hwAnisotropicShader_NV20.cpp

//-
// ==========================================================================
// Copyright (C) 1995 - 2006 Autodesk, Inc. and/or its licensors.  All 
// rights reserved.
//
// The coded instructions, statements, computer programs, and/or related 
// material (collectively the "Data") in these files contain unpublished 
// information proprietary to Autodesk, Inc. ("Autodesk") and/or its 
// licensors, which is protected by U.S. and Canadian federal copyright 
// law and by international treaties.
//
// The Data is provided for use exclusively by You. You have the right 
// to use, modify, and incorporate this Data into other products for 
// purposes authorized by the Autodesk software license agreement, 
// without fee.
//
// The copyright notices in the Software and this entire statement, 
// including the above license grant, this restriction and the 
// following disclaimer, must be included in all copies of the 
// Software, in whole or in part, and all derivative works of 
// the Software, unless such copies or derivative works are solely 
// in the form of machine-executable object code generated by a 
// source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND. 
// AUTODESK DOES NOT MAKE AND HEREBY DISCLAIMS ANY EXPRESS OR IMPLIED 
// WARRANTIES INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF 
// NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR 
// PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE, OR 
// TRADE PRACTICE. IN NO EVENT WILL AUTODESK AND/OR ITS LICENSORS 
// BE LIABLE FOR ANY LOST REVENUES, DATA, OR PROFITS, OR SPECIAL, 
// DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES, EVEN IF AUTODESK 
// AND/OR ITS LICENSORS HAS BEEN ADVISED OF THE POSSIBILITY 
// OR PROBABILITY OF SUCH DAMAGES.
//
// ==========================================================================
//+

//
// NOTE: PLEASE READ THE README.TXT FILE FOR INSTRUCTIONS ON
// COMPILING AND USAGE REQUIREMENTS.
//
// DESCRIPTION: NV20-specific (Geforce3) sample shader.
//              This shader is meant to produce a anisotropic shading effect.
//              It allows the user to change the parameters of a anisotropic
//              lookup table.
//
//  This shader builds on the foundation demonstrated in the 
//  hwUnlitShader.
//
//  PS: Thanks go to DAR from nVidia, for his help in making this
//      shader more robust. ;-)
//

#ifdef WIN32
#pragma warning( disable : 4786 )       // Disable STL warnings.
#endif

#include <maya/MIOStream.h>
#include <math.h>

#include <maya/MString.h>
#include <maya/MPlug.h>
#include <maya/MDagPath.h>
#include <maya/MDataBlock.h>
#include <maya/MDataHandle.h>
#include <maya/MArrayDataHandle.h>
#include <maya/MFnDependencyNode.h>
#include <maya/MFnNumericAttribute.h>
#include <maya/MFnTypedAttribute.h>
#include <maya/MFnLightDataAttribute.h>
#include <maya/MFloatVector.h>
#include <maya/MFnStringData.h>
#include <maya/MFnPlugin.h>
#include <maya/MGlobal.h>
#include <maya/MSceneMessage.h>

#include <maya/MPoint.h>
#include <maya/MMatrix.h>
#include <maya/MVector.h>
#include <maya/MEulerRotation.h>
#include <maya/MFnLight.h>
#include <maya/MFnNonAmbientLight.h>

// Include NVIDIA's helper libraries.  These libraries have
// copyright info in them so we cannot release them but we
// can use them to verify that the API works correctly.
//
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glext.h>

#define GLH_EXT_SINGLE_FILE
#include "glh_extensions.h"
#undef GL_NV_vertex_array_range
#include "glh_genext.h"
#include "glh_obs.h"
using namespace glh;

#include "hwAnisotropicShader_NV20.h"
#include "ShadingConnection.h"

#define TANGENT_INDEX 1 // macro to make normall array indexing a bit clearer

MTypeId hwAnisotropicShader_NV20::id( 0x00105444 );

// Lookup table. Fixed at 256x256 resolution.
/*static*/ const unsigned int hwAnisotropicShader_NV20::lookup_texture_size(256);

void hwAnisotropicShader_NV20::postConstructor( )
{
    setMPSafe(false);
}

// Static attribute instances.
//
MObject  hwAnisotropicShader_NV20::color;
MObject  hwAnisotropicShader_NV20::colorR;
MObject  hwAnisotropicShader_NV20::colorG;
MObject  hwAnisotropicShader_NV20::colorB;

MObject  hwAnisotropicShader_NV20::roughness;
MObject  hwAnisotropicShader_NV20::kDiffuse;
MObject  hwAnisotropicShader_NV20::kSpecular;

void hwAnisotropicShader_NV20::printGlError( const char *call )
{
    GLenum error;

    while( (error = glGetError()) != GL_NO_ERROR ) {
        assert(0);
        cerr << call << ":" << error << " is " << (const char *)gluErrorString( error ) << "\n";
    }
}


// The Vertex Program for the model shading effect.
// Meant to be used as an anisotropic shader.
//
// Version for point lights with a decay factor
//
// CONSTANTS: (c)
// c0- c3 4x4 ModelView-Projection composite matrix
// c4     (.5, 1, 0, 0) vector for compute u,v
// c9     light color
// c11     light position (in object space)
// c12    camera position in object space (possibly not normalized)

// VERTEX REGISTERS (mapped so that standard gl calls work):
// v0 - position
// v2 - tangent
// v3 - primary color

// REGISTERS:
//
// R0 - normalized view (surface-to-camera) direction in object space.
// R1 - normalized surface tangent in object space.
// R2 - normalized light (surface-to-light) direction.
// R3 - temporary computation of u,v values for lookup-texture to be
//      placed int TEX[0]
// R4,R5 - temporaries use to compute light decay
//
char vertexProgramStringPointDecay[] = 
    "!!VP1.0\n"

        // Multiply the vertex coords by the modelview-projection composite matrix,
        // to get clip space coordinates.
        "DP4   o[HPOS].x, c[0], v[0];"
        "DP4   o[HPOS].y, c[1], v[0];"
        "DP4   o[HPOS].z, c[2], v[0];"
        "DP4   o[HPOS].w, c[3], v[0];"

        // Normalize the T (tangent), in case the modelview matrix is not a simple rotation.
        "MOV   R1, v[2];"
        "DP3   R1.w, R1, R1;"           
        "RSQ   R1.w, R1.w;"
        "MUL   R1.xyz, R1, R1.w;"

        // Compute the normalized light vector in object space
        "ADD   R2, c[11], -v[0];"
        "DP3   R2.w, R2, R2;"           
        "RSQ   R2.w, R2.w;"
        "MUL   R2.xyz, R2, R2.w;"

        // The vertex position, normal and light positions are expressed in object space at
        // this point. We need to find the view direction in object space too.
        "ADD   R0, c[12], -v[0];"       // view direction, from surface to camera.
        "DP3   R0.w, R0, R0;"           // normalize the view direction.
        "RSQ   R0.w, R0.w;"
        "MUL   R0.xyz, R0, R0.w;"
        
        // Find the texture coordinates to fetch from the toon-param texture:
        //      u = 1/2 (T dot L) + 1/2
        //      v = 1/2 (T dot V) + 1/2
        //
        // a) Do (T dot L) and (T dot V) and store in register R3
        "DP3    R3.x, R1, R2;"
        "DP3    R3.y, R1, R0;"

        // b) Scale by 1/2 and add 1/2 and store as texture coordinates
        //
        "MAD o[TEX0].x, R3.x, c[4].x, c[4].x;"
        "MAD o[TEX0].y, R3.y, c[4].x, c[4].x;"

        // Multiply diffuse lighting into material color.
        // Take into account decay
        "MOV R4, c[9];"
        "MOV R5, c[9];"
        "MUL R5.xyz, R4, R2.w;"
        "MUL o[COL0], v[3], R5;"

        "END";

// Version for point lights
//
// CONSTANTS: (c)
// c0- c3 4x4 ModelView-Projection composite matrix
// c4     (.5, 1, 0, 0) vector for compute u,v
// c9     light color
// c11     light position (in object space)
// c12    camera position in object space (possibly not normalized)

// VERTEX REGISTERS (mapped so that standard gl calls work):
// v0 - position
// v2 - tangent
// v3 - primary color

// REGISTERS:
//
// R0 - normalized view (surface-to-camera) direction in object space.
// R1 - normalized surface tangent in object space.
// R2 - normalized light (surface-to-light) direction.
// R3 - temporary computation of u,v values for lookup-texture to be
//      placed int TEX[0]
//
char vertexProgramStringPoint[] = 
    "!!VP1.0\n"

        // Multiply the vertex coords by the modelview-projection composite matrix,
        // to get clip space coordinates.
        "DP4   o[HPOS].x, c[0], v[0];"
        "DP4   o[HPOS].y, c[1], v[0];"
        "DP4   o[HPOS].z, c[2], v[0];"
        "DP4   o[HPOS].w, c[3], v[0];"

        // Normalize the T (tangent), in case the modelview matrix is not a simple rotation.
        "MOV   R1, v[2];"
        "DP3   R1.w, R1, R1;"           
        "RSQ   R1.w, R1.w;"
        "MUL   R1.xyz, R1, R1.w;"

        // Compute the normalized light vector in object space
        "ADD   R2, c[11], -v[0];"
        "DP3   R2.w, R2, R2;"           
        "RSQ   R2.w, R2.w;"
        "MUL   R2.xyz, R2, R2.w;"

        // The vertex position, normal and light positions are expressed in object space at
        // this point. We need to find the view direction in object space too.
        "ADD   R0, c[12], -v[0];"       // view direction, from surface to camera.
        "DP3   R0.w, R0, R0;"           // normalize the view direction.
        "RSQ   R0.w, R0.w;"
        "MUL   R0.xyz, R0, R0.w;"
        
        // Find the texture coordinates to fetch from the toon-param texture:
        //      u = 1/2 (T dot L) + 1/2
        //      v = 1/2 (T dot V) + 1/2
        //
        // a) Do (T dot L) and (T dot V) and store in register R3
        "DP3    R3.x, R1, R2;"
        "DP3    R3.y, R1, R0;"

        // b) Scale by 1/2 and add 1/2 and store as texture coordinates
        //
        "MAD o[TEX0].x, R3.x, c[4].x, c[4].x;"
        "MAD o[TEX0].y, R3.y, c[4].x, c[4].x;"

        // Multiply diffuse lighting into material color.
        "MUL o[COL0], v[3], c[9];"

        "END";

// Version for directional lights
//
// CONSTANTS: (c)
// c0- c3 4x4 ModelView-Projection composite matrix
// c4     (.5, 1, 0, 0) vector for compute u,v
// c9     light color
// c11    light direction (in object space)
// c12    camera position in object space (possibly not normalized)

// VERTEX REGISTERS (mapped so that standard gl calls work):
// v0 - position
// v2 - tangent
// v3 - primary color

// REGISTERS:
//
// R0 - normalized view (surface-to-camera) direction in object space.
// R1 - normalized surface tangent in object space.
// R2 - normalized light (surface-to-light) direction.
// R3 - temporary computation of u,v values for lookup-texture to be
//      placed int TEX[0]
//
char vertexProgramString[] = 
    "!!VP1.0\n"

        // Multiply the vertex coords by the modelview-projection composite matrix,
        // to get clip space coordinates.
        "DP4   o[HPOS].x, c[0], v[0];"
        "DP4   o[HPOS].y, c[1], v[0];"
        "DP4   o[HPOS].z, c[2], v[0];"
        "DP4   o[HPOS].w, c[3], v[0];"

        // Normalize the T (tangent), in case the modelview matrix is not a simple rotation.
        "MOV   R1, v[2];"
        "DP3   R1.w, R1, R1;"           
        "RSQ   R1.w, R1.w;"
        "MUL   R1.xyz, R1, R1.w;"

        // Normalize the L (light) direction.
        "MOV   R2, c[11];"
        "DP3   R2.w, R2, R2;"           
        "RSQ   R2.w, R2.w;"
        "MUL   R2.xyz, R2, R2.w;"

        // The vertex position, normal and light positions are expressed in object space at
        // this point. We need to find the view direction in object space too.
        "ADD   R0, c[12], -v[0];"       // view direction, from surface to camera.
        "DP3   R0.w, R0, R0;"           // normalize the view direction.
        "RSQ   R0.w, R0.w;"
        "MUL   R0.xyz, R0, R0.w;"
        
        // Find the texture coordinates to fetch from the toon-param texture:
        //      u = 1/2 (N dot L) + 1/2
        //      v = 1/2 (T dot V) + 1/2
        //
        // a) Do (T dot L) and (T dot V) and store in register R3
        "DP3    R3.x, R1, R2;"
        "DP3    R3.y, R1, R0;"

        // b) Scale by 1/2 and add 1/2 and store as texture coordinates
        //
        "MAD o[TEX0].x, R3.x, c[4].x, c[4].x;"
        "MAD o[TEX0].y, R3.y, c[4].x, c[4].x;"

        // Multiply diffuse lighting into material color.
        "MUL o[COL0], v[3], c[9];"

        "END";



void initVertexProgram(const char vertexProgramCode[], GLuint* pVertexProgramId)
{
    // Allocate and initialize the vertex program.
    glGenProgramsNV(1, pVertexProgramId);
    GLenum error = glGetError();
    assert(error == GL_NO_ERROR);

    // Load the program.
    unsigned int length = strlen(vertexProgramCode);
    glLoadProgramNV(GL_VERTEX_PROGRAM_NV, *pVertexProgramId, length, 
        (const GLubyte *) vertexProgramCode);
    error = glGetError();

    // If an error occured, find the location in the vertex program
    // code and assert.
    if (error != GL_NO_ERROR)
    {
        // If an error occured, it's most likely due to a syntax or 
        // logic error in the vertex program. The error position
        // below will contain the index in the vertex program
        // string that is faulty. See the NV_vertex_program
        // extension specification for more details.
        if (error == GL_INVALID_OPERATION)
        {
            int error_position = -2;

            glGetIntegerv(GL_PROGRAM_ERROR_POSITION_NV, &error_position);

            // Most likely a bug in the vertex program code...
            assert(0);
        }
    }
}


// Load the vertexProgram and fill in the necessary constants used in the vertex program.
//
void hwAnisotropicShader_NV20::loadVertexProgramGL()
{
    GLenum error = glGetError();
    assert(!error);

    // If the vertex programs haven't been loaded yet,
    // do it now. (Note that they are shared between all contexts.)
    if (!fVertexProgramsLoaded)
    {
        initVertexProgram(vertexProgramString, &fVertexProgramDirectional);
        initVertexProgram(vertexProgramStringPointDecay, &fVertexProgramPointDecay);
        initVertexProgram(vertexProgramStringPoint, &fVertexProgramPointNoDecay);
        fVertexProgramsLoaded = true;
    }
}

// Anisotropic material lookup texture
// (This function assumes that lookup_image and lookup_texture have been deallocated.)
//
void hwAnisotropicShader_NV20::make_lookup_texture()
{
    // Re-calculate the look-up texture, if any of the material paramters
    // have changed
    //
    float   t_roughness = 0.025f;
    float   t_kd = 0.8f;
    float   t_ks = 0.2f;

    //MPlug colorPlug(thisMObject(), color);
    MPlug   roughPlug(thisMObject(), roughness);
    MPlug   diffPlug(thisMObject(), kDiffuse);
    MPlug   specPlug(thisMObject(), kSpecular);
    
    roughPlug.getValue(t_roughness);
    diffPlug.getValue(t_kd);
    specPlug.getValue(t_ks);

    if ( t_roughness < 0.0f ) t_roughness = 0.0f;
    if ( t_roughness > 1.0f ) t_roughness = 1.0f;
    if ( t_kd < 0.000000000001f ) t_kd = 0.000000000001f; // To prevent underflow in computation
    if ( t_kd> 1.0f ) t_kd= 1.0f;
    if ( t_ks < 0.0f ) t_ks= 0.0f;
    if ( t_ks > 1.0f ) t_ks = 1.0f;

    // Only recompute the lookup texture if the values have changed since the last bind.
    boolean dirty = false;
    if  (currentKd != t_kd) {
        dirty = true; currentKd = t_kd;
    }
    if (currentKs != t_ks) {
        dirty = true; currentKs = t_ks; 
    }
    if (currentRoughness != t_roughness) {
        dirty = true; currentRoughness = t_roughness;       
    }
    if (!dirty) 
        return;
    
    unsigned int imgsize = lookup_texture_size;
    float imgsizeM1 = (float) (imgsize - 1);

    // Allocate the lookup_image and lookup_texture.
    if (lookup_table == NULL)
        lookup_table = new unsigned char[imgsize*imgsize*3];
    if (lookup_texture == NULL)
        lookup_texture = new tex_object_2D;

    // Fill it up.
#ifdef _DEBUG_DUMP_LOOKUP_TEXTURE
    // Debug flag to dump out the texture to file.
    // Define this, if you want to write the lookup table
    // out as a file texture.
    static boolean firstTime = true;
#else
    static boolean firstTime = false;
#endif
    if (firstTime)
    {
        MImage image;

        image.create(lookup_texture_size, lookup_texture_size);
        unsigned char *ip  = image.pixels();

        float       diff, spec, phong;
        float       lt, vt;
        float       h;
        int         i, j;
        float       invRough = 1.0 / t_roughness;

        for (i=0; i < imgsize; i++)
        {
            // Compute sqrt( 1- (L dot T)*(L dot T) )
            lt = 1.0 - 2.0 * (float)i/(float)(imgsize-1);
            diff= sqrt( 1.0-lt*lt );

            for(j=0; j < imgsize; j++)
            {
                vt= 2.0 * (float)j/(float)(imgsize-1) - 1.0;
                spec= diff*sqrt( 1-vt*vt ) - lt*vt;

                // Compute standard phong model....
                // phong= Kd*diff + Ks*powf( spec< 0.0 ? 0.0 : spec, 1.0/roughness );
                phong= t_ks*powf( spec < 0.0 ? 0.0 : spec, invRough );
                float Kddiff = t_kd*diff;
      
                h= (Kddiff+phong)*255.0 + 0.5;
                *ip++ = (h < 0.0) ? 0 : (h > 255.0 ? 255 : (int)h);
                h= (Kddiff+phong)*255.0 + 0.5;
                *ip++ = (h < 0.0) ? 0 : (h > 255.0 ? 255 : (int)h);
                h= (Kddiff+phong)*255.0 + 0.5;
                *ip++ = (h < 0.0) ? 0 : (h > 255.0 ? 255 : (int)h);
                *ip++ = 1.0;
            }
        }
        image.writeToFile("c:/aniso.iff");
        firstTime = false;
    }

    unsigned char *ip  = lookup_table;

    float       diff, spec, phong;
    float       lt, vt;
    float       h;
    int         i, j;
    float       invRough = 1.0 / t_roughness;

    for (i=0; i < imgsize; i++)
    {
        // Compute sqrt( 1- (L dot T)*(L dot T) )
        lt = 1.0 - 2.0 * (float)i/(float)(imgsize-1);
        diff= sqrt( 1.0-lt*lt );

        for(j=0; j < imgsize; j++)
        {
            vt= 2.0 * (float)j/(float)(imgsize-1) - 1.0;
            spec= diff*sqrt( 1-vt*vt ) - lt*vt;

            // Compute standard phong model....
            // phong= Kd*diff + Ks*powf( spec< 0.0 ? 0.0 : spec, 1.0/roughness );
            phong= t_ks*powf( spec < 0.0 ? 0.0 : spec, invRough );
            float Kddiff = t_kd*diff;
  
            h= (Kddiff+phong)*255.0 + 0.5;
            *ip++ = (h < 0.0) ? 0 : (h > 255.0 ? 255 : (int)h);
            h= (Kddiff+phong)*255.0 + 0.5;
            *ip++ = (h < 0.0) ? 0 : (h > 255.0 ? 255 : (int)h);
            h= (Kddiff+phong)*255.0 + 0.5;
            *ip++ = (h < 0.0) ? 0 : (h > 255.0 ? 255 : (int)h);
        }
    }
    
    fLookupTextureReprocessed = true;

    return;
}

void hwAnisotropicShader_NV20::bind_lookup_table()
{
    // Update the material table if needed
    make_lookup_texture();

    // Bind the lookup table texture
    lookup_texture->bind();

    if (fLookupTextureReprocessed)
    {
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, lookup_texture_size, lookup_texture_size, 
            0, GL_RGB, GL_UNSIGNED_BYTE, lookup_table); 
        fLookupTextureReprocessed = false;
    }

    lookup_texture->parameter(GL_TEXTURE_MIN_FILTER, GL_NEAREST);
    lookup_texture->parameter(GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    lookup_texture->parameter(GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    lookup_texture->parameter(GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}

// Initialize the necessary OpenGL extensions
//
void hwAnisotropicShader_NV20::init_ext(const char * ext)
{
    if(!glh_init_extension(ext))
    { cerr << "Failed to initialize " << ext << "!" << endl; exit(0); }
}

hwAnisotropicShader_NV20::hwAnisotropicShader_NV20()
{
    // Get an reference to the singleton texture cache.
    m_pTextureCache = MTextureCache::instance();

    init_ext("GL_ARB_multitexture");
    //init_ext("GL_NV_register_combiners");
    init_ext("GL_NV_vertex_program");

    isDirectionalLight = true;  // light's rotation is connected to the lightRotation attr
    isNonAmbientLight = false; // Does not have decay

    // Set the lookup values to absurd values, so that the
    // look-up table automatically get recomputed during the first update.
    currentColor[0] = currentColor[1] = currentColor[2] = -1.0;
    currentRoughness = -1.0;
    currentKd = -1.0;
    currentKs = -1.0;

    lookup_texture = NULL;
    lookup_table   = NULL;
    fLookupTextureReprocessed = false;

    // Initialize callbacks.
    fBeforeNewCB = 0;
    fBeforeOpenCB = 0;
    fBeforeRemoveReferenceCB = 0;
    fMayaExitingCB = 0;
    attachSceneCallbacks();

    // Initialize the vertex program ids...
    fVertexProgramsLoaded = false;
    fVertexProgramDirectional = 0;
    fVertexProgramPointDecay = 0;
    fVertexProgramPointNoDecay = 0;
    // All vertex programs will get allocated and loaded
    // during the first refresh.
}

hwAnisotropicShader_NV20::~hwAnisotropicShader_NV20()
{
    detachSceneCallbacks();
}


void releaseVertexProgram(GLuint* pVertexProgramId)
{
    // If the vertex program id is set...
    if (*pVertexProgramId > 0)
    {
        // Unbind any vertex program...
        glBindProgramNV(GL_VERTEX_PROGRAM_NV, 0);

        glDeleteProgramsNV(1, pVertexProgramId);

        // For sanity, set the id to 0.
        *pVertexProgramId = 0;
    }
}

void hwAnisotropicShader_NV20::releaseEverything()
{
    release_lookup_texture();

    // Release all loaded vertex programs.
    if (fVertexProgramsLoaded)
    {
        releaseVertexProgram(&fVertexProgramDirectional);
        releaseVertexProgram(&fVertexProgramPointDecay);
        releaseVertexProgram(&fVertexProgramPointNoDecay);
        fVertexProgramsLoaded = false;
    }

    // Release the texture cache through refcounting.
    m_pTextureCache->release();
    if(!MTextureCache::getReferenceCount())
    {
        m_pTextureCache = 0;
    }
}

void hwAnisotropicShader_NV20::attachSceneCallbacks()
{
    fBeforeNewCB  = MSceneMessage::addCallback(MSceneMessage::kBeforeNew,  releaseCallback, this);
    fBeforeOpenCB = MSceneMessage::addCallback(MSceneMessage::kBeforeOpen, releaseCallback, this);
    fBeforeRemoveReferenceCB = MSceneMessage::addCallback(MSceneMessage::kBeforeRemoveReference, 
                                                          releaseCallback, this);
    fMayaExitingCB = MSceneMessage::addCallback(MSceneMessage::kMayaExiting, releaseCallback, this);
}

/*static*/
void hwAnisotropicShader_NV20::releaseCallback(void* clientData)
{
    hwAnisotropicShader_NV20 *pThis = (hwAnisotropicShader_NV20*) clientData;
    pThis->releaseEverything();
}

void hwAnisotropicShader_NV20::detachSceneCallbacks()
{
    if (fBeforeNewCB)
        MMessage::removeCallback(fBeforeNewCB);
    if (fBeforeOpenCB)
        MMessage::removeCallback(fBeforeOpenCB);
    if (fBeforeRemoveReferenceCB)
        MMessage::removeCallback(fBeforeRemoveReferenceCB);
    if (fMayaExitingCB)
        MMessage::removeCallback(fMayaExitingCB);

    fBeforeNewCB = 0;
    fBeforeOpenCB = 0;
    fBeforeRemoveReferenceCB = 0;
    fMayaExitingCB = 0;
}

MStatus initializePlugin( MObject obj )
{ 
    MStatus   status;
    
    const MString UserClassify( "shader/surface/utility" );

    MFnPlugin plugin( obj, PLUGIN_COMPANY, "4.5", "Any");
    status = plugin.registerNode( "hwAnisotropicShader_NV20", hwAnisotropicShader_NV20::id, 
                                  hwAnisotropicShader_NV20::creator, hwAnisotropicShader_NV20::initialize,
                                  MPxNode::kHwShaderNode, &UserClassify );
    if (!status) {
        status.perror("registerNode");
        return status;
    }

    return MS::kSuccess;
}

MStatus uninitializePlugin( MObject obj )
{
    MStatus   status;
    
    MFnPlugin plugin( obj );

    plugin.deregisterNode( hwAnisotropicShader_NV20::id );
    if (!status) {
        status.perror("deregisterNode");
        return status;
    }

    return MS::kSuccess;
}


void * hwAnisotropicShader_NV20::creator()
{
    return new hwAnisotropicShader_NV20();
}

// Initialize the plug-in. Called once when the plug-in is loaded.
// This mostly involve creating attributes.
MStatus hwAnisotropicShader_NV20::initialize()
{
    MFnNumericAttribute nAttr; 
    MStatus status;
    MFnTypedAttribute sAttr; // For string attributes

    // Material color 
    colorR = nAttr.create( "colorR", "cr",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f);

    colorG = nAttr.create( "colorG", "cg",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);

    colorB = nAttr.create( "colorB", "cb",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);

    color = nAttr.create( "color", "c", colorR, colorG, colorB);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f, 0.5f, 0.5f);
    nAttr.setUsedAsColor(true);

    // Material parameters. Set defaults to be "shiny"
    //
    kDiffuse = nAttr.create( "kDiffuse", "kd", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setMin(0.0f);
    nAttr.setMax(1.0f);
    nAttr.setDefault(0.2f);

    kSpecular = nAttr.create( "kSpecular", "ks", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setMin(0.0f);
    nAttr.setMax(1.0f);
    nAttr.setDefault(0.9f);

    roughness = nAttr.create( "roughness", "rn", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setMin(0.0f);
    nAttr.setMax(1.0f);
    nAttr.setDefault(0.025f);
    
    // Add the attributes here
    addAttribute(color);
    addAttribute(roughness);
    addAttribute(kDiffuse);
    addAttribute(kSpecular);
    attributeAffects (colorR, outColor);
    attributeAffects (colorG, outColor);
    attributeAffects (colorB, outColor);
    attributeAffects (color,  outColor);
    attributeAffects (roughness, outColor);
    attributeAffects (kDiffuse, outColor);
    attributeAffects (kSpecular, outColor);

    return MS::kSuccess;
}


// To get 3 float values from the node attribute
//
MStatus hwAnisotropicShader_NV20::getFloat3(MObject attr, float value[3])
{
    MStatus status = MS::kSuccess;

    // Get the attr to use
    //
    MPlug   plug(thisMObject(), attr);

    MObject object;
    status = plug.getValue(object);
    if (!status)
    {
        status.perror("hwAnisotropicShader_NV20::getFloat3 plug.getValue.");
        return status;
    }

    MFnNumericData data(object, &status);
    if (!status)
    {
        status.perror("hwAnisotropicShader_NV20::getFloat3 construct data.");
        return status;
    }

    status = data.getData(value[0], value[1], value[2]);
    if (!status)
    {
        status.perror("hwAnisotropicShader_NV20::getFloat3 get values.");
        return status;
    }

    return status;
}

// To get a string value from the node attribute
//
MStatus hwAnisotropicShader_NV20::getString(MObject attr, MString &str)
{
    MPlug   plug(thisMObject(), attr);
    MStatus status = plug.getValue( str );

    return status;
}

/* virtual */
MStatus hwAnisotropicShader_NV20::bind(const MDrawRequest& request, M3dView& view)
{
    MStatus status;

    // Get the material color
    float t_color[3];
    getFloat3(color, t_color);

    view.beginGL();
    {
        glPushAttrib( GL_ALL_ATTRIB_BITS );
        glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT);

        // Set the material color
        glColor4f(t_color[0], t_color[1], t_color[2], 1.0f);

        // Bind anisotropic texture in texture unit 1
        glActiveTextureARB( GL_TEXTURE0_ARB );
        glEnable(GL_TEXTURE_2D);
        bind_lookup_table();    
        
    }
    view.endGL();

    return MS::kSuccess;
}


/* virtual */
MStatus hwAnisotropicShader_NV20::unbind(const MDrawRequest& request,
               M3dView& view)
{
    view.beginGL();
    glActiveTextureARB( GL_TEXTURE0_ARB );
    glDisable(GL_TEXTURE_2D);

    glPopClientAttrib();
    glPopAttrib();

    view.endGL();

    return MS::kSuccess;
}

/* virtual */
MStatus hwAnisotropicShader_NV20::geometry( const MDrawRequest& request,
                                M3dView& view,
                                int prim,
                                unsigned int writable,
                                int indexCount,
                                const unsigned int * indexArray,
                                int vertexCount,
                                const int * vertexIDs,
                                const float * vertexArray,
                                int normalCount,
                                const float ** normalArrays,
                                int colorCount,
                                const float ** colorArrays,
                                int texCoordCount,
                                const float ** texCoordArrays)
{
    // We assume triangles here.
    //
    if (prim != GL_TRIANGLES)
        return MS::kSuccess;        // [claforte August 9th 2001] Should this be MS::kFailure?

    view.beginGL();

    // Find out if we have a directional light before
    // loading the vertex program since we use a different
    // vertex program depending on whether the light is a directional
    // one or not
    //
    isDirectionalLight = true; // Assume is directional
    isNonAmbientLight = false;

    boolean useDefaultLight = false;

    unsigned int numLights;
    MDagPath lightPath;
    view.getLightCount( numLights );
    if (numLights)
    {
        M3dView::LightingMode mode;
        view.getLightingMode(mode);
        if (mode == M3dView::kLightDefault)
        {
            useDefaultLight = true;
            isDirectionalLight = true;
        }
        else
        {
            view.getLightPath( 0, lightPath );
            MObject lightObj = lightPath.node();

            isDirectionalLight = lightObj.hasFn( MFn::kDirectionalLight );
            isNonAmbientLight = lightObj.hasFn( MFn::kNonAmbientLight );
            if (isNonAmbientLight)
            {
                MFnNonAmbientLight mNonAmbientLight(lightObj);
                if (mNonAmbientLight.decayRate() == 0)
                    isNonAmbientLight = false;
            }
        }
    }

    // Load the appropriate vertex program
    loadVertexProgramGL();

    // Bind and enable the appropriate vertex program,
    // depending on light type.
    //
    if (isDirectionalLight)
        glBindProgramNV(GL_VERTEX_PROGRAM_NV, fVertexProgramDirectional);
    else if (isNonAmbientLight)
        glBindProgramNV(GL_VERTEX_PROGRAM_NV, fVertexProgramPointDecay);
    else
        glBindProgramNV(GL_VERTEX_PROGRAM_NV, fVertexProgramPointNoDecay);

    // Assert if an error occurs after binding the vertex programs.
    GLenum error = glGetError();
    assert(error == GL_NO_ERROR);

    // Enable the vertex program.
    glEnable(GL_VERTEX_PROGRAM_NV);

    // Get object's inverse matrix (ie: from world to object space.)
    MDagPath objPath = request.multiPath();
    MMatrix objMatrix = objPath.inclusiveMatrixInverse();

    // Get the light direction in object space.
    // This code assumes that there is a directional light in the scene,
    // and that it is the first light in DAG order.
    //
    if (numLights)
    {
        // Handle default lighting mode
        if (useDefaultLight )
        {
            glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 11, 0, 0, 1, 1); // Light dir = 0,0,1
            glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 9, 1.0, 1.0, 1.0, 1); // Light color = 1,1,1,1
        }

        // Handle other lighting modes
        else
        {
            view.getLightPath( 0, lightPath );
            MMatrix matrix = lightPath.inclusiveMatrix();

            isDirectionalLight = lightPath.node().hasFn( MFn::kDirectionalLight );

            // Get rotation of a directional light in object space
            if (isDirectionalLight)
            {
                MVector lightDir(0,0,1); 
                lightDir *= matrix;

                // Transform into object space
                lightDir *= objMatrix;

                // Provide the direction to the vertex program (constant 11)
                // Need to send it over negated since Maya reverses light direction !!!
                glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 11, -lightDir.x, -lightDir.y, -lightDir.z, 1);
            }
            // Get the position of a non-directional light in object space
            else
            {
                MPoint lightPos(0,0,0); // origin
                lightPos *= matrix;

                // Transform into object space
                lightPos *= objMatrix;

                // Provide the position to the vertex program (constant 11)
                // Need to send it over negated since Maya reverses light positions !!!
                glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 11, -lightPos.x, -lightPos.y, -lightPos.z, 1);
            }

            MFnLight mLight(lightPath.node());

            // Set the light's color.
            MColor lightColor = mLight.color();
            float intensity = mLight.intensity();
            lightColor.r *= intensity;
            lightColor.g *= intensity;
            lightColor.b *= intensity;
            // This should NOT be clamped here, so the vertex program
            // does the correct computation ! Don't uncomment these
            // lines.
            //if (lightColor.r > 1.0) lightColor.r = 1.0;
            //if (lightColor.g > 1.0) lightColor.g = 1.0;
            //if (lightColor.b > 1.0) lightColor.b = 1.0;
            glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 9, lightColor.r, lightColor.g, lightColor.b, 1);
        }
    }
    else
    {
        // Set some default values
        glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 11, 0, 0, 1, 1);
        glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 9, 1.0, 1.0, 1.0, 1);
    }

    // Find the camera position in geometry's object space
    float cameraPos[4] = {0.0f, 0.0f, 0.0f, 0.0f};
    {
        MDagPath camDag;
        view.getCamera(camDag);

        MPoint cameraInObject(0,0,0); 
        
        MMatrix cameraToWorldMatrix = camDag.inclusiveMatrix();

        cameraInObject *= cameraToWorldMatrix; // to world
        cameraInObject *= objMatrix;

        glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 12, cameraInObject.x, cameraInObject.y, cameraInObject.z, 1);
    }

    // VERTEX CONSTANTS:
    //  c0- 3  4x4 ModelView-Projection composite matrix
    //  c4    (1/2, 1, 0, 0) vector needed to compute (u,v)
    //
    glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 0, GL_MODELVIEW_PROJECTION_NV, GL_IDENTITY_NV);
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 4, 0.5, 1.0, 0.0, 0.0);

    // VERTEX REGISTERS (Attributes):
    // 0 - coord
    // 2 - tangent
    glVertexAttribPointerNV( 0, 3, GL_FLOAT, 0, vertexArray );
    glVertexAttribPointerNV( 2, 3, GL_FLOAT, 0, normalArrays[TANGENT_INDEX] ); 

    glEnableClientState( GL_VERTEX_ATTRIB_ARRAY0_NV );
    glEnableClientState( GL_VERTEX_ATTRIB_ARRAY2_NV );

    glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_INT, indexArray);

    glDisableClientState( GL_VERTEX_ATTRIB_ARRAY0_NV );
    glDisableClientState( GL_VERTEX_ATTRIB_ARRAY2_NV );
    
    glDisable(GL_VERTEX_PROGRAM_NV);

    view.endGL();

    return MS::kSuccess;
}

/* virtual */
int     hwAnisotropicShader_NV20::normalsPerVertex()
{
    // Need the normal and tangents for this computation
    return 2;
}

/* virtual */
int     hwAnisotropicShader_NV20::texCoordsPerVertex()
{
    return 1;
}

// Release the lookup texture/image.
void hwAnisotropicShader_NV20::release_lookup_texture()
{
    if (lookup_table)
    {
        delete lookup_table;
        lookup_table = NULL;
    }
    
    if (lookup_texture)
    {
        delete lookup_texture;
        lookup_table = NULL;
    }
}