hwReflectBumpShader_NV20.cpp

//-
// ==========================================================================
// Copyright (C) 1995 - 2006 Autodesk, Inc. and/or its licensors.  All 
// rights reserved.
//
// The coded instructions, statements, computer programs, and/or related 
// material (collectively the "Data") in these files contain unpublished 
// information proprietary to Autodesk, Inc. ("Autodesk") and/or its 
// licensors, which is protected by U.S. and Canadian federal copyright 
// law and by international treaties.
//
// The Data is provided for use exclusively by You. You have the right 
// to use, modify, and incorporate this Data into other products for 
// purposes authorized by the Autodesk software license agreement, 
// without fee.
//
// The copyright notices in the Software and this entire statement, 
// including the above license grant, this restriction and the 
// following disclaimer, must be included in all copies of the 
// Software, in whole or in part, and all derivative works of 
// the Software, unless such copies or derivative works are solely 
// in the form of machine-executable object code generated by a 
// source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND. 
// AUTODESK DOES NOT MAKE AND HEREBY DISCLAIMS ANY EXPRESS OR IMPLIED 
// WARRANTIES INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF 
// NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR 
// PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE, OR 
// TRADE PRACTICE. IN NO EVENT WILL AUTODESK AND/OR ITS LICENSORS 
// BE LIABLE FOR ANY LOST REVENUES, DATA, OR PROFITS, OR SPECIAL, 
// DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES, EVEN IF AUTODESK 
// AND/OR ITS LICENSORS HAS BEEN ADVISED OF THE POSSIBILITY 
// OR PROBABILITY OF SUCH DAMAGES.
//
// ==========================================================================
//+

//
// NOTE: PLEASE READ THE README.TXT FILE FOR INSTRUCTIONS ON
// COMPILING AND USAGE REQUIREMENTS.
//
// DESCRIPTION: NV20-specific (Geforce3) sample shader.
//              This shader can simultaneously display a
//              bumpy, reflective surface. The bump
//              is controlled through a user-specified
//              2D texture, while the reflection map
//              is a cube map.
//
//  This shader builds on the foundation demonstrated in 
//  hwUnlitShader.
//
//  Additionally, this sample demonstrates how to:
//      - Use vendor-specific extensions, namely vertex programs,
//        texture shaders and register combiners, to achieve
//        effects that are impossible in standard OpenGL.
//      - Convert height field bump format (used by Maya) into
//        a normal map format, for real-time rendering.
//
//  Many parameters are easily customizable:
//      - The MNormalMapConverter::convertToNormalMap_InPlace()
//        bumpScale parameter is currently constant. You can change
//        it to a different value to increase or decrease the 
//        bumpiness.
//

#ifdef WIN32
#pragma warning( disable : 4786 )       // Disable STL warnings.
#endif

#include <maya/MIOStream.h>
#include <math.h>

#include <maya/MString.h>
#include <maya/MStringArray.h>
#include <maya/MPlug.h>
#include <maya/MDataBlock.h>
#include <maya/MDataHandle.h>
#include <maya/MArrayDataHandle.h>
#include <maya/MFnNumericAttribute.h>
#include <maya/MFnTypedAttribute.h>
#include <maya/MFloatVector.h>
#include <maya/MFnStringData.h>
#include <maya/MFnPlugin.h>
#include <maya/MGlobal.h>

#include <maya/MPoint.h>
#include <maya/MMatrix.h>
#include <maya/MVector.h>
#include <maya/MEulerRotation.h>
#include <maya/MQuaternion.h>

#include <maya/MDagPath.h>
#include <maya/MFnDependencyNode.h>
#include <maya/MSceneMessage.h>


// Include NVIDIA's helper libraries.  These libraries have
// copyright info in them so we cannot release them but we
// can use them to verify that the API works correctly.
//
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glext.h>

#define GLH_EXT_SINGLE_FILE
#include "glh_extensions.h"
#undef GL_NV_vertex_array_range
#include "glh_genext.h"
#include "glh_obs.h"

using namespace glh;

#include "hwReflectBumpShader_NV20.h"
#include "ShadingConnection.h"

MTypeId hwReflectBumpShader_NV20::id( 0x00105442 );

void hwReflectBumpShader_NV20::postConstructor( )
{
    setMPSafe(false);
}

//
// DESCRIPTION:
MObject  hwReflectBumpShader_NV20::color;
MObject  hwReflectBumpShader_NV20::colorR;
MObject  hwReflectBumpShader_NV20::colorG;
MObject  hwReflectBumpShader_NV20::colorB;

MObject  hwReflectBumpShader_NV20::bump;
MObject  hwReflectBumpShader_NV20::bumpR;
MObject  hwReflectBumpShader_NV20::bumpG;
MObject  hwReflectBumpShader_NV20::bumpB;

MObject  hwReflectBumpShader_NV20::uCoord;
MObject  hwReflectBumpShader_NV20::vCoord;
MObject  hwReflectBumpShader_NV20::uvCoord;

MObject  hwReflectBumpShader_NV20::uBias;
MObject  hwReflectBumpShader_NV20::vBias;

MObject  hwReflectBumpShader_NV20::uvFilterSize;
MObject  hwReflectBumpShader_NV20::uvFilterSizeX;
MObject  hwReflectBumpShader_NV20::uvFilterSizeY;

char gszErrMsg[100];          // Global error message text


void hwReflectBumpShader_NV20::printGlError( const char *call )
{
    GLenum error;

    while( (error = glGetError()) != GL_NO_ERROR ) {
        cerr << call << ":" << error << " is " << (const char *)gluErrorString( error ) << "\n";
    }
}

// Verify that the configuration of the texture shaders are consistent
//
void hwReflectBumpShader_NV20::verify_shader_config(M3dView& view)
{
    int consistent;

    view.beginGL();

        glActiveTextureARB( GL_TEXTURE0_ARB );
        glGetTexEnviv(GL_TEXTURE_SHADER_NV, GL_SHADER_CONSISTENT_NV, & consistent);
        if(consistent == GL_FALSE)
            cerr << "Shader stage 0 is inconsistent!" << endl;

        glActiveTextureARB( GL_TEXTURE1_ARB );
        glGetTexEnviv(GL_TEXTURE_SHADER_NV, GL_SHADER_CONSISTENT_NV, & consistent);
        if(consistent == GL_FALSE)
            cerr << "Shader stage 1 is inconsistent!" << endl;

        glActiveTextureARB( GL_TEXTURE2_ARB );
        glGetTexEnviv(GL_TEXTURE_SHADER_NV, GL_SHADER_CONSISTENT_NV, & consistent);
        if(consistent == GL_FALSE)
            cerr << "Shader stage 2 is inconsistent!" << endl;

        glActiveTextureARB( GL_TEXTURE3_ARB );
        glGetTexEnviv(GL_TEXTURE_SHADER_NV, GL_SHADER_CONSISTENT_NV, & consistent);
        if(consistent == GL_FALSE)
            cerr << "Shader stage 3 is inconsistent!" << endl;

        glActiveTextureARB( GL_TEXTURE0_ARB );

    view.endGL();
}


// The very simple VertexProgram for the Reflective Bump effect. This one is faster
// (it doesn't require the tangent space calculation) but is world-aligned.
// Therefore it could be useful for some effects (ex: ground or wall), but for
// a character it would be unnacceptable.
//
// CONSTANTS:
//  0- 3  4x4 ModelView-Projection composite matrix
//  4- 7  4x4 ModelView  matrix
// 24-27  4x4 view transpose
//
// VERTEX REGISTERS:
// 0 - coord
// 1 - normal
// 2 - texcoord0
//
// REGISTERS:
// 4 = skinned (eye space) coord
// 5 = skinned (eye space) tangent
// 6 = skinned (eye space) binormal
// 7 = skinned (eye space) normal
//
char superEasyVertexProgramString[] = 
        "!!VP1.0\n"

        // final projection transformation
        // transform the skinned coords by the projection matrix
        "DP4   o[HPOS].x, c[0], v[0];"
        "DP4   o[HPOS].y, c[1], v[0];"
        "DP4   o[HPOS].z, c[2], v[0];"
        "DP4   o[HPOS].w, c[3], v[0];"

        // transform the coords to the eye-space
        "DP4   R4.x, c[4], v[0];"
        "DP4   R4.y, c[5], v[0];"
        "DP4   R4.z, c[6], v[0];"
        "DP4   R4.w, c[7], v[0];"

        // transform the normals to eye-space 
        "DP3   R7.x, c[4], v[1];"
        "DP3   R7.y, c[5], v[1];"
        "DP3   R7.z, c[6], v[1];"
        "DP3   R7.w, c[7], v[1];"

        // transform the normals from eye-space to world-space
        "DP3 o[TEX1].x, R7, c[24];"
        "DP3 o[TEX2].y, R7, c[25];"
        "DP3 o[TEX3].z, R7, c[26];"

        // put view dir into w of tex[1..3]
        "DP4 o[TEX1].w, R4, c[24];"
        "DP4 o[TEX2].w, R4, c[25];"
        "DP4 o[TEX3].w, R4, c[26];"

        // copy texcoords
        "MOV o[TEX0], v[2];"

        // done
        "END";


// More complex vertex program. It uses tangent space transformations to
// achieve a more realistic bump.
//
// CONSTANTS:
//  0- 3  4x4 Projection matrix
//  4- 7  4x4 ModelView  matrix
// 20-22  light amb/diff/spec
// 23     light dir
// 24-27  4x4 view transpose
//
// VERTEX REGISTERS:
// 0 - coord
// 1 - normal
// 2 - texcoord0
// 3 - texcoord1
// 4 - texcoord2 (binorm)
//
// REGISTERS:
// 4  = skinned (eye space) coord
// 5 = skinned (eye space) tangent
// 6 = skinned (eye space) binormal
// 7 = skinned (eye space) normal
// 8 = eye space view vector
// 9 = eye space half-angle vector
char originalVertexProgramString[] = 
    "!!VP1.0\n"
    
    // skin the vertices
    "DP4   R4.x, c[4], v[0];"
    "DP4   R4.y, c[5], v[0];"
    "DP4   R4.z, c[6], v[0];"
    "DP4   R4.w, c[7], v[0];"
    
    // final projection transformation
    // transform the skinned coords by the projection matrix
    "DP4   o[HPOS].x, c[0], v[0];"
    "DP4   o[HPOS].y, c[1], v[0];"
    "DP4   o[HPOS].z, c[2], v[0];"
    "DP4   o[HPOS].w, c[3], v[0];"
    
    // skin the binormals
    // skin binormals for bone0
    "DP3   R6.x, c[4], v[4];"
    "DP3   R6.y, c[5], v[4];"
    "DP3   R6.z, c[6], v[4];"
    "DP3   R6.w, c[7], v[4];"

    // skin the normals
    // skin normals for bone0
    "DP3   R7.x, c[4], v[1];"
    "DP3   R7.y, c[5], v[1];"
    "DP3   R7.z, c[6], v[1];"
    "DP3   R7.w, c[7], v[1];"

    // renormalize and orthogonalize binormal, tangent & normal
    // build tangent
    "MUL   R5, R6.zxyw, R7.yzxw;"
    "MAD   R5, R6.yzxw, R7.zxyw, -R5;"

    // normalize tangent
    "DP3   R5.w, R5, R5;"
    "RSQ   R5.w, R5.w;"
    "MUL   R5.xyz, R5, R5.w;"

    // put the sign in the tangent
    "MUL R5.xyz, R5, v[4].w;"

    // fill texture coords with tangent space matrix for pixel shaders
    // rotate tangent space matrix by view transpose
    "DP3 o[TEX1].x, -R5, c[24];"
    "DP3 o[TEX2].x, -R5, c[25];"
    "DP3 o[TEX3].x, -R5, c[26];"

    "DP3 o[TEX1].y, -R6, c[24];"
    "DP3 o[TEX2].y, -R6, c[25];"
    "DP3 o[TEX3].y, -R6, c[26];"

    "DP3 o[TEX1].z, R7, c[24];"
    "DP3 o[TEX2].z, R7, c[25];"
    "DP3 o[TEX3].z, R7, c[26];"

    // put view dir into w of tex[1..3]
    "DP4 o[TEX1].w, -R4, c[24];"
    "DP4 o[TEX2].w, -R4, c[25];"
    "DP4 o[TEX3].w, -R4, c[26];"

    // misc
    // put diffuse lighting into color
    "DP3 o[COL0], R7, c[23];"
    "MOV o[COL0].w, c[50];"

    // copy texcoords
    "MOV o[TEX0], v[3];"

    // done
    "END";


void initVertexProgram(const char vertexProgramCode[], GLuint* pVertexProgramId)
{
    // Allocate and initialize the vertex program.
    glGenProgramsNV(1, pVertexProgramId);
    GLenum error = glGetError();
    assert(error == GL_NO_ERROR);

    // Load the program.
    unsigned int length = strlen(vertexProgramCode);
    glLoadProgramNV(GL_VERTEX_PROGRAM_NV, *pVertexProgramId, length, 
        (const GLubyte *) vertexProgramCode);
    error = glGetError();

    // If an error occured, find the location in the vertex program
    // code and assert.
    if (error != GL_NO_ERROR)
    {
        // If an error occured, it's most likely due to a syntax or 
        // logic error in the vertex program. The error position
        // below will contain the index in the vertex program
        // string that is faulty. See the NV_vertex_program
        // extension specification for more details.
        if (error == GL_INVALID_OPERATION)
        {
            int error_position = -2;

            glGetIntegerv(GL_PROGRAM_ERROR_POSITION_NV, &error_position);

            // Most likely a bug in the vertex program code...
            assert(0);
        }
    }
}

// Load the vertexProgram and fill in the necessary constants used in the vertex program
//
void hwReflectBumpShader_NV20::loadVertexProgramGL()
{
    // Only load this vertex program once.
    if (vertex_program_id == 0) 
        initVertexProgram(originalVertexProgramString, &vertex_program_id);

    // CONSTANTS:
    //  0- 3  4x4 ModelView-Projection composite matrix
    //  4- 7  4x4 ModelView  matrix
    // 20-22  light amb/diff/spec
    // 23     light dir
    // 24-27  4x4 view transpose
    //
    // VERTEX REGISTERS:
    // 0 - coord
    // 1 - normal
    // 2 - texcoord0
    //
    // In this example, the upper-left 3x3 of the modelview matrix (M) and 
    // the upper-left 3x3 of the inverse transpose of the modelview matrix (M-t)
    // are used interchangeably.  This is because the modelview matrix contains
    // only rigid-body transformations (rotation and translation), and in this
    // case the matrices are identical.
    //
    glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 0, GL_MODELVIEW_PROJECTION_NV, GL_IDENTITY_NV);
    glTrackMatrixNV(GL_VERTEX_PROGRAM_NV, 4, GL_MODELVIEW, GL_IDENTITY_NV);

    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 20, 1.0, 1.0, 1.0, 1.0);   // light amb color
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 21, 1.0, 1.0, 1.0, 1.0);   // light diff color
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 22, 1.0, 1.0, 1.0, 1.0);   // light spec color
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 23, 0.0, 0.0, 1.0, 0.0);   // light direction, for now.

    // Get the modelView matrix
    //
    GLfloat modelViewMatrix[16];
    glGetFloatv(GL_MODELVIEW_MATRIX, modelViewMatrix);
    float stupidMatrix[4][4];
    for (int i=0; i<16; i++)
    {
        stupidMatrix[i/4][i%4] = modelViewMatrix[i];
    }
    MMatrix mvMatrix(stupidMatrix);

    // Calculate the view transpose matrix.
    //  
    MMatrix mv = m_ModelMatrix.inverse() * mvMatrix;
    mv = mv.transpose();

    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 24, mv[0][0], mv[1][0], mv[2][0], mv[3][0]);
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 25, mv[0][1], mv[1][1], mv[2][1], mv[3][1]);
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 26, mv[0][2], mv[1][2], mv[2][2], mv[3][2]);
    glProgramParameter4fNV(GL_VERTEX_PROGRAM_NV, 27, mv[0][3], mv[1][3], mv[2][3], mv[3][3]);
}


// Initialize the necessary OpenGL extensions
//
void hwReflectBumpShader_NV20::init_ext(const char * ext)
{
    if(!glh_init_extension(ext))
    { cerr << "Failed to initialize " << ext << "!" << endl; exit(0); }
}

hwReflectBumpShader_NV20::hwReflectBumpShader_NV20()
{
    m_pTextureCache = MTextureCache::instance();

    init_ext("GL_ARB_multitexture");
    init_ext("GL_NV_register_combiners");
    init_ext("GL_NV_texture_shader");
    init_ext("GL_NV_vertex_program");

    bumpScale = 1.0;
    cubeMapOnly = FALSE;

    texNames[0] = texNames[1] = texNames[2] = texNames[3] = texNames[4] = texNames[5] = 0;
    currentTextureNames[0] = "";
    currentTextureNames[1] = "";
    currentTextureNames[2] = "";
    currentTextureNames[3] = "";
    currentTextureNames[4] = "";
    currentTextureNames[5] = "";

    attachSceneCallbacks();

    vertex_program_id = 0;
}

hwReflectBumpShader_NV20::~hwReflectBumpShader_NV20()
{
    detachSceneCallbacks();
}

void releaseVertexProgram(GLuint* pVertexProgramId)
{
    // If the vertex program id is set...
    if (*pVertexProgramId > 0)
    {
        // Unbind any vertex program...
        glBindProgramNV(GL_VERTEX_PROGRAM_NV, 0);

        glDeleteProgramsNV(1, pVertexProgramId);

        // For sanity, set the id to 0.
        *pVertexProgramId = 0;
    }
}

void hwReflectBumpShader_NV20::releaseEverything()
{
    if (texNames[0] != 0)           
        glDeleteTextures(6, &texNames[0]);

    releaseVertexProgram(&vertex_program_id);

    // Release the texture cache through refcounting.
    m_pTextureCache->release();
    if(!MTextureCache::getReferenceCount())
    {
        m_pTextureCache = 0;
    }
}

void hwReflectBumpShader_NV20::attachSceneCallbacks()
{
    fBeforeNewCB  = MSceneMessage::addCallback(MSceneMessage::kBeforeNew,  releaseCallback, this);
    fBeforeOpenCB = MSceneMessage::addCallback(MSceneMessage::kBeforeOpen, releaseCallback, this);
    fBeforeRemoveReferenceCB = MSceneMessage::addCallback(MSceneMessage::kBeforeRemoveReference, 
                                                          releaseCallback, this);
    fMayaExitingCB = MSceneMessage::addCallback(MSceneMessage::kMayaExiting, releaseCallback, this);
}

/*static*/
void hwReflectBumpShader_NV20::releaseCallback(void* clientData)
{
    hwReflectBumpShader_NV20 *pThis = (hwReflectBumpShader_NV20*) clientData;
    pThis->releaseEverything();
}

void hwReflectBumpShader_NV20::detachSceneCallbacks()
{
    if (fBeforeNewCB)
        MMessage::removeCallback(fBeforeNewCB);
    if (fBeforeOpenCB)
        MMessage::removeCallback(fBeforeOpenCB);
    if (fBeforeRemoveReferenceCB)
        MMessage::removeCallback(fBeforeRemoveReferenceCB);
    if (fMayaExitingCB)
        MMessage::removeCallback(fMayaExitingCB);

    fBeforeNewCB = 0;
    fBeforeOpenCB = 0;
    fBeforeRemoveReferenceCB = 0;
    fMayaExitingCB = 0;
}


MStatus initializePlugin( MObject obj )
{ 
    MStatus   status;
    
    const MString UserClassify( "shader/surface/utility" );

    MFnPlugin plugin( obj, PLUGIN_COMPANY, "4.0", "Any");
    status = plugin.registerNode( "hwReflectBumpShader_NV20", hwReflectBumpShader_NV20::id, 
                                  hwReflectBumpShader_NV20::creator, hwReflectBumpShader_NV20::initialize,
                                  MPxNode::kHwShaderNode, &UserClassify );
    if (!status) {
        status.perror("registerNode");
        return status;
    }

    return MS::kSuccess;
}

MStatus uninitializePlugin( MObject obj )
{
    MStatus   status;
    
    MFnPlugin plugin( obj );

    // Unregister all chamelion shader nodes
    plugin.deregisterNode( hwReflectBumpShader_NV20::id );
    if (!status) {
        status.perror("deregisterNode");
        return status;
    }

    return MS::kSuccess;
}

void * hwReflectBumpShader_NV20::creator()
{
    return new hwReflectBumpShader_NV20();
}

MStatus hwReflectBumpShader_NV20::initialize()
{
    MFnNumericAttribute nAttr; 
    MStatus status;
    MFnTypedAttribute sAttr; // For string attributes

    // Create input attrubutes

    colorR = nAttr.create( "colorR", "cr",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f);

    colorG = nAttr.create( "colorG", "cg",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);

    colorB = nAttr.create( "colorB", "cb",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);

    color = nAttr.create( "color", "c", colorR, colorG, colorB);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f, 0.5f, 0.5f);
    nAttr.setUsedAsColor(true);

    bumpR = nAttr.create( "bumpR", "c2r",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f);

    bumpG = nAttr.create( "bumpG", "c2g",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f);

    bumpB = nAttr.create( "bumpB", "c2b",MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f);

    bump = nAttr.create( "bump", "c2", bumpR, bumpG, bumpB);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(1.0f, 1.0f, 1.0f);
    nAttr.setUsedAsColor(true);

    uCoord = nAttr.create( "uCoord", "u", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);

    vCoord = nAttr.create( "vCoord", "v", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);
 
    uvCoord = nAttr.create( "uvCoord","uv", uCoord, vCoord);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f, 0.5f );
    nAttr.setHidden(true);

    uBias = nAttr.create( "uBias", "bu", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setMin(0.0f);
    nAttr.setMax(1.0f);
    nAttr.setKeyable(true);
    nAttr.setDefault(0.5f);

    vBias = nAttr.create( "vBias", "bv", MFnNumericData::kFloat);
    nAttr.setStorable(true);
    nAttr.setKeyable(true);
    nAttr.setMin(0.0f);
    nAttr.setMax(1.0f);
    nAttr.setDefault(0.5f);

    uvFilterSizeX = nAttr.create( "uvFilterSizeX", "fsx", MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setReadable(true);
    nAttr.setWritable(true);
    nAttr.setHidden(true);

    uvFilterSizeY = nAttr.create( "uvFilterSizeY", "fsy", MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setReadable(true);
    nAttr.setWritable(true);
    nAttr.setHidden(true);

    uvFilterSize = nAttr.create("uvFilterSize","fs",uvFilterSizeX,uvFilterSizeY);
    nAttr.setStorable(false);
    nAttr.setReadable(true);
    nAttr.setWritable(true);
    nAttr.setHidden(true);
   
 // create output attributes here
    // outColor is the only output attribute and it is inherited
    // so we do not need to create or add it.
    //

 // Add the attributes here

    addAttribute(color);
    addAttribute(bump);

    addAttribute(uvCoord);

    addAttribute(uBias);
    addAttribute(vBias);

    addAttribute(uvFilterSize);

    attributeAffects (colorR, outColor);
    attributeAffects (colorG, outColor);
    attributeAffects (colorB, outColor);
    attributeAffects (color,  outColor);
    attributeAffects (bumpR, outColor);
    attributeAffects (bumpG, outColor);
    attributeAffects (bumpB, outColor);
    attributeAffects (bump,  outColor);
    attributeAffects (uCoord,  outColor);
    attributeAffects (vCoord,  outColor);
    attributeAffects (uvCoord, outColor);
    attributeAffects (uBias,   outColor);
    attributeAffects (vBias,   outColor);

    return MS::kSuccess;
}


// DESCRIPTION:
//   See hwDecalBumpShader_NV20::compute().
//
MStatus hwReflectBumpShader_NV20::compute(
const MPlug&      plug,
      MDataBlock& block ) 
{ 
    bool k = false;
    k |= (plug==outColor);
    k |= (plug==outColorR);
    k |= (plug==outColorG);
    k |= (plug==outColorB);
    if( !k ) return MS::kUnknownParameter;

    // set output color attribute
    MDataHandle outColorHandle = block.outputValue( outColor );
    MFloatVector& outColor = outColorHandle.asFloatVector();
    outColor.x = 1.0;
    outColor.y = 0.5;
    outColor.z = 0.5;
    outColorHandle.setClean();
    return MS::kSuccess;
}


// To get 3 float values from the node attribute
//
MStatus hwReflectBumpShader_NV20::getFloat3(MObject attr, float value[3])
{
    MStatus status = MS::kSuccess;

    // Get the attr to use
    //
    MPlug   plug(thisMObject(), attr);

    MObject object;
    status = plug.getValue(object);
    if (!status)
    {
        status.perror("hwReflectBumpShader_NV20::bind plug.getValue.");
        return status;
    }

    MFnNumericData data(object, &status);
    if (!status)
    {
        status.perror("hwReflectBumpShader_NV20::bind construct data.");
        return status;
    }

    status = data.getData(value[0], value[1], value[2]);
    if (!status)
    {
        status.perror("hwReflectBumpShader_NV20::bind get values.");
        return status;
    }

    return status;
}

// To get a string value from the node attribute
//
MStatus hwReflectBumpShader_NV20::getString(MObject attr, MString &str)
{
    MPlug   plug(thisMObject(), attr);
    MStatus status = plug.getValue( str );

    return status;
}


/* virtual */
MStatus hwReflectBumpShader_NV20::bind(const MDrawRequest& request,
                            M3dView& view)
{
    MStatus status;

    bool isHeightFieldMap = true;   // Should be set to the value of an attribute

    m_ModelMatrix = request.multiPath().inclusiveMatrix();

    // Get the cube mapand bump map file names
    MStringArray decalNames;
    MString decalName;
    MString bumpName;

    ShadingConnection colorConnection(thisMObject(), 
                        request.multiPath().partialPathName(), "color");
    ShadingConnection bumpConnection (thisMObject(), 
                        request.multiPath().partialPathName(), "bump");

    // If the color attribute is ultimately connected to a environment, 
    // find its filenames, otherwise use the default color texture.

    bool gotAllEnvironmentMaps = TRUE;
    if (colorConnection.type() == ShadingConnection::TEXTURE &&
        colorConnection.texture().hasFn(MFn::kEnvCube))
    {
        // Get the filenames of the texture.
        MFnDependencyNode textureNode(colorConnection.texture());
        MString attributeName;
        MString envNames[6] = { "top", "bottom", "left", "right", "front", "back" };

        // Scan for connected file textures to the environment map node
        //
        for (int i=0; i<6; i++)
        {
            ShadingConnection conn(colorConnection.texture(), request.multiPath().partialPathName(), 
                            envNames[i]);

            if (conn.type() == ShadingConnection::TEXTURE &&
                conn.texture().hasFn(MFn::kFileTexture))
            {
                MFnDependencyNode envNode(conn.texture());
                MPlug filenamePlug( conn.texture(), envNode.attribute(MString("fileTextureName")) );
                filenamePlug.getValue(decalName);

                if (decalName.length() == 0)
                    decalName = "D:/chameleon/textures/Cham_body_color_real.tga";

                // Append next environment map name
                decalNames.append( decalName );
            }

            // If any of the environment maps are not mapped put in a fake texture
            else
            {
                decalName = "D:/chameleon/textures/Cham_body_color_real.tga";
                decalNames.append( decalName );
            }
        }
    }
    else
    {
        // Put in a fake texture for each side
        decalName = "D:/chameleon/textures/Cham_body_color_real.tga";
        for (int i=0; i<6; i++)
        {
            decalNames.append( decalName );
        }
    }

    // If the bump attribute is ultimately connected to a file texture, find its filename.
    // otherwise use the default bump texture.
    if (bumpConnection.type() == ShadingConnection::TEXTURE &&
        bumpConnection.texture().hasFn(MFn::kFileTexture))
    {
        // Get the filename of the texture.
        MFnDependencyNode textureNode(bumpConnection.texture());
        MPlug filenamePlug( bumpConnection.texture(), textureNode.attribute(MString("fileTextureName")) );
        filenamePlug.getValue(bumpName);
    }
    else
    {
        bumpName = "";
    }

    // See if we are doing cube-map only. i.e. no bump
    //
    cubeMapOnly = (bumpName.length() == 0);

    // Reload cube maps if the name of the textures
    // for any of the cube maps changes
    //
    unsigned int width, height;

    bool reload = FALSE;
    for (int i=0; i<6; i++)
    {
        if (currentTextureNames[i] != decalNames[i])
        {
            reload = TRUE;
            break;
        }
    }
    if ( reload )
    {
        MString xpTexName(decalNames[2]);
        MString xnTexName(decalNames[3]);
        MString ypTexName(decalNames[0]);
        MString ynTexName(decalNames[1]);
        MString zpTexName(decalNames[4]);
        MString znTexName(decalNames[5]);

        MStatus stat;

        if (! (stat = theImage_XP.readFromFile(xpTexName)) )
            return MS::kFailure;
        stat = theImage_XP.getSize( width, height );

        if (! (stat = theImage_XN.readFromFile(xnTexName)) )
            return MS::kFailure;
        if (! (stat = theImage_YP.readFromFile(ypTexName)) )
            return MS::kFailure;
        if (! (stat = theImage_YN.readFromFile(ynTexName)) )
            return MS::kFailure;
        if (! (stat = theImage_ZP.readFromFile(zpTexName)) )
            return MS::kFailure;
        if (! (stat = theImage_ZN.readFromFile(znTexName)) )
            return MS::kFailure;

        // Only create texture names the first time
        if (texNames[0] == 0)
            glGenTextures(6, &texNames[0]);

        glBindTexture( GL_TEXTURE_2D, texNames[0] );
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB,
            0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, theImage_XP.pixels() );
        glBindTexture( GL_TEXTURE_2D, texNames[1] );
        glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB,
            0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, theImage_XN.pixels() );
        glBindTexture( GL_TEXTURE_2D, texNames[2] );
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB,
            0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, theImage_YP.pixels() );
        glBindTexture( GL_TEXTURE_2D, texNames[3] );
        glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB,
            0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, theImage_YN.pixels() );
        glBindTexture( GL_TEXTURE_2D, texNames[4] );
        glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB,
            0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, theImage_ZP.pixels() );
        glBindTexture( GL_TEXTURE_2D, texNames[5] );
        glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB,
            0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, theImage_ZN.pixels() );

        for (i=0; i<6; i++) {
            currentTextureNames[i] = decalNames[i];
        }
    }

    // Get camera information needed
    //
    MDagPath cameraPath;
    status = view.getCamera( cameraPath );

    // Get rotation angle and axis
    //
    MVector camAxis;
    double camTheta;
    MMatrix mmatrix = cameraPath.inclusiveMatrix( &status );
    MTransformationMatrix tmatrix( mmatrix );

    m_CameraRotation = tmatrix.rotation();
    m_CameraRotation.getAxisAngle(  camAxis, camTheta );

    // Convert to degrees from radians
    camTheta *= 57.295779513082320876798154814105;  // == (180 / M_PI)

    view.beginGL();

    glPushAttrib( GL_ALL_ATTRIB_BITS );
    glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT);

    // Background color is always white
    glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
    glEnable(GL_COLOR_MATERIAL);
    glColor4f( 1, 1, 1, 1 );
    
    if (cubeMapOnly)
    {
        glActiveTextureARB( GL_TEXTURE0_ARB );

        glEnable(GL_TEXTURE_CUBE_MAP_ARB);
        glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_ARB);
        glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_ARB);
        glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP_ARB);
        glEnable(GL_TEXTURE_GEN_S);
        glEnable(GL_TEXTURE_GEN_T);
        glEnable(GL_TEXTURE_GEN_R);

        for (i=0; i<6; i++)
            glBindTexture( GL_TEXTURE_2D, texNames[i] );

        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
        glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

        // Flip from Maya to OGL coordinates +
        // rotate the Textures according to the camera orientation
        //
        glMatrixMode( GL_TEXTURE );
        glPushMatrix();
        glLoadIdentity();
        glRotated( 180.0, 1.0, 0.0, 0.0 );
        glRotated( camTheta, camAxis[0], camAxis[1], camAxis[2]);
    
        // Pop the matrix is done during unbind, not here
        //glPopMatrix();

        glMatrixMode( GL_MODELVIEW );
    }
    else
    {
        loadVertexProgramGL();

        // Setup texture combiners 
        //
        glEnable(GL_TEXTURE_SHADER_NV);

        // stage 0 -- bump normal map (input is u,v and normal map)
        glActiveTextureARB( GL_TEXTURE0_ARB );
        glEnable(GL_TEXTURE_2D);
        //
        // We need to be able to pass the bumpScaleValue
        // to the texture cache and rebuild the bump or normal map
        if( isHeightFieldMap ) {
            // convert the HeightField to the NormalMap
            if(m_pTextureCache)
                m_pTextureCache->bind(bumpConnection.texture(), MTexture::NMAP, true);
        }
        else {
            if(m_pTextureCache)
                m_pTextureCache->bind(bumpConnection.texture(), MTexture::RGBA, true);
        }
        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_TEXTURE_2D);
        
        // stage 1 -- dot product (input is strq)
        glActiveTextureARB( GL_TEXTURE1_ARB );
        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_NV);
        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
        
        // stage 2 -- dot product (input is strq)
        glActiveTextureARB( GL_TEXTURE2_ARB );
        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_NV);
        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB); 
        
        // stage 3 -- dot product reflect cube map (input is strq, and cube maps)
        // ======================================================================
        glActiveTextureARB( GL_TEXTURE3_ARB );  
        glEnable(GL_TEXTURE_CUBE_MAP_ARB);

        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_SHADER_OPERATION_NV, GL_DOT_PRODUCT_REFLECT_CUBE_MAP_NV);
        glTexEnvi(GL_TEXTURE_SHADER_NV, GL_PREVIOUS_TEXTURE_INPUT_NV, GL_TEXTURE0_ARB);
        glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);     


        // Bind the 6 textures
        //
        for (i=0; i<6; i++)
            glBindTexture( GL_TEXTURE_2D, texNames[i] );

        // Specify the texture parameters
        //
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
        glTexParameteri(GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

        // Done setting the texture unit 3
        //
        glActiveTextureARB( GL_TEXTURE0_ARB );

        // define a white color
        //
        float white_color[4] = {1.0, 1.0, 1.0, 1.0};
        glCombinerParameterfvNV(GL_CONSTANT_COLOR0_NV, white_color);

        // The register combiner will do the multiplication between
        // the illumination and the decal color
        //
        glEnable(GL_REGISTER_COMBINERS_NV);
        glCombinerParameteriNV(GL_NUM_GENERAL_COMBINERS_NV, 1);
        
        // Combiner stage 0 get the input from texture stage3, pass through
        //
        glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_A_NV, GL_TEXTURE3_ARB, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_B_NV, GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_C_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        glCombinerInputNV(GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_D_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        
        glCombinerOutputNV(GL_COMBINER0_NV, GL_RGB, GL_SPARE0_NV, GL_DISCARD_NV, GL_DISCARD_NV, 
            GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE);
        
        // The final Combiner just pass through
        //
        glFinalCombinerInputNV(GL_VARIABLE_A_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        glFinalCombinerInputNV(GL_VARIABLE_B_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        glFinalCombinerInputNV(GL_VARIABLE_C_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB);
        glFinalCombinerInputNV(GL_VARIABLE_D_NV, GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB);

        verify_shader_config( view );
    }

    view.endGL();

    return MS::kSuccess;
}


/* virtual */
MStatus hwReflectBumpShader_NV20::unbind(const MDrawRequest& request,
               M3dView& view)
{
    view.beginGL();
    
    if (cubeMapOnly)
    {
        // Pop the texture matrix pushed during bind
        glActiveTextureARB( GL_TEXTURE0_ARB );
        glMatrixMode( GL_TEXTURE );
        glPopMatrix();
        glMatrixMode( GL_MODELVIEW );

        glDisable( GL_TEXTURE_GEN_S );
        glDisable( GL_TEXTURE_GEN_T );
        glDisable( GL_TEXTURE_GEN_R );
        glDisable( GL_TEXTURE_CUBE_MAP_ARB );
    }
    else
    {
        glDisable(GL_TEXTURE_SHADER_NV);
        
        glActiveTextureARB( GL_TEXTURE0_ARB );
        glDisable(GL_TEXTURE_2D);
        glDisable(GL_TEXTURE_CUBE_MAP_ARB);

        glActiveTextureARB( GL_TEXTURE1_ARB );
        glDisable(GL_TEXTURE_2D);
        glDisable(GL_TEXTURE_CUBE_MAP_ARB);

        glActiveTextureARB( GL_TEXTURE2_ARB );
        glDisable(GL_TEXTURE_2D);
        glDisable(GL_TEXTURE_CUBE_MAP_ARB);

        glActiveTextureARB( GL_TEXTURE3_ARB );
        glDisable(GL_TEXTURE_2D);
        glDisable(GL_TEXTURE_CUBE_MAP_ARB);

        glDisable(GL_REGISTER_COMBINERS_NV);
        glDisable(GL_VERTEX_PROGRAM_NV);
    }

    glActiveTextureARB( GL_TEXTURE0_ARB );

    glPopClientAttrib();
    glPopAttrib();

    view.endGL();

    return MS::kSuccess;
}


/* virtual */
MStatus hwReflectBumpShader_NV20::geometry( const MDrawRequest& request,
                                M3dView& view,
                                int prim,
                                unsigned int writable,
                                int indexCount,
                                const unsigned int * indexArray,
                                int vertexCount,
                                const int * vertexIDs,
                                const float * vertexArray,
                                int normalCount,
                                const float ** normalArrays,
                                int colorCount,
                                const float ** colorArrays,
                                int texCoordCount,
                                const float ** texCoordArrays)
{
    // We assume triangles here.
    //
    if (prim != GL_TRIANGLES)   return MS::kFailure;

    view.beginGL();

    glEnable(GL_VERTEX_ARRAY);

    if (cubeMapOnly)
    {
        glVertexPointer(3, GL_FLOAT, 0, vertexArray);
        glEnable(GL_VERTEX_ARRAY);
        
        if (normalCount > 0)
        {
            glNormalPointer(GL_FLOAT, 0, normalArrays[0]);
            glEnable(GL_NORMAL_ARRAY);
        }
        
        glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_INT, indexArray);
        
        glDisable(GL_VERTEX_ARRAY);
        glDisable(GL_NORMAL_ARRAY);
    }
    else
    {
        // Bind and enable the vertex program
        glBindProgramNV(GL_VERTEX_PROGRAM_NV, vertex_program_id);
        glEnable(GL_VERTEX_PROGRAM_NV);
        
        // VERTEX REGISTERS:
        // 0 - coord
        // 1 - normal
        // 2 - texcoord0
        // 3 - texcoord1
        // 4 - texcoord2 (binorm)

        glVertexAttribPointerNV( 0, 3, GL_FLOAT, 0, vertexArray );
        glVertexAttribPointerNV( 1, 3, GL_FLOAT, 0, normalArrays[0] );
        glVertexAttribPointerNV( 2, 2, GL_FLOAT, 0, texCoordArrays[0] );
        glVertexAttribPointerNV( 3, 2, GL_FLOAT, 0, texCoordArrays[0] );
        glVertexAttribPointerNV( 4, 3, GL_FLOAT, 0, normalArrays[2] );
        
        glEnableClientState( GL_VERTEX_ATTRIB_ARRAY0_NV );
        glEnableClientState( GL_VERTEX_ATTRIB_ARRAY1_NV );
        glEnableClientState( GL_VERTEX_ATTRIB_ARRAY2_NV );
        glEnableClientState( GL_VERTEX_ATTRIB_ARRAY3_NV );
        glEnableClientState( GL_VERTEX_ATTRIB_ARRAY4_NV );
        
        glDrawElements(GL_TRIANGLES, indexCount, GL_UNSIGNED_INT, indexArray);
        
        glDisableClientState( GL_VERTEX_ATTRIB_ARRAY0_NV );
        glDisableClientState( GL_VERTEX_ATTRIB_ARRAY1_NV );
        glDisableClientState( GL_VERTEX_ATTRIB_ARRAY2_NV );
        glDisableClientState( GL_VERTEX_ATTRIB_ARRAY3_NV );
        glDisableClientState( GL_VERTEX_ATTRIB_ARRAY4_NV );
        
        glDisable(GL_VERTEX_PROGRAM_NV);
    }

    glDisable(GL_VERTEX_ARRAY);
    view.endGL();

    return MS::kSuccess;
}

/* virtual */
int hwReflectBumpShader_NV20::normalsPerVertex()
{
    return 3;
}

/* virtual */
int hwReflectBumpShader_NV20::texCoordsPerVertex()
{
    return 1;
}