, the referenced value will not be modified,
[out]  hitBary2s  if non-NULL, points to an array that will be filled in with the second barycentric coordinates of the hit points within the triangles defined by hitFaces and *hitTriangles. If no hits were found, the referenced values will not be modified,
[in]  tolerance  numerical tolerance for the intersection operation. For numerical reasons, it is wise to allow the intersection routine to consider hits that lie a tiny bit outside mesh triangles. This parameter defines how close a ray has to be to hitting a triangle in order for a hit to register. Obviously, hits within the triangle are always considered, but we also consider hits that are up to a distance of tol*edgeLength away from the triangle, where "edgeLength" is the length of the edge of the triangle that is closest to the ray. This tolerance value is also used to collapse multiple nearly-identical hits that may arise due to numerical imprecision when a ray passes extremely close to a mesh vertex. Any two hits that are less than tol multiplied by the length of rayDirection apart will be considered the same hit, and treated interchangeably.
[out]  ReturnStatus  Status code
Returns:
  • true The given ray intersects the mesh, and the intersections of the ray with the mesh are given by the values returned in hitPoints.
  • false The given ray does not intersect this mesh
Status Codes:
  • MS::kSuccess The method was successful.
  • MS::kInvalidParameter There was an error with the parameters passed to the method. Either MSpace::kWorld was specified for a mesh with no world-space transformation, or the mesh had no data, or triIds was non-NULL without a corresponding faceIds array.
  • MS::kFailure An object error has occurred.
Examples:

MStatus MFnMesh::sortIntersectionFaceTriIds ( MIntArray faceIds,
MIntArray triIds  
)

Convenience routine for sorting faceIds or face/triangle ids before passing them into the closestIntersection(), allIntersections(), or anyIntersection() methods. When using an acceleration structure with the intersection operation, it is essential that any faceId or faceId/triId arrays be sorted properly to ensure optimal performance.

Status Codes:

MStatus MFnMesh::freeCachedIntersectionAccelerator (  ) 

If the mesh has a cached intersection accelerator structure, then this routine forces it to be deleted. Ordinarily, these structures are cached so that series of calls to the closestIntersection(), allIntersections(), and anyIntersection() method can reuse the same structure. Once the client is finished with these intersection operations, however, they are responsible for freeing the acceleration structure, which is what this method does.

Status Codes:

MString MFnMesh::cachedIntersectionAcceleratorInfo ( MStatus ReturnStatus = NULL  ) 

Retrieves a string that describes the intersection acceleration structure for this object, if any. The string is formatted similar to:

10x10x10 uniform grid, (build time 0.5s), (memory footprint 2000KB)

It describes the configuration of the cached intersection accelerator, as well as how long it took to build it, and how much memory it is currently occupying. If the mesh has no cached intersection accelerator, the empty string is returned.

Status Codes:
Returns:
The description string

MString MFnMesh::globalIntersectionAcceleratorsInfo (  )  [static]

Retrieves a string that describes the systemwide resource usage for cached mesh intersection accelerators. The string will be formatted similar to:

total 10 accelerators created (2 currently active - total current memory = 10000KB), total build time = 10.2s, peak memory = 14567.1KB

This means that:

  • a total of 10 intersection accelerators have been created as instructed by calls to closestIntersection(), allIntersections(), or anyIntersection() with non-NULL accelParams values. These structures are destroyed and re-created when intersection requests with differing acceleration parameters are passed in for the same mesh, so it is useful to see this value, which is the total count of how many have been created. In this case, 8 of the 10 created have been destroyed, either automatically or via calls to the freeCachedIntersectionAccelerator() method
  • the total memory footprint for the 2 accelerators currently in existence is 10,000KB
  • the total build time for all 10 structures that have been created is 10.2 seconds
  • the peak of total memory usage for all accelerators in the system was 14567.1KB

Calling clearGlobalIntersectionAcceleratorInfo() will clear the "total count", "total build time", and "peak memory" fields from this information. It will not cause information about currently existing accelerators to be lost.

Returns:
The information string

void MFnMesh::clearGlobalIntersectionAcceleratorInfo (  )  [static]

As described above, clears the "total count", "total build time", and "peak memory" fields from the information string returned by globalIntersectionAcceleratorsInfo(). It will not cause information about currently existing accelerators to be lost.

bool MFnMesh::intersect ( const MPoint raySource,
const MVector rayDirection,
MPointArray points,
double  tolerance = 1.0e-10,
MSpace::Space  space = MSpace::kObject,
MIntArray polygonIds = NULL,
MStatus ReturnStatus = NULL  
) const

Determines whether the given ray intersects this polygon and if so, returns the points of intersection. The points of intersection will be in order of closest point to the raySource.

If the polygonIds array is not NULL then it will contain the polygon id's that correspond to the points of intersection.

The tolerance parameter is the epsilon value that will be used in the point-in-polygon calculation.

This method is not threadsafe when invoked by multiple threads on the same object at the same time. It is threadsafe as long as each thread operates on a different mesh object.

Parameters:
[in]  raySource  Starting point for the ray
[in]  rayDirection  Direction of the ray
[out]  points  Storage for any points of intersection
[in]  tolerance  Tolerance used in intersection calculation
[in]  space  specifies the coordinate system for this operation
[out]  polygonIds  Storage for the polygon id's that correspond to the points of intersection.
[out]  ReturnStatus  Status code
Returns:
  • true The given ray intersects this polygon
  • false The given ray does not intersect this polygon
Status Codes:

MStatus MFnMesh::getClosestPointAndNormal ( const MPoint toThisPoint,
MPoint theClosestPoint,
MVector theNormal,
MSpace::Space  space = MSpace::kObject,
int *  closestPolygon = NULL  
) const

Returns the closest point on this surface to the given point. This method also returns the surface normal at that point.

If world space is specified then the returned point and normal will be in world space. In this case The test point (toThisPoint) is assumed to be in world space.

This method is not threadsafe. For a threadsafe closest point implementation, use the MMeshIntersector class.

Parameters:
[in]  toThisPoint  Point to be compared
[out]  theClosestPoint  Storage for the closest point
[out]  theNormal  Storage for normal at the closest point
[in]  space  Specifies the coordinate system for this operation
[out]  closestPolygon  Storage for the closest polygon id
Returns:
Status code
Status Codes:

MStatus MFnMesh::getClosestPoint ( const MPoint toThisPoint,
MPoint theClosestPoint,
MSpace::Space  space = MSpace::kObject,
int *  closestPolygon = NULL  
) const

Returns the closest point on this surface to the given point.

If world space is specified then the returned point will be in world space. In this case The test point (toThisPoint) is assumed to be in world space.

This method is not threadsafe. For a threadsafe closest point implementation, use the MMeshIntersector class.

Parameters:
[in]  toThisPoint  Point to be compared
[out]  theClosestPoint  Storage for the closest point
[in]  space  Specifies the coordinate system for this operation
[out]  closestPolygon  Storage for the closest polygon id
Returns:
Status code
Status Codes:

MStatus MFnMesh::getClosestNormal ( const MPoint toThisPoint,
MVector theNormal,
MSpace::Space  space = MSpace::kObject,
int *  closestPolygon = NULL  
) const

Returns the closest point on this surface to the given point. This method also returns the surface normal at that point.

If world space is specified then the returned normal will be in world space. In this case The test point (toThisPoint) is assumed to be in world space.

Parameters:
[in]  toThisPoint  Point to be compared
[out]  theNormal  Storage for normal at the closest point
[in]  space  Specifies the coordinate system for this operation
[out]  closestPolygon  Storage for the closest polygon id
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getConnectedShaders ( unsigned int  instanceNumber,
MObjectArray shaders,
MIntArray indices  
) const

Returns all the shaders (sets) connected to the specified instance of this mesh. As well as an array of polygon/shader assignments. The indices array will hold for each polygon in the mesh, an index into the shaders array. If a polygon does not have a shader assigned to it, the value of the index will be -1.

The shader objects can be derived from the sets returned.

Note: This method will only work with a MFnMesh function set which has been initialized with an MFn::kMesh.

See also getConnectedSetsAndMembers.

Parameters:
[in]  instanceNumber  The instance number of the mesh to query
[out]  shaders  Storage for set objects (shader objects)
[out]  indices  Storage for indices matching faces to shaders. For each face, this array contains the index into the shaders array for the shader assigned to the face.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getConnectedSetsAndMembers ( unsigned int  instanceNumber,
MObjectArray sets,
MObjectArray comps,
bool  renderableSetsOnly  
) const

Returns all the sets connected to the specified instance of this mesh. For each set in the "sets" array there is a corresponding entry in the "comps" array which are all the components in that set. If the entire object is in a set, then the corresponding entry in the comps array will have no elements in it.

Note: This method will only work with a MFnMesh function set which has been initialized with an MFn::kMesh.

Parameters:
[in]  instanceNumber  The instance number of the mesh to query
[out]  sets  Storage for the sets
[out]  comps  Storage for the components that are in the corresponding set
[in]  renderableSetsOnly  If true then this method will only return renderable sets
Returns:
Status code
Status Codes:
Examples:

MObject MFnMesh::copy ( const MObject source,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

This method creates a copy of a given source mesh. After the copy this function set will operate on the new mesh.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

Parameters:
[in]  source  the mesh to be copied
[in]  parentOrOwner  the DAG parent or kMeshData the new mesh will belong to
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • parentOrOwner was not valid
  • if source object is not one of kMeshGeom, kMeshData, kMesh
  • dataMesh or underlying geometry was null
  • Source object was null
  • There was no model present to add the object to
Examples:

MStatus MFnMesh::updateSurface (  ) 

Signal that this polygonal mesh has changed and needs to redraw itself.

Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::syncObject (  ) 

If a non-api operation happens that many have changed the underlying Maya object wrapped by this api object, make sure that the api object references a valid maya object. In particular this call should be used if you are calling mel commands from your plugin. Note that this only applies for mesh shapes: in a plugin node where the dataMesh is being accessed directly this is not necessary.

Returns:
Status code
Status Codes:

const float * MFnMesh::getRawPoints ( MStatus ReturnStatus  )  const

This method returns a pointer to the internal vertex list for this mesh. The points are in local space.

The points are stored in a single contiguous array of floats, first by coordinate, then by element (xyzxyz...) There are three coordinate values, so each vertex is stored in 12 bytes of data, and the total array length is 12*numVertices() bytes.

This method is useful where performance is critical or memory resources are limited, as it avoids having to make a copy of the points as is done by getVertices. Care must be taken however as the returned pointer may become invalid if any changes are made to the mesh.

Returns:
Pointer to internal vertex list data structure
Status Codes:

const float * MFnMesh::getRawNormals ( MStatus ReturnStatus  )  const

This method returns a pointer to the internal normal list for this mesh. The normals are in local space and are the per-polygon per-vertex normals. To find the normal for a particular vertex-face, use getFaceNormalIds() or MItMeshPolygon::normalIndex to get the index into the array.

The normals are stored in a single contiguous array of floats, first by coordinate, then by element (xyzxyz...) There are three coordinate values, so each normal is stored in 12 bytes of data, and the total array length is 12*numNormals() bytes.

This method is useful where performance is critical or memory resources are limited, as it avoids having to make a copy of the normals as is done by getNormals. Care must be taken however as the returned pointer may become invalid if any changes are made to the mesh.

This method is not threadsafe.

Returns:
Pointer to internal per-polygon per-vertex normal data structure
Status Codes:

MStatus MFnMesh::getPoints ( MFloatPointArray vertexArray,
MSpace::Space  space = MSpace::kObject  
) const

This method copies the vertex list for this mesh into the given point array.

Parameters:
[out]  vertexArray  Storage for the vertex list
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getPoints ( MPointArray vertexArray,
MSpace::Space  space = MSpace::kObject  
) const

This method copies the vertex list for this mesh into the given point array.

Parameters:
[out]  vertexArray  Storage for the vertex list
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::setPoints ( MFloatPointArray vertexArray,
MSpace::Space  space = MSpace::kObject  
)

This method copies the points in the given point array to the vertices of this polygon.

Parameters:
[out]  vertexArray  Storage for the vertex list
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setPoints ( MPointArray vertexArray,
MSpace::Space  space = MSpace::kObject  
)

This method copies the points in the given point array to the vertices of this mesh.

Parameters:
[in]  vertexArray  Storage for the vertex list
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getVertices ( MIntArray vertexCount,
MIntArray vertexList  
) const

This method retrieves the object-relative (mesh-relative/global) vertex indices for all polygons. The indices refer to the elements in the array returned by the 'getPoints' method.

Parameters:
[out]  vertexCount  Vertex count per polygon
[out]  vertexList  Storage for the vertex list. NOTE: Global (mesh-relative/object-relative) vertex indices are returned.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getPolygonVertices ( int  polygonId,
MIntArray vertexList  
) const

This method retrieves the object-relative (mesh-relative/global) vertex indices for the specified polygon. The indices refer to the elements in the array returned by the 'getPoints' method.

Parameters:
[in]  polygonId  The polygon to examine
[out]  vertexList  Storage for the vertex list. NOTE: Global (mesh-relative/object-relative) vertex indices are returned.
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getPolygonTriangleVertices ( int  polygonId,
int  triangleId,
int  vertexList[3]  
) const

This method retrieves the object-relative (mesh-relative/global) vertex indices for the specified triangle in the specified polygon. The indices refer to the elements in the array returned by the 'getPoints' method.

This method is not threadsafe.

Parameters:
[in]  polygonId  The polygon to examine
[in]  triangleId  The triangle within the polygon to examine (numbered from zero)
[out]  vertexList  Storage for the vertex list. NOTE: Global (mesh-relative/object-relative) vertex indices are returned.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setPoint ( int  vertexId,
const MPoint pos,
MSpace::Space  space = MSpace::kObject  
)

Sets the position of specified vertex in the vertex list for this mesh.

Note that if you modify the position of a vertex for a shape, a tweak will be created. If you have a shape with no history, the first time that a tweak is created, the underlying pointers under the MFnMesh object may change. You will need to call syncObject() to make sure that the object is valid. Subsequent calls to setPoint() on the same object do not require a syncObject call.

Parameters:
[in]  vertexId  The object-relative (mesh-relative/global) index of the vertex to be changed
[in]  pos  The new value for the vertex
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getPoint ( int  vertexId,
MPoint pos,
MSpace::Space  space = MSpace::kObject  
) const

Get the position of the specified vertex in this mesh's vertex list.

Parameters:
[in]  vertexId  The object-relative (mesh-relative/global) index of the vertex to retrieve
[out]  pos  Storage for the vertex
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getNormals ( MFloatVectorArray normals,
MSpace::Space  space = MSpace::kObject  
) const

This method copies the normal list for this mesh into the given array. The normals are the per-polygon per-vertex normals. To find the normal for a particular vertex-face, use getFaceNormalIds() or MItMeshPolygon::normalIndex to get the index into the array.

This method is not threadsafe.

Parameters:
[out]  normals  Storage for the per-polygon per-vertex normal list
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::setNormals ( MFloatVectorArray normals,
MSpace::Space  space = MSpace::kObject  
)

Set the normal array (user normals)

Parameters:
[in]  normals  The normal array to set
[in]  space  World space or Object space
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexNormal ( int  faceIndex,
int  vertexIndex,
MVector normal,
MSpace::Space  space = MSpace::kObject  
) const

Return a per-vertex-per-face normal for a given face (polygon) and given vertex.

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of the face of interest
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index
[out]  normal  Storage for the per-polygon-per-vertex normal
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexNormals ( int  faceIndex,
MFloatVectorArray normals,
MSpace::Space  space = MSpace::kObject  
) const

Return all per-vertex-per-face normals for a given face.

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of the face (polygon) for which to retrive the normals
[out]  normals  Storage for the face normals
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getNormalIds ( MIntArray normalCounts,
MIntArray normals  
) const

Return normal indices for all vertices for a all faces. The normalIds can be used to index into an array returned by MFnMesh::getNormals();

This method is not threadsafe.

Parameters:
[out]  normalCounts  Number of normals for each face
[out]  normals  Storage for the per-polygon normal ids
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceNormalIds ( int  faceIndex,
MIntArray normals  
) const

Return normal indices for all vertices for a given face. The normalIds can be used to index into an array returned by MFnMesh::getNormals();

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of face (polygon) of interest
[out]  normals  Storage for the per-polygon normal ids
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexNormal ( MVector normalIn,
int  faceId,
int  vertexId,
MSpace::Space  space = MSpace::kObject,
MDGModifier modifier = NULL  
)

Set Normal for this face/vertex pair

Parameters:
[in]  normalIn  The normal to set
[in]  faceId  The face to set it for
[in]  vertexId  The object-relative (mesh-relative/global) vertex index to set it for
[in]  space  World space or Object space
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setVertexNormal ( MVector normalIn,
int  vertexId,
MSpace::Space  space = MSpace::kObject,
MDGModifier modifier = NULL  
)

Set Shared Normal for this vertex

Parameters:
[in]  normalIn  The normal to set
[in]  vertexId  The object-relative (mesh-relative/global) vertex index to set it for
[in]  space  World space or Object space
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexNormals ( MVectorArray normalsIn,
MIntArray faceList,
MIntArray vertexList,
MSpace::Space  space = MSpace::kObject  
)

Set Normals for the given face/vertex pairs. Note that if there is a vertex-face mismatch anywhere in the list, this method will return an error, and not set any of the normals.

Parameters:
[in]  normalsIn  The normals to set
[in]  faceList  The faces to set them for
[in]  vertexList  The object-relative (mesh-relative/global) vertex indices to set them for
[in]  space  World space or Object space
Returns:
Status code
Status Codes:

MStatus MFnMesh::setVertexNormals ( MVectorArray normalsIn,
MIntArray vertexList,
MSpace::Space  space = MSpace::kObject  
)

Set Shared Normals for these vertices. The length of the normalsIn array should be same as the length of the vertexList array.

Parameters:
[in]  normalsIn  The normals to set
[in]  vertexList  The object-relative (mesh-relative/global) vertex indices to set them for
[in]  space  World space or Object space
Returns:
Status code
Status Codes:

MStatus MFnMesh::getVertexNormal ( int  vertexId,
MVector normal,
MSpace::Space  space = MSpace::kObject  
) const

This method is obsolete.

Deprecated:
Use getVertexNormal(int, bool, MVector&, MSpace::Space) instead.
Return the normal at the given vertex. The returned normal is a single per-vertex normal, so unshared normals at a vertex will be averaged. See the class description for more information on normals.

This method is not threadsafe.

Parameters:
[in]  vertexId  The object-relative (mesh-relative/global) vertex index to get the normal for
[out]  normal  Storage for the per-vertex normal
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getVertexNormal ( int  vertexId,
bool  angleWeighted,
MVector normal,
MSpace::Space  space = MSpace::kObject  
) const

Return the normal at the given vertex. The returned normal is a single per-vertex normal, so unshared normals at a vertex will be averaged. See the class description for more information on normals.

If angleWeighted is set to true, the normals are computed by an average of surrounding face normals weighted by the angle subtended by the face at the vertex. If angleWeighted is set to false, a simple average of surround face normals is returned.

The simple average evaluation is significantly faster than the angle-weighted average.

This method is not threadsafe.

Parameters:
[in]  vertexId  The object-relative (mesh-relative/global) vertex index to get the normal for
[in]  angleWeighted  Defines algorithm used to compute normal
[out]  normal  Storage for the per-vertex normal
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getVertexNormals ( bool  angleWeighted,
MFloatVectorArray normals,
MSpace::Space  space = MSpace::kObject  
) const

Return all vertex normals. The returned normals are per-vertex normals, so unshared normals at a vertex will be averaged. See the class description for more information on normals.

If angleWeighted is set to true, the normals are computed by an average of surrounding face normals weighted by the angle subtended by the face at the vertex. If angleWeighted is set to false, a simple average of surround face normals is returned.

The simple average evaluation is significantly faster than the angle-weighted average.

This method is not threadsafe.

Parameters:
[in]  angleWeighted  Defines algorithm used to compute normal
[out]  normals  Storage for the per-vertex normals
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getPolygonNormal ( int  polygonId,
MVector normal,
MSpace::Space  space = MSpace::kObject  
) const

Return the normal at the given polygon. The returned normal is a per-polygon normal. See the class description for more information on normals.

This method is not threadsafe.

Parameters:
[in]  polygonId  The polygon (face) to get the normal for
[out]  normal  Storage for the per-polygon normal
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

bool MFnMesh::isNormalLocked ( int  normalId,
MStatus ReturnStatus = NULL  
) const

Test if the normal for a face/vertex pairs is locked (user defined).

MStatus MFnMesh::lockVertexNormals ( MIntArray vertexList  ) 

Lock Shared Normals for these vertices.

Parameters:
[in]  vertexList  The object-relative (global) verticex ides to lock normals for
Returns:
Status code
Status Codes:

MStatus MFnMesh::lockFaceVertexNormals ( MIntArray faceList,
MIntArray vertexList  
)

Lock Normals for these face/vertex pairs

Parameters:
[in]  faceList  The faces to lock normal in
[in]  vertexList  The corresponding object-relative (global) vertex indices to lock them for
Returns:
Status code
Status Codes:

MStatus MFnMesh::unlockVertexNormals ( MIntArray vertexList  ) 

Unlock Shared Normals for these vertices

Parameters:
[in]  vertexList  The vertices to unlock normals for
Returns:
Status code
Status Codes:

MStatus MFnMesh::unlockFaceVertexNormals ( MIntArray faceList,
MIntArray vertexList  
)

Unlock Normals for these face/vertex pairs

Parameters:
[in]  faceList  The faces to unlock normal in
[in]  vertexList  The corresponding object-relative (global) vertex indices to unlock them for
Returns:
Status code
Status Codes:

int MFnMesh::getTangentId ( int  faceIndex,
int  vertexIndex,
MStatus ReturnStatus = NULL  
) const

Return the tangent index for a given face vertex.

Parameters:
[in]  faceIndex  Index of the face of interest.
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index.
[out]  ReturnStatus  Status code
Status Codes:

MStatus MFnMesh::getTangents ( MFloatVectorArray tangents,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL  
) const

Return the tangent vectors for all face vertices. The tangent is defined as the surface tangent of the polygon running in the U direction defined by the uv map.

This method is not threadsafe.

Parameters:
[out]  tangents  Storage for the tangents.
[in]  space  Specifies the coordinate system for this operation.
[in]  uvSet  The uv map set to calculate the tangents against.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexTangent ( int  faceIndex,
int  vertexIndex,
MVector tangent,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL  
) const

Return the normalized tangent vector at a given face vertex.

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of the face of interest.
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index.
[out]  tangent  Storage for the tangent.
[in]  space  Specifies the coordinate system for this operation.
[in]  uvSet  The uv map set to calculate the binormals aginst.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexTangents ( int  faceIndex,
MFloatVectorArray tangents,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL  
) const

Return all per-vertex-per-face tangents for a given face.

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of the face (polygon) for which to retrive the tangents
[out]  tangents  Storage for the face tangents
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

MStatus MFnMesh::getBinormals ( MFloatVectorArray binormals,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL  
) const

Return the binormal vectors for all face vertices.

This method is not threadsafe.

Parameters:
[out]  binormals  Storage for the binormals.
[in]  space  Specifies the coordinate system for this operation.
[in]  uvSet  The uv map set to calculate the binormals aginst.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexBinormal ( int  faceIndex,
int  vertexIndex,
MVector binormal,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL  
) const

Return the binormal vector at a given face vertex.

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of the face of interest
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index
[out]  binormal  Storage for the binormal.
[in]  space  Specifies the coordinate system for this operation.
[in]  uvSet  The uv map set to calculate the binormals aginst.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexBinormals ( int  faceIndex,
MFloatVectorArray binormals,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL  
) const

Return all per-vertex-per-face binormals for a given face.

This method is not threadsafe.

Parameters:
[in]  faceIndex  Index of the face (polygon) for which to retrive the binormals
[out]  binormals  Storage for the face binormals
[in]  space  Specifies the coordinate system for this operation
Returns:
Status code
Status Codes:

bool MFnMesh::isPolygonConvex ( int  faceIndex,
MStatus ReturnStatus = NULL  
) const

This method determines if the specified polygon is convex.

Parameters:
[in]  faceIndex  The polygon to be tested
[out]  ReturnStatus  Status code
Returns:
  • true The polygon is convex
  • false The edge is concave
Status Codes:

MStatus MFnMesh::getEdgeVertices ( int  edgeId,
int2 &  vertexList  
) const

This method retrieves the object-relative (mesh-relative/global) vertex indices corresponding to the specified edge. The indices can be used to refer to the elements in the array returned by the 'getPoints' method.

Parameters:
[in]  edgeId  The edge to get the vertices for
[out]  vertexList  Storage for the 2 object-relative vertex indices
Returns:
Status code
Status Codes:
Examples:

bool MFnMesh::isEdgeSmooth ( int  edgeId,
MStatus ReturnStatus = NULL  
) const

This method determines if the specified edge is smooth (soft).

Parameters:
[in]  edgeId  The edge to be tested
[out]  ReturnStatus  Status code
Returns:
  • true The edge is smooth (soft)
  • false The edge is hard
Status Codes:

MStatus MFnMesh::setEdgeSmoothing ( int  edgeId,
bool  smooth = true  
)

This method sets the specified edge to be hard or smooth (soft). You must use the cleanupEdgeSmoothing method after all the desired edges on your mesh have had setEdgeSmoothing done. Use the updateSurface method to indicate the mesh needs to be redrawn.

Parameters:
[in]  edgeId  The edge to set the smoothing information for
[in]  smooth  If true the edge will be smooth (soft), otherwise the edge will be hard.
Returns:
Status code
Status Codes:

MStatus MFnMesh::cleanupEdgeSmoothing (  ) 

This method updates the mesh after setEdgeSmoothing has been done. This should be called only once, after all the desired edges have been had their soothing set. If you don't call this method, the normals may not be correct, and the object will look odd in shaded mode.

Returns:
Status code
Status Codes:

MStatus MFnMesh::getCreaseEdges ( MUintArray edgeIds,
MDoubleArray creaseData  
) const

This method returns the crease edges of the mesh, and also the crease data associated with those edges.

Please note that to make effective use of the creasing variable in software outside of Maya may require a license under patents owned by Pixar(R).

Parameters:
[out]  edgeIds  The list of crease edges ids.
[out]  creaseData  The data related to the crease edges.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setCreaseEdges ( const MUintArray edgeIds,
const MDoubleArray creaseData  
)

This method sets the specified edges of the mesh as crease edges.

Please note that to make effective use of the creasing variable in software outside of Maya may require a license under patents owned by Pixar(R).

Parameters:
[in]  edgeIds  The list of crease edges ids.
[in]  creaseData  The data related to the crease edges.
Returns:
Status code
Status Codes:

MUintArray MFnMesh::getInvisibleFaces ( MStatus ReturnStatus = NULL  )  const

This method returns the invisible faces of the mesh.

Invisible faces are like lightweight holes in that they are not rendered but do not require additional geometry the way that holes do. They have the advantage over holes that if the mesh is smoothed then their edges will be smoothed as well, while holes will retain their hard edges.

Invisible faces can be set using the setInvisibleFaces() method or the polyHole command.

Parameters:
[out]  ReturnStatus  status code
Returns:
The list of invisible face ids.
Status Codes:

MStatus MFnMesh::setInvisibleFaces ( const MUintArray faceIds,
bool  makeVisible = false  
)

This method sets the specified faces of the mesh to be visible or invisible. See the getInvisibleFaces() method for a description of invisible faces.

Parameters:
[in]  faceIds  The list of face ids to be made visible/invisible.
[in]  makeVisible  If true the faces will be made visible. The default is false, which will make them invisible.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getCreaseVertices ( MUintArray vertexIds,
MDoubleArray creaseData  
) const

This method returns the crease vertices of the mesh, and also the crease data associated with those vertices.

Please note that to make effective use of the creasing variable in software outside of Maya may require a license under patents owned by Pixar(R).

Parameters:
[out]  vertexIds  The list of crease vertices ids.
[out]  creaseData  The data related to the crease vertices.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setCreaseVertices ( const MUintArray vertexIds,
const MDoubleArray creaseData  
)

This method sets the specified vertices of the mesh as crease vertices.

Please note that to make effective use of the creasing variable in software outside of Maya may require a license under patents owned by Pixar(R).

Parameters:
[in]  vertexIds  The list of crease vertices ids.
[in]  creaseData  The data related to the crease vertices.
Returns:
Status code
Status Codes:

int MFnMesh::numUVSets ( MStatus ReturnStatus = NULL  )  const

Returns the number of uv sets for an object.

Parameters:
[out]  ReturnStatus  return status value
Returns:
The number of uv sets for the object
Status Codes:

MString MFnMesh::createUVSetWithName ( const MString uvSetName,
MDGModifier modifier = NULL,
MStatus ReturnStatus = NULL,
const MUintArray instances = NULL  
)

Create a new empty uv set for this mesh. If the name passed in is empty (zero length), or a uv set with the same name already exists, then a new unique name is generated and used as the new uvset's name.

In the case where the name is empty, the new name will be of the format "uvSet#" where # is a number that makes the name unique for this mesh.

In the case where a uvset already exists with the same name as the name passed in, then the new name will be of the format "userName#", where "userName" was the name specified, and # is a number appended on to "userName" to make the name unique for this mesh.

This operation will only work when the MFnMesh refers to a shape.

Parameters:
[in]  uvSetName  The name of the uv set to add. If a new name needed to be generated then the new name will be returned by the function.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[out]  ReturnStatus  Status code. See below.
[in]  instances  The instance number(s) for which the set should be added, or NULL if the uv-set should be shared by all instances.
Returns:
The name used for the UV set. May be different then the given name if a new name needed to be generated.
Status Codes:

MString MFnMesh::copyUVSetWithName ( const MString fromName,
const MString toName,
MDGModifier modifier = NULL,
MStatus ReturnStatus = NULL  
)

Copies a uv set from one to another for this mesh. The source must exist. The following cases can occur:

1) If the destination name is the same as the source than no copy will be made. 2) If the destination name exists a copy will be made to the destination. 3) If the destination name does not exist, then a new uv set will be created with a unique name, and then the copy will be made. The name generated will be "destinationName>#", where "destinationName" is the original name sent in, and "#" is a ascending number appended to the end of the original name.

This operation will only work when the MFnMesh refers to a shape.

Parameters:
[in]  fromName  The name of the uv set to change
[in]  toName  The name to set the uv set to.
[out]  ReturnStatus  Status Code. See below.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
The name of the new UV set. May be different then the name passed in if a new name was generated.
Status Codes:

MStatus MFnMesh::renameUVSet ( const MString origName,
const MString newName,
MDGModifier modifier = NULL  
)

Renames a uv set from one name to another for this mesh. The original name must exist, and the new name cannot be the same name as one that already exists. In these cases the uv set will not be renamed.

This operation will only work when the MFnMesh refers to a shape.

Parameters:
[in]  origName  The name of the uv set to change
[in]  newName  The name to set the uv set to.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::deleteUVSet ( const MString setName,
MDGModifier modifier = NULL,
MSelectionList currentSelection = NULL  
)

Deletes a named uv set from the object. If a uv set with the given name cannot be found, then no uv set will be deleted.

This operation only works when the MFnMesh refers to a shape.

Parameters:
[in]  setName  Name of the uv set to delete
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  currentSelection  Since this method may change the selection list, if you wish to undo its effects, you need to keep track of the current active selection. If this selection list is non-null, then the active selection list will be returned in this argument.
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setCurrentUVSetName ( const MString setName,
MDGModifier modifier = NULL,
MSelectionList currentSelection = NULL  
)

Set the "current" uv set for this object. The "current" uv set is the uv set to use when no uv set name is specified for a uv set operation. If the uv set does not exist then the "current" uv set will not be changed.

This operation only works when the MFnMesh is a shape.

Parameters:
[in]  setName  Name of uv set to make "current"
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  currentSelection  Since this method may change the selection list, if you wish to undo its effects, you need to keep track of the current active selection. If this selection list is non-null, then the active selection list will be returned in this argument.
Returns:
Status code
Status Codes:

MString MFnMesh::currentUVSetName ( MStatus ReturnStatus = NULL,
int  instance = -1  
) const

Get the name of the "current" uv set. The "current" uv set is the uv set which is used for uv operations when no uv set is explicitly specified.

On instanced meshes, uv sets may be applied on a per-instance basis or may be shared across all instances. When the uv sets are per-instance, the concept of the current uv set has two levels of granularity. Namely, the current uv set applies to one or more instances, plus there are other uv sets in the same uv set family that apply to different instances. The instance arguement is used to indicate that if this is a per-instance uv set, you are interested in the name of the uv set that applies to the specified instance. When the index is not specified, the current uv set will be returned regardless of which instance it is for.

If there is no current uv set, then a empty string will be returned on the string argument passed in.

Parameters:
[out]  ReturnStatus  Status code
[in]  instance  Instance of the mesh whose set we are interested in
Returns:
UV set name.
Status Codes:

MStatus MFnMesh::getUVSetNames ( MStringArray setNames  )  const

Get the names of all of the uv sets on this object.

Parameters:
[out]  setNames  Array of uv set names found
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getUVSetFamilyNames ( MStringArray familyNames  )  const

Get the names of all of the uv set families on this object. A uv set family is a set of per-instance sets with the same name with each individual set applying to one or more instances. A set which is shared across all instances will be the sole member of its family.

Given a uv set family name, the method getUVSetsInFamily may be used to determine the names of the associated individual sets.

Parameters:
[out]  familyNames  Array of uv set names found
Returns:
Status code
Status Codes:

MStatus MFnMesh::getUVSetsInFamily ( const MString familyName,
MStringArray setNames  
) const

Get the names of the uv sets that belong to this set family. Per-instance sets will have multiple sets in a family, with each individual set applying to one or more instances. A set which is shared across all instances will be the sole member of its family and will share the same name as its family.

Parameters:
[in]  familyName  The uv set family name
[out]  setNames  Array of uv set names in the family
Returns:
Status code
Status Codes:

bool MFnMesh::isUVSetPerInstance ( const MString name,
MStatus ReturnStatus = NULL  
) const

Return true if this set is per-instance, and false if it is shared across all instances. The name provided may be an individual set name or a set family name.

Parameters:
[in]  name  The set name or set family name
[out]  ReturnStatus  Status code
Returns:
true if the set is per-instance
Status Codes:

MStatus MFnMesh::getFaceUVSetNames ( int  polygonId,
MStringArray setNames  
) const

This method returns the list of UV sets mapped to a face.

This method is not threadsafe.

Parameters:
[in]  polygonId  The polygon ID of the face of interest
[out]  setNames  The string array to return the UV sets names in
Returns:

MStatus MFnMesh::getAssociatedUVSetTextures ( const MString  uvSetName,
MObjectArray textures  
) const

Get a list of texture nodes which are using a given uv set. If the texture has a 2d texture placement, the texture, and not the placement will be returned.

Parameters:
[in]  uvSetName  Name of uv set to use
[out]  textures  Texture nodes using the uv set
Returns:
Status code
Status Codes:

MStatus MFnMesh::getAssociatedUVSetInstances ( const MString uvSetName,
MIntArray instances  
) const

Get a list of the instance numbers associated with this uv map. If the uv map is shared across all instances, an empty array will be returned.

Note, this method may only be used on an MFnMesh that is initialized using a mesh shape. It will return failure if used on an MFnMesh that has no associated shape.

Parameters:
[in]  uvSetName  Name of uv set to use
[out]  instances  Instances associated with this uv set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setUVs ( const MFloatArray uArray,
const MFloatArray vArray,
const MString uvSet = NULL  
)

Sets all of the texture coordinates (uv's) for this mesh. The uv arrays must be of equal size and must be at least as large as the current UV set size. You can determine the UV set size by calling numUVs() for the default UV set, or numUVs(uvSet) for a named UV set.

If the arrays are larger than the UV set size, then the uv list for this mesh will be grown to accommodate the new uv values.

After using this method to set the UV values, you must call one of the assignUV methods to assign the corresponding UV ids to the geometry.

In order to shrink the uvs array, do the following:

These steps will let you to create an array of uvs which is smaller than the original one.
Parameters:
[in]  uArray  The array of u values to be set
[in]  vArray  The array of v values to be set
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setSomeUVs ( const MIntArray uvIds,
const MFloatArray uArray,
const MFloatArray vArray,
const MString uvSet = NULL  
)

Sets the specified texture coordinates (UV's) for this mesh. The uv arrays and uvId array must be of equal size. If the largest uvId in the array is larger than numUVs() then the uv list for this mesh will be grown to accommodate the new uv values. If a named uv set is given, the array will be grown when the largest uvId is larger than numUVs(uvSet).

If you have added new uvIds, you must call one of the assignUV methods to assign the uvIds to the geometry. If you are modifying existing UVs, you do not need to call one of the assignUV methods.

Parameters:
[in]  uvIds  The array of uvIds to set values for
[in]  uArray  The array of u values to be set
[in]  vArray  The array of v values to be set
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::getUVs ( MFloatArray uArray,
MFloatArray vArray,
const MString uvSet = NULL  
) const

This method copies the texture coordinate list for this mesh into the given uv arrays.

Parameters:
[out]  uArray  Storage for the u texture coordinate list
[out]  vArray  Storage for the v texture coordinate list
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setUV ( int  uvId,
float  u,
float  v,
const MString uvSet = NULL  
)

Sets the specified texture coordinate. The uvId is the element in the uv list that will be set. If the uvId is greater than or equal to numUVs() then the uv list will be grown to accommodate the specified uv. If a named uv set is given, the largest uvId must be larger than numUVs(uvSet).

If the UV being added is new, then you must call one of the assignUV methods in order to update the geometry.

Parameters:
[in]  uvId  The element in the uv list to be set
[in]  u  The new u value that is to be set
[in]  v  The new v value that is to be set
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getUV ( int  uvId,
float &  u,
float &  v,
const MString uvSet = NULL  
) const

Get the value of the specified texture coordinate from this mesh's uv list. The uvId is the element in the uv list that will be retrieved.

Parameters:
[in]  uvId  The element in the uv list to examine
[out]  u  Storage for the u value
[out]  v  Storage for the v value
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getPointAtUV ( int  polygonId,
MPoint toThisPoint,
float2 &  uvPoint,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL,
float  tolerance = 0.0  
)

Return the position of the point at the given UV value in the current polygon.

This method is not threadsafe.

Parameters:
[in]  polygonId  Search for uv on this face
[out]  toThisPoint  Space for the point
[in]  uvPoint  The UV value to try to locate
[in]  space  The coordinate system to return "toThisPoint" in
[in]  uvSet  UV set to work with
[in]  tolerance  tolerance value to compare float data type
Returns:
Status code
Status Codes:

MStatus MFnMesh::getUVAtPoint ( MPoint pt,
float2 &  uvPoint,
MSpace::Space  space = MSpace::kObject,
const MString uvSet = NULL,
int *  closestPolygon = NULL  
)

Find the point closet to the given point, and return the UV value at that point.

This method is not threadsafe.

Parameters:
[in]  pt  The point to try to get UV for
[out]  uvPoint  Space for the UV value
[in]  space  The coordinate system for this operation
[in]  uvSet  UV set to work with
[in]  closestPolygon  polygon id of the closest polygon
Returns:
Status code
Status Codes:

MStatus MFnMesh::getPolygonUV ( int  polygonId,
int  vertexIndex,
float &  u,
float &  v,
const MString uvSet = NULL  
) const

Get the value of the specified texture coordinate for a vertex in a polygon. Since texture coordinates (uv's) are stored per-polygon per-vertex you must specify both the polygon and the vertex that the u and v values are mapped to.

This method is not threadsafe.

Parameters:
[in]  polygonId  The polygon (face) to examine
[in]  vertexIndex  The face-relative (local) vertex id to examine
[out]  u  Storage for the u value
[out]  v  Storage for the v value
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::getPolygonUVid ( int  polygonId,
int  vertexIndex,
int &  uvId,
const MString uvSet = NULL  
) const

Get the id of the specified texture coordinate for a vertex in a polygon.

This method is not threadsafe.

Parameters:
[in]  polygonId  The polygon (face) to examine
[in]  vertexIndex  The face-relative (local) vertex id to examine
[out]  uvId  Storage for the uv index
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::assignUV ( int  polygonId,
int  vertexIndex,
int  uvId,
const MString uvSet = NULL  
)

Maps a texture coordinate to a specified vertex of a polygon.

Since texture coordinates (uv's) are stored per-polygon per-vertex you must specify both the polygon and the vertex that the uv entry is mapped to.

The vertexIndex (face-relative/local) is the vertex within the polygon that the uv will be mapped to. This index must be in the range 0 to polygonVertexCount(polygonId).

Parameters:
[in]  polygonId  The polygon (face) to map to
[in]  vertexIndex  The face-relative (local) vertex id of the polygon to map to
[in]  uvId  The uv entry from the uv list that will be mapped
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::assignUVs ( const MIntArray uvCounts,
const MIntArray uvIds,
const MString uvSet = NULL  
)

This method maps all texture coordinates for the mesh. The setUV/setUVs method is used to create the texture coordinate table for the mesh. After the table is created, this method is used to map those values to each polygon on a per-vertex basis. The setUV/setUVs method should be called before the assignUVs method.

The uvCounts array should contain the number of uv's per polygon. Since uv's are mapped per-polygon per-vertex, the entries in this array should match the vertex counts for each polygon in the mesh. For example, the array for a cube would be { 4, 4, 4, 4, 4, 4 } since there are 6 polygons each with 4 vertices.

If an entry in this array is '0' then the corresponding polygon will not be mapped. The sum of all the entries in the uvCounts array must be equal to the size of the uvIds array or this method will fail.

The uvIds array should contain the UV indices that will be mapped to each polygon-vertex in the mesh. The entries in this array specify which uv's in the mesh's uv table are mapped to each polygon-vertex. Each entry in the uvIds array must be less than numUVs(), or numUVs(uvSet) for a named uvSet. The size of the uvIds array is equivalent to adding up all of the entries in the uvCounts array, so for a cube with all polygons mapped there would be 24 entries.

Parameters:
[in]  uvCounts  The uv counts for each polygon (face) in the mesh
[in]  uvIds  The uv indices to be mapped to each polygon-vertex
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::clearUVs ( const MString uvSet = NULL  ) 

This method clears out all texture coordinates for the mesh, and leaves behind an empty UVset.

This method should be used if it is needed to shrink the actual size of the UV table. In this case, the user should call clearUVs, setUVs and then assignUVs to rebuild the mapping info.

When called on a dataMesh, the UVs are removed. When called on a shape with no history, the UVs are removed and the attributes are set on the shape. When called on a shape with history, the polyMapDel command is invoked and a polyMapDel node is created.

Parameters:
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::getAssignedUVs ( MIntArray uvCounts,
MIntArray uvIds,
const MString uvSet = NULL  
) const

Get assigned UVs. This method finds all texture coordinates for the mesh that have been mapped, and returns them in the same format as the assignUVs.

The uvCounts array that is returned will contain the number of uv's per polygon. Since uv's are mapped per-polygon per-vertex, the entries in this array will match the vertex counts for each polygon in the mesh. For example, the array for a cube would be { 4, 4, 4, 4, 4, 4 } since there are 6 polygons each with 4 vertices.

The uvIds array will contain the UV indices that are mapped to each polygon-vertex in the mesh. The entries in this array indicate which uv's in the mesh's uv table are mapped to each polygon-vertex. Each entry in the uvIds array will be less than numUVs(), or numUVs(uvSet) for a named uvSet. The size of the uvIds array is equivalent to adding up all of the entries in the uvCounts array, so for a cube with all polygons mapped there will be 24 entries.

This method is not threadsafe.

Parameters:
[out]  uvCounts  The container for the uv counts for each polygon in the mesh
[out]  uvIds  The container for the uv indices mapped to each polygon-vertex
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getUvShellsIds ( MIntArray uvShellIds,
unsigned int &  nbUvShells,
const MString uvSet = NULL  
) const

Constructs an array of unique integer for each UV shell. This method let the user identify each connected piece of UV.

The uvShellIds array that is returned will contain a UV shell number for each UV in the given UV set. This number uniquely identifies a connected piece in the UV set. Numbers are positive, starting at 0.

For example, the array { 0, 0, 0, 1, 1, 1, 1, 0} would represent an object where UVs 0, 1, 2 and 7 are connected together (UV shell number 0), and UVs 3 to 6 belong to shell number 1.

Parameters:
[out]  uvShellIds  The container for the uv shell Ids
[out]  nbUvShells  The number of UV shells in this UV set.
[in]  uvSet  UV set to work with
Returns:
Status code
Status Codes:

int MFnMesh::numColorSets ( MStatus ReturnStatus = NULL  )  const

Returns the number of color sets for an object.

Parameters:
[out]  ReturnStatus  return status value
Returns:
The number of color sets for the object
Status Codes:

MString MFnMesh::createColorSetWithName ( const MString colorSetName,
MDGModifier modifier = NULL,
const MUintArray instances = NULL,
MStatus ReturnStatus = NULL  
)

Create a new empty color set for this mesh. If the name passed in is empty (zero length), or a color set with the same name already exists, then a new unique name is generated and used as the new color set's name.

In the case where the name is empty, the new name will be of the format "colorSet#" where # is a number that makes the name unique for this mesh.

In the case where a color set already exists with the same name as the name passed in, then the new name will be of the format "userName#", where "userName" was the name specified, and # is a number appended on to "userName" to make the name unique for this mesh.

This operation will only work when the MFnMesh refers to a shape.

Parameters:
[in]  colorSetName  The name of the color set to add.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  instances  The instance number(s) for which the set should be added, or NULL if the uv-set should be shared by all instances.
[in]  ReturnStatus  Status code. See below.
Returns:
The resulting name of the color set.
Status Codes:

MStatus MFnMesh::deleteColorSet ( const MString colorSetName,
MDGModifier modifier = NULL,
MSelectionList currentSelection = NULL  
)

Deletes a named color set from the object. If a color set with the given name cannot be found, then no color set will be deleted.

This operation only works when the MFnMesh refers to a shape.

Parameters:
[in]  colorSetName  Name of the color set to delete
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  currentSelection  Since this method may change the selection list, if you wish to undo its effects, you need to keep track of the current active selection. If this selection list is non-null, then the active selection list will be returned in this argument.
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setCurrentColorSetName ( const MString setName,
MDGModifier modifier = NULL,
MSelectionList currentSelection = NULL  
)

Set the "current" or "working" color set for this object. The "current" color set is the set to use by functions that do not have a specific color set defined.

This operation only works when the MFnMesh is a shape.

Parameters:
[in]  setName  Name of color set to make "current"
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  currentSelection  Since this method may change the selection list, if you wish to undo its effects, you need to keep track of the current active selection. If this selection list is non-null, then the active selection list will be returned in this argument.
Returns:
Status code
Status Codes:

MString MFnMesh::currentColorSetName ( int  instance = -1,
MStatus ReturnStatus = NULL  
) const

Get the name of the "current" or "working" color set. The "current" color set is the color set which is used for color operations when no color set is explcitly specified.

If there is no current color set, then a empty string will be returned on the string argument passed on.

On instanced meshes, color sets may be applied on a per-instance basis or may be shared across all instances. When the color sets are per-instance, the concept of the current color set has two levels of granularity. Namely, the current color set applies to one or more instances, plus there are other color sets in the same color set family that apply to different instances. The instance arguement is used to indicate that if this is a per-instance color set, you are interested in the name of the color set that applies to the specified instance. When the index is not specified, the current color set will be returned regardless of which instance it is for.

Parameters:
[out]  ReturnStatus  Status code. See below.
Returns:
  • Name of the "current" color set, if any.
  • instance Instance of the mesh whose set we are interested in
Status Codes:

MStatus MFnMesh::getColorSetNames ( MStringArray setNames  )  const

Get the names of all of the colors sets on this object.

Parameters:
[out]  setNames  Array of color set names found
Returns:
Status code
Status Codes:

MStatus MFnMesh::getColorSetFamilyNames ( MStringArray familyNames  )  const

Get the names of all of the color set families on this object. A color set family is a set of per-instance sets with the same name with each individual set applying to one or more instances. A set which is shared across all instances will be the sole member of its family.

Given a color set family name, the method getColorSetsInFamily may be used to determine the names of the associated individual sets.

Parameters:
[out]  familyNames  Array of color set names found
Returns:
Status code
Status Codes:

MStatus MFnMesh::getColorSetsInFamily ( const MString familyName,
MStringArray setNames  
) const

Get the names of the color sets that belong to this set family. Per-instance sets will have multiple sets in a family, with each individual set applying to one or more instances. A set which is shared across all instances will be the sole member of its family and will share the same name as its family.

Parameters:
[out]  familyName  The color set family name
[out]  setNames  Array of color set names in the family
Returns:
Status code
Status Codes:

bool MFnMesh::isColorSetPerInstance ( const MString name,
MStatus ReturnStatus = NULL  
) const

Return true if this color set is per-instance, and false if it is shared across all instances. The name provided may be an individual set name or a set family name.

Parameters:
[in]  name  The set name or set family name
[out]  ReturnStatus  Status code
Returns:
true if the set is per-instance
Status Codes:

MStatus MFnMesh::getAssociatedColorSetInstances ( const MString colorSetName,
MIntArray instances  
) const

Get a list of the instance numbers associated with this color map. If the color map is shared across all instances, an empty array will be returned.

Note, this method may only be used on an MFnMesh that is initialized using a mesh shape. It will return failure if used on an MFnMesh that has no associated shape.

Parameters:
[in]  colorSetName  Name of color set to use
[out]  instances  Instances associated with this color set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceColor ( MColor color,
int  faceIndex  
)

Set vertex-face Color for all vertices on this face.

Parameters:
[in]  color  The color to set
[in]  faceIndex  The face to set it for
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceColor ( MColor color,
int  faceIndex,
MColorRepresentation  rep  
)

Set vertex-face Color of specified channels for all vertices on this face.

Parameters:
[in]  color  The color to set
[in]  faceIndex  The face to set it for
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setVertexColor ( MColor color,
int  vertexIndex,
MDGModifier modifier = NULL  
)

Set color for this vertex. The color is set for the vertex-face in each face that the vertex belongs to.

NOTE: To change the colors of many vertices, it is more efficient to use the batch updating method setVertexColors() instead.

Parameters:
[in]  color  The color to set
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index to set it for
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setVertexColor ( MColor color,
int  vertexIndex,
MDGModifier modifier,
MColorRepresentation  rep  
)

Set color of specified channels for this vertex. The color is set for the vertex-face in each face that the vertex belongs to.

NOTE: To change the colors of many vertices, it is more efficient to use the batch updating method setVertexColors() instead.

Parameters:
[in]  color  The color to set
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index to set it for
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexColor ( MColor color,
int  faceIndex,
int  vertexIndex,
MDGModifier modifier = NULL  
)

Set color for this vertex in this face.

Parameters:
[in]  color  The color to set
[in]  faceIndex  The face to set it for
[in]  vertexIndex  The object-relative (mesh_relative/global) vertex index to set it for
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexColor ( MColor color,
int  faceIndex,
int  vertexIndex,
MDGModifier modifier,
MColorRepresentation  rep  
)

Set color of specified channels for this vertex in this face.

Parameters:
[in]  color  The color to set
[in]  faceIndex  The face to set it for
[in]  vertexIndex  The object-relative (mesh_relative/global) vertex index to set it for
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexColor ( int  faceIndex,
int  localVertexIndex,
MColor color,
MDGModifier modifier = NULL  
)

Set color for this vertex in this face.

Parameters:
[in]  faceIndex  The face to set it for
[in]  localVertexIndex  The face-relative (local) vertex index to set it for
[in]  color  The color to set
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexColor ( int  faceIndex,
int  localVertexIndex,
MColor color,
MDGModifier modifier,
MColorRepresentation  rep  
)

Set color of specified channels for this vertex in this face.

Parameters:
[in]  faceIndex  The face to set it for
[in]  localVertexIndex  The face-relative (local) vertex index to set it for
[in]  color  The color to set
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceColors ( MColorArray colors,
MIntArray faceList  
)

Set color for these faces. The color will be set for each vertex-face component of a face.

Parameters:
[in]  colors  The colors to set
[in]  faceList  The faces to set it for
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceColors ( MColorArray colors,
MIntArray faceList,
MColorRepresentation  rep  
)

Set color of specified channels for these faces. The color will be set for each vertex-face component of a face.

Parameters:
[in]  colors  The colors to set
[in]  faceList  The faces to set it for
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setVertexColors ( MColorArray colors,
MIntArray vertexList,
MDGModifier modifier = NULL  
)

Set color for these vertices.

Parameters:
[in]  colors  The colors to set
[in]  vertexList  The vertices to set it for
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setVertexColors ( MColorArray colors,
MIntArray vertexList,
MDGModifier modifier,
MColorRepresentation  rep  
)

Set color of specified channels for these vertices.

Parameters:
[in]  colors  The colors to set
[in]  vertexList  The vertices to set it for
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexColors ( MColorArray colors,
MIntArray faceList,
MIntArray vertexList,
MDGModifier modifier = NULL  
)

Set colors for these face/vertex pairs.

Parameters:
[in]  colors  The colors to set
[in]  faceList  The faces to set it for
[in]  vertexList  The object-relative (mesh-relative/global) vertex indices to set it for
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFaceVertexColors ( MColorArray colors,
MIntArray faceList,
MIntArray vertexList,
MDGModifier modifier,
MColorRepresentation  rep  
)

Set colors of specified channels for these face/vertex pairs.

Parameters:
[in]  colors  The colors to set
[in]  faceList  The faces to set it for
[in]  vertexList  The object-relative (mesh-relative/global) vertex indices to set it for
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::removeFaceColors ( MIntArray faceList  ) 

Remove previously set color these faces. For each face, the color will be unset for each vertex-face component in the face.

Parameters:
[in]  faceList  The faces to remove color from
Returns:
Status code
Status Codes:

MStatus MFnMesh::removeVertexColors ( MIntArray vertexList  ) 

Remove color from these vertices.

Parameters:
[in]  vertexList  The object-relative (mesh-relative/global) vertex indices to remove color from
Returns:
Status code
Status Codes:

MStatus MFnMesh::removeFaceVertexColors ( MIntArray faceList,
MIntArray vertexList  
)

Remove colors for these face/vertex pairs

Parameters:
[in]  faceList  The faces to remove color for
[in]  vertexList  The corresponding object-relative (mesh-relative/global) vertex indices to remove color for
Returns:
Status code
Status Codes:

MStatus MFnMesh::getVertexColors ( MColorArray colors,
const MString colorSet = NULL,
const MColor defaultUnsetColor = NULL  
)

Get colors for all Vertices of the given colorSet. If the colorSet is not specified, the default color set will be used. If no vertex/face has color for that vertex, the entry returned will be defaultUnsetColor. If the defaultUnsetColor is not given, then (-1, -1, -1, -1) will be used. If a color was set for some or all the faces for that vertex, an average of those verted/face values where the color has been set will be returned.

Parameters:
[out]  colors  Storage for the colors to be returned.
[in]  colorSet  Color set name
[in]  defaultUnsetColor  Default Unset color
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getFaceVertexColors ( MColorArray colors,
const MString colorSet = NULL,
const MColor defaultUnsetColor = NULL  
)

Get colors for all vertex/faces of the given color set. If the color set is not specified, the default color set will be used. If no vertex/face has color for that vertex, the entry returned will be defaultUnsetColor. If defaultUnsetColor is not given, then (-1, -1, -1, -1) will be used. If a color was set for some but not all the faces for that vertex, the ones where the color has not been explicitly set will have (0,0,0). If a vertex has shared color, the same value will be set for all its vertes/faces.

The colors are returned in face order: e.g. F0V0, F0V1.. F0Vn, F1V0, etc... Use the index returned by getFaceVertexColorIndex if you wish to index directly into the returned color array.

This method is not threadsafe.

Parameters:
[out]  colors  Storage for the colors to be returned.
[in]  colorSet  Color set name
[in]  defaultUnsetColor  Default unset color
Returns:
Status code
Status Codes:

MStatus MFnMesh::getFaceVertexColorIndex ( int  faceIndex,
int  localVertexIndex,
int &  colorIndex,
const MString colorSet = NULL  
)

Get an index into the array returned by getFaceVertexColors. So that you can index into the array directly, instead of walking it in face-vertex order.

Parameters:
[in]  faceIndex  The face to look for
[in]  localVertexIndex  The face-relative (local) vertex id to look for
[out]  colorIndex  Storage for the color index to be returned.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setColors ( const MColorArray colorArray,
const MString colorSet = NULL  
)

Sets all of the colors for this mesh. The color array must be at least as large as the current color set size. You can determine the color set size by calling numColors() for the default color set, or numColors(colorSet) for a named color set.

If the array is larger than the color set size, then the color list for this mesh will be grown to accommodate the new color values.

After using this method to set the color values, you can call assignColors to assign the corresponding color ids to the geometry.

In order to shrink the color array, do the following:

These steps will let you to create an array of colors which is smaller than the original one.
Parameters:
[in]  colorArray  The array of color values to be set
[in]  colorSet  The color set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setColors ( const MColorArray colorArray,
const MString colorSet,
MColorRepresentation  rep  
)

Sets all of the colors of specified channels for this mesh. The color array must be at least as large as the current color set size. You can determine the color set size by calling numColors() for the default color set, or numColors(colorSet) for a named color set.

If the array is larger than the color set size, then the color list for this mesh will be grown to accommodate the new color values.

After using this method to set the color values, you can call assignColors to assign the corresponding color ids to the geometry.

In order to shrink the color array, do the following:

These steps will let you to create an array of colors which is smaller than the original one.
Parameters:
[in]  colorArray  The array of color values to be set
[in]  colorSet  The color set to work with
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::setSomeColors ( const MIntArray colorIds,
const MColorArray colorArray,
const MString colorSet = NULL  
)

Sets the specified colors for this mesh. If the largest colorId in the array is larger than numColors() then the color list for this mesh will be grown to accommodate the new color values.

If you have added new colorIds, you can call assignColors to assign the colorIds to the geometry. If you are modifying existing colors, they will already be referenced by the existing mesh data.

Parameters:
[in]  colorIds  The array of colorIds to set values for
[in]  colorArray  The array of color values to be set
[in]  colorSet  Color set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::setSomeColors ( const MIntArray colorIds,
const MColorArray colorArray,
const MString colorSet,
MColorRepresentation  rep  
)

Sets the specified colors of specified channels for this mesh.

If the largest colorId in the array is larger than numColors() then the color list for this mesh will be grown to accommodate the new color values.

If you have added new colorIds, you can call assignColors to assign the colorIds to the geometry. If you are modifying existing colors, they will already be referenced by the existing mesh data.

Parameters:
[in]  colorIds  The array of colorIds to set values for
[in]  colorArray  The array of color values to be set
[in]  colorSet  Color set to work with
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::getColors ( MColorArray colorArray,
const MString colorSet = NULL,
const MColor defaultUnsetColor = NULL  
) const

This method copies the color array for this mesh into the given color array. Use the index returned by getColorIndex to access the array. If the color is not set for a vertex, defaultUnsetColor will be return. If defaultUnsetColor is not set, (0,0,0,1) will be return.

Parameters:
[out]  colorArray  Storage for the color values list
[in]  colorSet  Color set to work with
[in]  defaultUnsetColor  Default unset color
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getColorIndex ( int  faceIndex,
int  localVertexIndex,
int &  colorIndex,
const MString colorSet = NULL  
)

Get an index into the array returned by getColors.

Parameters:
[in]  faceIndex  The face to look for
[in]  localVertexIndex  The face-relative (local) vertex id to look for
[out]  colorIndex  Storage for the color index to be returned.
Returns:
Status code
Status Codes:
  • MS::kSuccess The method was successful. If no color exists for faceIndex/localVertexIndex, then the colorIndex will return -1.
  • MS::kFailure An object error has occurred.
Examples:

MStatus MFnMesh::setColor ( int  colorId,
const MColor color,
const MString colorSet = NULL  
)

Sets the specified color values. The colorId is the element in the color list that will be set. If the colorId is greater than or equal to numColors() then the color list will be grown to accommodate the specified color.

Parameters:
[in]  colorId  The element in the color list to be set
[in]  color  The new color value that is to be set
[in]  colorSet  Color set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::setColor ( int  colorId,
const MColor color,
const MString colorSet,
MColorRepresentation  rep  
)

Sets the specified color values of specified channels. The colorId is the element in the color list that will be set. If the colorId is greater than or equal to numColors() then the color list will be grown to accommodate the specified color.

Parameters:
[in]  colorId  The element in the color list to be set
[in]  color  The new color value that is to be set
[in]  colorSet  Color set to work with
[in]  rep  The RGB/RGBA/A channel(s) to set
Returns:
Status code
Status Codes:

MStatus MFnMesh::getColor ( int  colorId,
MColor color,
const MString colorSet = NULL,
const MColor defaultUnsetColor = NULL  
) const

Get the value of the specified texture coordinate from this mesh's color list. The colorId is the element in the color list that will be retrieved. If the color is not set, defaultUnsetColor will be return. If defaultUnsetColor is not set, (0,0,0,1) will be return.

Parameters:
[in]  colorId  The element in the color list to examine
[out]  color  Storage for the color value
[in]  colorSet  Color set to work with
[in]  defaultUnsetColor  default unset color
Returns:
Status code
Status Codes:

MStatus MFnMesh::assignColor ( int  polygonId,
int  vertexIndex,
int  colorId,
const MString colorSet = NULL  
)

Maps a color value to a specified vertex of a polygon.

Since color (vertex data) are stored per-polygon per-vertex you must specify both the polygon and the vertex that the color entry is mapped to.

The vertexIndex (face-relative/local) is the vertex within the polygon that the color will be mapped to. This index must be in the range 0 to polygonVertexCount(polygonId).

Parameters:
[in]  polygonId  The polygon (face) to map to
[in]  vertexIndex  The face-relative (local) vertex id of the polygon to map to
[in]  colorId  The color entry from the color list that will be mapped
[in]  colorSet  Color set to work with
Returns:
Status code
Status Codes:

MStatus MFnMesh::assignColors ( const MIntArray colorIds,
const MString colorSet = NULL  
)

This method maps all colors for the mesh. The setColor/setColors method is used to create a color table for the mesh. After the table is created, this method is used to map those values to each polygon on a per-vertex basis. The setColor/setColors method should be called before the assignColors method.

The colorIds array should contain the color indices that will be mapped to each polygon-vertex in the mesh. The entries in this array specify which colors in the mesh's color table are mapped to each polygon-vertex. Each entry in the colorIds array must be less than numColors(), or numColors(colorSet) for a named colorSet. The size of the colorIds array is equivalent to the number of polygon-vertices, so for a cube with all polygons mapped there would be 24 entries.

Parameters:
[in]  colorIds  The color indices to be mapped to each polygon-vertex
[in]  colorSet  Color set to work with
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::clearColors ( const MString colorSet = NULL  ) 

This method clears out all color for the mesh, and leaves behind an empty color set.

This method should be used if it is needed to shrink the actual size of the color table. In this case, the user should call clearColors, setColors and then assignColors to rebuild the color mapping info.

When called on a dataMesh, the colors are removed. When called on a shape with no history, the colors are removed and the attributes are set on the shape. When called on a shape with history, the polyColorDel command is invoked and a polyColorDel node is created.

Parameters:
[in]  colorSet  Color set to work with
Returns:
Status code
Status Codes:

int MFnMesh::getHoles ( MIntArray holeInfoArray,
MIntArray holeVertexArray,
MStatus ReturnStatus = NULL  
)

Retrieves a list of the holes in the polygon.

Parameters:
[out]  holeInfoArray  Receives an array of integer triples, one for each hole in the mesh. The first element in each triple represents the index of the holed face. The next two elements represent the number of vertices in the hole and the hole's start index in list of hole vertices in holeVertexArray, respectively. For example, if holeInfoArray = [ 0, 3, 0, 1, 4, 3 ], then this means that face 0 contains a 3-vertex hole whose vertex indices are stored in elements 0, 1, 2 of holeVertexArray, and face 1 contains a 4-vertex hole whose vertex indices are stored in elements 3, 4, 5, 6 of holeVertexArray.
[out]  holeVertexArray  Receives an array consisting of the vertex indices of every hole in the mesh. The third element of each triple in holeInfoArray is the index of the start of a particular hole's vertex list in this array.
Returns:
The number of holes in the mesh.
Status Codes:

bool MFnMesh::onBoundary ( int  polygonId,
MStatus ReturnStatus = NULL  
) const

A method to determines whether the specified face in the mesh is a boundary face.

Parameters:
[in]  polygonId  The polygon (face) to examine
[out]  ReturnStatus  The return status of the method
Returns:
  • true If the specified edge is on the border of the object.
  • false If the specified edge is not on the boundary of the object.
Status Codes:

bool MFnMesh::isBlindDataTypeUsed ( int  blindDataId,
MStatus ReturnStatus = NULL  
) const

Is this BlindData type id is already in use in this scene?

Parameters:
[in]  blindDataId  The blind data id to check for
[out]  ReturnStatus  Status Code
Returns:
true: Id in use, false: id not in use
Status Codes:
Examples:

MStatus MFnMesh::createBlindDataType ( int  blindDataId,
MStringArray  longNames,
MStringArray  shortNames,
MStringArray  formatNames  
)

Create a new blind data type. If the type id is already in use, this method will fail. Format names must be one of "int" "float" "double" "boolean" "string" "binary".

Parameters:
[in]  blindDataId  The desired id for the new blind data type
[in]  longNames  Attribute long names
[in]  shortNames  Attribute short names
[in]  formatNames  Names of the data types.
Returns:
Status code
Status Codes:
Examples:

bool MFnMesh::hasBlindDataComponentId ( int  compID,
MFn::Type  compType,
int  blindDataId,
MStatus ReturnStatus = NULL  
) const

Does this component have blind data with the given ID.

Parameters:
[in]  compID  The component to check for blind data om When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[out]  ReturnStatus  Status Code
Returns:
true: has the specified blind data, false: does not
Status Codes:

bool MFnMesh::hasBlindData ( MFn::Type  compType,
int  blindDataId,
MStatus ReturnStatus = NULL  
) const

Returns true if any component of the given type on this mesh have blind data with the given ID.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[out]  ReturnStatus  Status Code
Returns:
true: has the specified blind data, false: does not
Status Codes:

bool MFnMesh::hasBlindDataComponentId ( int  compID,
MFn::Type  compType,
MStatus ReturnStatus = NULL  
) const

Does this component have any kind of blind data

Parameters:
[in]  compID  The component to check for blind data on When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[out]  ReturnStatus  Status Code
Returns:
true: has the specified blind data, false: does not
Status Codes:

bool MFnMesh::hasBlindData ( MFn::Type  compType,
MStatus ReturnStatus = NULL  
) const

Does any component of this type have any blind data. (.e. is there any vertex blind data on this mesh?)

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[out]  ReturnStatus  Status Code
Returns:
true: has the specified blind data, false: does not
Status Codes:

MStatus MFnMesh::getBlindDataTypes ( MFn::Type  compType,
MIntArray blindDataIds  
) const

Get the list of blind data ID's associated with the given component type on this mesh. (e.g. all blind data ID's present on vertex compontents)

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[out]  blindDataIds  space for this list of blind data id values.
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getBlindDataAttrNames ( int  blindDataId,
MStringArray longNames,
MStringArray shortNames,
MStringArray formatNames  
) const

Get the blind data attribute names and types for the specified blind data type id. Format names will be one of "int" "float" "double" "boolean" "string" "binary".

Parameters:
[in]  blindDataId  The blind data id to check for
[out]  longNames  Space for the attribute long names
[out]  shortNames  Space for the attribute short names
[out]  formatNames  Space for the data format names
Returns:
Status Code
Status Codes:
  • MS::kSuccess The method was successful.
  • MS::kFailure An object error has occurred. The specified blind data type does not exist.

MStatus MFnMesh::getFaceVertexBlindDataIndex ( int  faceIndex,
int  vertexIndex,
int &  blindDataIndex  
) const

Get the single index to retrieve face-vertex blind data.

Parameters:
[in]  faceIndex  The face index to look for
[in]  vertexIndex  The object-relative (mesh-relative/global) vertex index
[out]  blindDataIndex  The component index for face vertex blind data storage to be returned
Returns:
Status code
Status Codes:

MStatus MFnMesh::getBlindDataFaceVertexIndices ( int  blindDataIndex,
int &  faceIndex,
int &  vertexIndex  
) const

Get the face and vertex indices from the face-vertex blind data index.

Parameters:
[in]  blindDataIndex  The component index for face vertex blind data storage to decompose
[in]  faceIndex  The corresponding face index to be returned
[out]  vertexIndex  The object-relative (mesh-relative/global) vertex index to be returned
Returns:
Status code
Status Codes:

MStatus MFnMesh::getIntBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
int &  data  
) const

Get the blind data value for the specified blind data attribute of the specified component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compID  The component to get for blind data on. When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  data  Space for the data item
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getIntBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray compIDs,
MIntArray data  
) const

Get the blind data value for the specified blind data attribute of the given type of component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  compIDs  Space for the component indexes of the items When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[out]  data  Space for the data items
Returns:
true: has the specified blind data, false: does not
Status Codes:

MStatus MFnMesh::getFloatBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
float &  data  
) const

Get the blind data value for the specified blind data attribute of the specified component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compID  The component to get for blind data on When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  data  Space for the data item
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getFloatBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray compIDs,
MFloatArray data  
) const

Get the blind data value for the specified blind data attribute for all components of the given type. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  compIDs  Space for the component indexes of the items When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[out]  data  Space for the data items
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getDoubleBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
double &  data  
) const

Get the blind data value for the specified blind data attribute of the specified component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compID  The component to get for blind data on When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  data  Space for the data item
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getDoubleBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray compIDs,
MDoubleArray data  
) const

Get the blind data value for the specified blind data attribute for all components of the given type. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  compIDs  Space for the component indexes of the items When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[out]  data  Space for the data items
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getBoolBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
bool &  data  
) const

Get the blind data value for the specified blind data attribute of the specified component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compID  The component to get for blind data on When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  data  Space for the data item
Returns:
Status Code
Status Codes:

MStatus MFnMesh::getBoolBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray compIDs,
MIntArray data  
) const

Get the blind data value for the specified blind data attribute for all components of the given type. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  compIDs  Space for the component indexes of the items When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[out]  data  Space for the data items (note that we return the bool data as an MIntArray since we don't have a convenient bool array type
Returns:
Status Code
Status Codes:

MString MFnMesh::stringBlindDataComponentId ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MStatus ReturnStatus = NULL  
) const

Get the blind data value for the specified blind data attribute of the specified component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compID  The component to get for blind data on When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  ReturnStatus  Status code. See below.
Returns:
Blind data.
Status Codes:

MStatus MFnMesh::getStringBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray compIDs,
MStringArray data  
) const

Get the blind data value for the specified blind data attribute for all components of the given type. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  compIDs  Space for the component indexes of the items When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[out]  data  Space for the data items (note that we return the bool data as an MIntArray since we don't have a convenient bool array type
Returns:
Status Code
Status Codes:

MString MFnMesh::binaryBlindDataComponentId ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MStatus ReturnStatus = NULL  
) const

Get the blind data value for the specified blind data attribute of the specified component. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compID  The component to get for blind data on When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  ReturnStatus  Status code. See below.
Returns:
The data item.
Status Codes:

MStatus MFnMesh::getBinaryBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray compIDs,
MStringArray data  
) const

Get the blind data value for the specified blind data attribute for all components of the given type. If the type of the attribute is not correct, this method will fail.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The blind data id to check for
[in]  attrName  The attribute name
[out]  compIDs  Space for the component indexes of the items When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[out]  data  Space for the data items (note that we return the bool data as an MIntArray since we don't have a convenient bool array type
Returns:
Status Code
Status Codes:

MStatus MFnMesh::setIntBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
int  data  
)

Set a value for an integer blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setIntBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
int  data  
)

Set a value for an integer blind data on an array of components

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setIntBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray data  
)

Set a values for an integer blind data on an array of components. The arrays of values and components must be the same size.

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  The attribute values for each component
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFloatBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
float  data  
)

Set a value for a float blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFloatBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
float  data  
)

Set a value for float blind data on an array of components

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setFloatBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MFloatArray data  
)

Set a values for a float blind data on an array of components. The arrays of values and components must be the same size.

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  The attribute values for each component
Returns:
Status code
Status Codes:

MStatus MFnMesh::setDoubleBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
double  data  
)

Set a value for a double blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::setDoubleBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
double  data  
)

Set a value for double blind data on an array of components

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setDoubleBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MDoubleArray data  
)

Set a values for a double blind data on an array of components. The arrays of values and components must be the same size.

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  The attribute values for each component
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBoolBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
bool  data  
)

Set a value for a boolean blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBoolBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
bool  data  
)

Set a value for boolean blind data on an array of components

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBoolBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MIntArray data  
)

Set a values for a boolean blind data on an array of components. The arrays of values and components must be the same size.

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  The attribute values for each component
Returns:
Status code
Status Codes:

MStatus MFnMesh::setStringBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MString  data  
)

Set a value for a string blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setStringBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MString  data  
)

Set a value for string blind data on an array of components

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setStringBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MStringArray data  
)

Set a values for a string blind data on an array of components. The arrays of values and components must be the same size.

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  The attribute values for each component
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBinaryBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MString  data  
)

Set a value for a binary blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value as an MString. Note that the physical size must be set explicitly for binary data.
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBinaryBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MString  data  
)

Set a value for binary blind data on an array of components

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBinaryBlindData ( MIntArray compIDs,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MStringArray data  
)

Set a values for a binary blind data on an array of components. The arrays of values and components must be the same size.

Parameters:
[in]  compIDs  The components to set the blind data for When compType = MFn::kMeshFaceVertComponent then the elements of compIDs must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  The attribute values for each component
Returns:
Status code
Status Codes:

MStatus MFnMesh::setBinaryBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
char *  data,
int  length  
)

Set a value for a binary blind data attribute.

Parameters:
[in]  compID  The component to set the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The desired id for the new blind data type
[in]  attrName  Attribute name
[in]  data  Attribute value as a char string
[in]  length  Length of char string to use
Returns:
Status code
Status Codes:

MStatus MFnMesh::clearBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName  
)

Delete a value for a binary blind data attribute on a particular componenr

Parameters:
[in]  compID  The component to clear the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The id for the blind data to be cleared
[in]  attrName  Attribute name
Returns:
Status code
Status Codes:

MStatus MFnMesh::clearBlindData ( MFn::Type  compType,
int  blindDataId,
MString  attrName  
)

Delete the values for the given attribute on the given binary blind data type from all components of the given type.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The id for the blind data to be cleared
[in]  attrName  The attribute to clear the blind data for
Returns:
Status code
Status Codes:

MStatus MFnMesh::clearBlindData ( MFn::Type  compType  ) 

Delete all blind data from components of the given type, e.g. all edges from a particular component.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
Returns:
Status code
Status Codes:

MStatus MFnMesh::clearBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId  
)

Delete the values for a binary blind data type (all its attributes) from a particular component.

Parameters:
[in]  compID  The component to clear the blind data for When compType = MFn::kMeshFaceVertComponent then compID must be obtained by calling MFnMesh::getFaceVertexBlindDataIndex(faceIndex,vertexIndex)
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The id for the blind data to be cleared
Returns:
Status code
Status Codes:

MStatus MFnMesh::clearBlindData ( MFn::Type  compType,
int  blindDataId  
)

Delete the values for a binary blind data type (all its attributes) from all components of the given type.

Parameters:
[in]  compType  The component type e.g. MFn::kMeshVertComponent
[in]  blindDataId  The id for the blind data to be cleared
Returns:
Status code
Status Codes:

void MFnMesh::setCheckSamePointTwice ( bool  check = true  ) 

This method allows the turning on or off of duplicate point checking when polygons are created or added using this class. Checking for duplicates, is the default state.

Parameters:
[in]  check  true for checking, false otherwise

bool MFnMesh::getCheckSamePointTwice ( void   ) 

Return true if checking for duplicate points is turned on. Return false otherwise.

MStatus MFnMesh::createInPlace ( int  numVertices,
int  numPolygons,
const MFloatPointArray vertexArray,
const MIntArray polygonCounts,
const MIntArray polygonConnects  
)

Replaces the existing polygonal mesh with a new one specified by array of vertices and polygon connection information. This function will then operate on the replacement surface.

This method is meant to be as efficient as possible and thus assumes that all the given data is topologically correct.

Parameters:
[in]  numVertices  number of vertices
[in]  numPolygons  number of polygons
[in]  vertexArray  point (vertex) array. This should include all the vertices in the mesh, and no extras. For example, a cube could have the vertices: { (-1,-1,-1), (1,-1,-1), (1,-1,1), (-1,-1,1), (-1,1,-1), (-1,1,1), (1,1,1), (1,1,-1) }
  • polygonCounts array of vertex counts for each polygon. For example the cube would have 6 faces, each of which had 4 verts, so the polygonCounts would be {4,4,4,4,4,4}.
[in]  polygonConnects  array of vertex connections for each polygon. For example, in the cube, we have 4 vertices for every face, so we list the vertices for face0, face1, etc consecutively in the array. These are specified by indexes in the vertexArray: e.g for the cube: { 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 6, 5, 0, 3, 5, 4, 0, 4, 7, 1, 1, 7, 6, 2 }
Returns:
  • Array length does not match given item count
  • parentOrOwner was not valid
  • There was no model present to add the object to

MStatus MFnMesh::copyInPlace ( const MObject source  ) 

This method creates copies the given source mesh onto the current surface. After the copy this function set continues operate on the original mesh.

Parameters:
[in]  source  the mesh to be copied
Returns:
  • MS::kInvalidDataType source object must be one of kMeshGeom, kMeshData, kMesh
  • MS::kShapeHasNoGeometry dataMesh or underlying geometry was null
  • MS::kObjectDoesNotExist Source object was null
  • MS::kModelActive There was no model present to add the object to
  • MS::kInsufficientMemory Insufficient memory to complete this method

MString MFnMesh::createColorSetWithName ( const MString colorSetName,
MDGModifier modifier,
MStatus ReturnStatus  
)

This method is obsolete.

Deprecated:
Use createColorSetWithName(const MString &, MDGModifier *, const MUintArray *, MStatus *)
Create a new empty color set for this mesh. If the name passed in is empty (zero length), or a color set with the same name already exists, then a new unique name is generated and used as the new color set's name.

In the case where the name is empty, the new name will be of the format "colorSet#" where # is a number that makes the name unique for this mesh.

In the case where a color set already exists with the same name as the name passed in, then the new name will be of the format "userName#", where "userName" was the name specified, and # is a number appended on to "userName" to make the name unique for this mesh.

This operation will only work when the MFnMesh refers to a shape.

Parameters:
[in]  colorSetName  The name of the color set to add.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  ReturnStatus  Status code. See below.
Returns:
The resulting name of the color set.
Status Codes:

MString MFnMesh::currentColorSetName ( MStatus ReturnStatus  )  const

This method is obsolete. This method is not available in Python.

Deprecated:
Use MFnMesh::currentColorSetName(int, MStatus*) instead.

Get the name of the "current" or "working" color set. The "current" color set is the color set which is used for color operations when no color set is explcitly specified.

If there is no current color set, then a empty string will be returned on the string argument passed on.

Parameters:
[out]  ReturnStatus  Status code. See below.
Returns:
  • Name of the "current" color set, if any.
Status Codes:

MObject MFnMesh::generateSmoothMesh ( MObject  parentOrOwner,
MStatus ReturnStatus  
)

This method is obsolete.

Deprecated:
Use generateSmoothMesh(MObject, MMeshSmoothOptions * , MStatus *) instead.
Creates a new polygonal mesh using the Smooth Mesh Preview attributes of this mesh. Unlike the MFnMesh::create functions, this function does not set this function set to operate on the new surface.

The parentOrOwner argument is used to specify the owner of the new surface.

If the parentOrOwner is kMeshData then the created surface will be of type kMeshGeom and will be returned. The parentOrOwner will become the owner of the new mesh.

If parentOrOwner is NULL then a new transform will be created and returned which will be the parent for the mesh. The new transform will be added to the DAG.

If parentOrOwner is a DAG node then the new mesh will be returned and the parentOrOwner will become its parent.

Parameters:
[in]  parentOrOwner  parent of the polygon that will be created
[out]  ReturnStatus  Status code
Returns:
  • If parentOrOwner is NULL then the transform for this surface is returned
  • If parentOrOwner is a DAG object then the new surface shape is returned
  • The surface geometry is returned if parentOrOwner is of type kMeshData
Status Codes:
  • parentOrOwner was not valid
  • There was no model present to add the object to

MObject MFnMesh::addPolygon ( MPointArray vertexArray,
double  polyTolerance,
bool  mergeVertices = true,
double  pointTolerance = 1.0e-10,
bool  forceGeometry = true,
MObject  parentOrOwner = MObject::kNullObj,
MStatus ReturnStatus = NULL  
)

This method is obsolete. This method is not available in Python.

Deprecated:
Use the other MFnMesh::addPolygon method.
Adds a new polygon to this polygonal mesh.

If there is no current geometry then a new polygonal mesh is created and parentOrOwner is used to specify the owner of the new surface. If parentOrOwner is NULL or a DAG parent is specified, then a new transform will be created in the DAG and returned. If the parentOrOwner is kMeshData then the new surface will become its data and the geometry will be returned.

If we are adding to an existing polygonal mesh then parentOrOwner is ignored and the geometry is returned.

Parameters:
[in]  vertexArray  array of ordered vertices that make up the polygon
[in]  polyTolerance  specifies the planar tolerance for the mesh. If all the verticies of a polygon are within this distance of the best fit computed plane between them, the polygon is considered to be planar.
[in]  mergeVertices  If true then if a vertex falls within pointTolerance of an existing vertex then the existing vertex is reused.
[in]  pointTolerance  specifies how close verticies have to be to before they are merged. This merging is only done if mergeVerticies is true.
[in]  forceGeometry  if true handle no-manifold topology regardless of non connectivity
[in]  parentOrOwner  the DAG parent or kMeshData the new surface will belong to
[out]  ReturnStatus  status code
Returns:
The transform if one is created, otherwise the geometry.
Status Codes:

bool MFnMesh::intersect ( MPoint raySource,
MVector rayDirection,
MPointArray points,
MStatus ReturnStatus = NULL  
) const

This method is obsolete. This method is not available in Python.

Deprecated:
Use the other MFnMesh::intersect method.
Determines whether the given ray intersects this polygon and if so, returns the points of intersection. The points of intersection will be in order of closest point to the raySource.

This method is not threadsafe when invoked by multiple threads on the same object at the same time. It is threadsafe as long as each thread operates on a different mesh object.

Parameters:
[in]  raySource  Starting point for the ray
[in]  rayDirection  Direction of the ray
[out]  points  Storage for any points of intersection
[out]  ReturnStatus  Status code
Returns:
  • true The given ray intersects this polygon
  • false The given ray does not intersect this polygon
Status Codes:

bool MFnMesh::intersect ( const MPoint raySource,
const MVector rayDirection,
MPointArray points,
MStatus ReturnStatus = NULL  
) const

This method is obsolete. This method is not available in Python.

Deprecated:
Use the other MFnMesh::intersect method.
Determines whether the given ray intersects this polygon and if so, returns the points of intersection. The points of intersection will be in order of closest point to the raySource.

This method is not threadsafe when invoked by multiple threads on the same object at the same time. It is threadsafe as long as each thread operates on a different mesh object.

Parameters:
[in]  raySource  Starting point for the ray
[in]  rayDirection  Direction of the ray
[out]  points  Storage for any points of intersection
[out]  ReturnStatus  Status code
Returns:
  • true The given ray intersects this polygon
  • false The given ray does not intersect this polygon
Status Codes:

MStatus MFnMesh::getBlindDataAttrNames ( int  blindDataId,
MStringArray longNames,
MStringArray shortNames  
) const

Get the blind data attribute names for the specified blind data type id.

Parameters:
[in]  blindDataId  The blind data id to check for
[out]  longNames  Space for the attribute long names
[out]  shortNames  Space for the attribute short names
Returns:
Status Code
Status Codes:

bool MFnMesh::hasBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MStatus ReturnStatus = NULL  
) const

This method is obsolete. This method is not available in Python.

Deprecated:
Use MFnMesh::hasBlindDataComponentId instead.

bool MFnMesh::hasBlindData ( int  compID,
MFn::Type  compType,
MStatus ReturnStatus = NULL  
) const

This method is obsolete. This method is not available in Python.

Deprecated:
Use MFnMesh::hasBlindDataComponentId instead.

MStatus MFnMesh::createUVSet ( MString uvSetName,
MDGModifier modifier = NULL,
const MUintArray instances = NULL  
)

This method is not available in Python.

Create a new empty uv set for this mesh. If the name passed in is empty (zero length), or a uv set with the same name already exists, then a new unique name is generated and used as the new uvset's name.

In the case where the name is empty, the new name will be of the format "uvSet#" where # is a number that makes the name unique for this mesh.

In the case where a uvset already exists with the same name as the name passed in, then the new name will be of the format "userName#", where "userName" was the name specified, and # is a number appended on to "userName" to make the name unique for this mesh.

This operation will only work when the MFnMesh refers to a shape.

Python Notes

This method is not supported in Python. Please see createUVSetWithName()

Parameters:
[in]  uvSetName  The name of the uv set to add. This name will be overwritten with a different name, if a new name needed to be generated.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  instances  The instance number(s) for which the set should be added, or NULL if the uv-set should be shared by all instances.
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::copyUVSet ( const MString fromName,
MString toName,
MDGModifier modifier = NULL  
)

This method is not available in Python.

Copies a uv set from one to another for this mesh. The source must exist. The following cases can occur:

1) If the destination name is the same as the source than no copy will be made. 2) If the destination name exists a copy will be made to the destination. 3) If the destination name does not exist, then a new uv set will be created with a unique name, and then the copy will be made. The name generated will be "destinationName>#", where "destinationName" is the original name sent in, and "#" is a ascending number appended to the end of the original name.

This operation will only work when the MFnMesh refers to a shape.

Python Notes

This method is not supported in Python. Please see the one which returns a string

Parameters:
[in]  fromName  The name of the uv set to change
[in]  toName  The name to set the uv set to. May be modified to return the final name used in the case where a new name needs to be generated.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getCurrentUVSetName ( MString setName,
int  instance = -1  
) const

This method is not available in Python.

Get the name of the "current" uv set. The "current" uv set is the uv set which is used for uv operations when no uv set is explcitly specified.

If there is no current uv set, then a empty string will be returned on the string argument passed on.

On instanced meshes, uv sets may be applied on a per-instance basis or may be shared across all instances. When the uv sets are per-instance, the concept of the current uv set has two levels of granularity. Namely, the current uv set applies to one or more instances, plus there are other uv sets in the same uv set family that apply to different instances. The instance arguement is used to indicate that if this is a per-instance uv set, you are interested in the name of the uv set that applies to the specified instance. When the index is not specified, the current uv set will be returned regardless of which instance it is for.

Note, the instance argument is only applicable on an MFnMesh that is initialized using a mesh shape. It will return failure if used on an MFnMesh that has no associated shape.

Python Notes

This method is not supported in Python. Please see the one which returns a string.

Parameters:
[out]  setName  Name of the "current" uv set, if any.
[in]  instance  Instance of the mesh whose set we are interested in
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::createColorSet ( MString colorSetName,
MDGModifier modifier = NULL,
const MUintArray instances = NULL  
)

This method is not available in Python.

Create a new empty color set for this mesh. If the name passed in is empty (zero length), or a color set with the same name already exists, then a new unique name is generated and used as the new color set's name.

In the case where the name is empty, the new name will be of the format "colorSet#" where # is a number that makes the name unique for this mesh.

In the case where a color set already exists with the same name as the name passed in, then the new name will be of the format "userName#", where "userName" was the name specified, and # is a number appended on to "userName" to make the name unique for this mesh.

This operation will only work when the MFnMesh refers to a shape.

Python Notes

This method is not supported in Python. Please see createColorSetWithName()

Parameters:
[in]  colorSetName  The name of the color set to add. This name will be overwritten with a different name, if a new name needed to be generated.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  instances  The instance number(s) for which the set should be added, or NULL if the uv-set should be shared by all instances.
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::createColorSet ( MString colorSetName,
MDGModifier modifier,
bool  clamped,
MColorRepresentation  rep,
const MUintArray instances = NULL  
)

This method is not available in Python.

Create a new empty color set of specified channels for this mesh. If the name passed in is empty (zero length), or a color set with the same name already exists, then a new unique name is generated and used as the new color set's name.

In the case where the name is empty, the new name will be of the format "colorSet#" where # is a number that makes the name unique for this mesh.

In the case where a color set already exists with the same name as the name passed in, then the new name will be of the format "userName#", where "userName" was the name specified, and # is a number appended on to "userName" to make the name unique for this mesh.

This operation will only work when the MFnMesh refers to a shape.

Python Notes

This method is not supported in Python. Please see createColorSetWithName()

Parameters:
[in]  colorSetName  The name of the color set to add. This name will be overwritten with a different name, if a new name needed to be generated.
[in]  modifier  Since this method may modify the DG, if you wish to undo its effects, you need to keep track of what needs to be undone. If the modifier is non-null, and this MFnMesh refers to a shape, then it will add the command to be undone to the modifier. Use MDGModifier::undoIt to undo the effects of this method.
[in]  clamped  The color set stores values in 0 to 1 range if true. no range limit if false
[in]  rep  The color set stores RGB, RGBA, or Alpha
[in]  instances  The instance number(s) for which the set should be added, or NULL if the uv-set should be shared by all instances.
Returns:
Status code
Status Codes:

MStatus MFnMesh::getCurrentColorSetName ( MString setName,
int  instance = -1  
) const

This method is not available in Python.

Get the name of the "current" or "working" color set. The "current" color set is the color set which is used for color operations when no color set is explcitly specified.

If there is no current color set, then a empty string will be returned on the string argument passed on.

On instanced meshes, color sets may be applied on a per-instance basis or may be shared across all instances. When the color sets are per-instance, the concept of the current color set has two levels of granularity. Namely, the current color set applies to one or more instances, plus there are other color sets in the same color set family that apply to different instances. The instance arguement is used to indicate that if this is a per-instance color set, you are interested in the name of the color set that applies to the specified instance. When the index is not specified, the current color set will be returned regardless of which instance it is for.

Note, the instance argument is only applicable on an MFnMesh that is initialized using a mesh shape. It will return failure if used on an MFnMesh that has no associated shape.

Python Notes

This method is not supported in Python. Please see currentColorSetName().

Parameters:
[out]  setName  Name of the "current" color set, if any.
[in]  instance  Instance of the mesh whose set we are interested in
Returns:
Status code
Status Codes:
Examples:

MStatus MFnMesh::getStringBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MString data  
) const

This method is obsolete. This method is not available in Python.

Deprecated:
Use MFnMesh::stringBlindDataComponentId instead.

MStatus MFnMesh::getBinaryBlindData ( int  compID,
MFn::Type  compType,
int  blindDataId,
MString  attrName,
MString data  
) const

This method is obsolete. This method is not available in Python.

Deprecated:
Use MFnMesh::binaryBlindDataComponentId instead.

Autodesk® Maya® 2011 © 1997-2010 Autodesk, Inc. All rights reserved. Generated with doxygen 1.5.6