

© 2018 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk,

Inc., this publication, or parts thereof, may not be reproduced in any form, by any

method, for any purpose. Certain materials included in this publication are reprinted

with the permission of the copyright holder.

Disclaimer THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE

AVAILABLE BY AUTODESK, INC. “AS IS.” AUTODESK, INC. DISCLAIMS ALL

WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY

IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE REGARDING THESE MATERIALS.

Trademarks The following are registered trademarks of Autodesk, Inc., in the USA

and/or other countries: Autodesk Robot Structural Analysis, Autodesk Concrete Building

Structures, Spreadsheet Calculator, ATC, AutoCAD, Autodesk, Autodesk Inventor,

Autodesk (logo), Buzzsaw, Design Web Format, DWF, ViewCube, SteeringWheels, and

Autodesk Revit. All other brand names, product names or trademarks belong to their

respective holders.

Third Party Software Program Credits ACIS Copyright© 1989-2001 Spatial Corp.

Portions Copyright© 2002 Autodesk, Inc. Copyright© 1997 Microsoft Corporation. All

rights reserved. International CorrectSpell™ Spelling Correction System© 1995 by

Lernout & Hauspie Speech Products, N.V. All rights reserved. InstallShield™ 3.0.

Copyright© 1997 InstallShield Software Corporation. All rights reserved. PANTONE®

and other Pantone, Inc. trademarks are the property of Pantone, Inc.© Pantone, Inc.,

2002. Portions Copyright© 1991-1996 Arthur D. Applegate. All rights reserved. Portions

relating to JPEG © Copyright 1991-1998 Thomas G. Lane. All rights reserved. Portions

of this software are based on the work of the Independent JPEG Group. Portions

relating to TIFF © Copyright 1997-1998 Sam Leffler. © Copyright 1991-1997 Silicon

Graphics, Inc. All rights reserved.

How to create an Add-In extension .dll
file and make it available from Robot pull
down menu. (language C#)

 August 28, 2018

1. Introduction

 Robot Structure Analysis is equipped with appropriate interfaces that allow you to extend the

functionality in a fairly simple way by including external components called directly from its pull down

menu.

This document was created to help you quickly implement such an add-in extension by using Visual
Studio C# project. The points below are in fact step by step instruction you should utilize to
implement your own add-in extension and have possibility to call it from Robot Structure Analysis pull
down menu.

2. Visual Studio C# template project

 If you want to create add-in extension use project template attached to Robot Structure Analysis
SDK (its name is MyAddin) or modify your own project basing on this project using the information

contained in this short manual.
The sample project template attached to Robot Structure Analysis SDK is the complete add-in but in

fact it is doing nothing except showing simple window. This is only example but by adding your own
code into proper places you will be able to obtain what you intent.

3. References to RobotOM (Robot Object Model) library

 In your project set references to RobotOM library (Interop.RobotOM.dll in the case of C# project).
In the template project attached to RSA SDK references to RobotOM library are set

to…\MyAddin\bin\Debug\Interop.RobotOM.dll

4. Project configuration

 The following screen shots briefly summarize the necessary project settings.

Make sure that your add-in assembly is COM visible.

5. Implementation of IRobotAddIn interface

 Below you can see the simplest implementation of the IRobotAddIn interface.
The DoCommand method will be executed after clicking on the appropriate pull down menu item .
Therefore, it must contain instructions responsible for the appropriate functionalities of your add-in
extension. The commands can be distinguished using the cmd_id parameter.
By means of the InstallCommands method individual commands are added to the Robot Structure
Analysis pull down menu This is done using cmd_list parameter being RobotCmdList type.

using System;
using System.Collections.Generic;

using System.Linq;
using System.Text;
using RobotOM;

namespace MyAddin
{
// ----------

 [System.Runtime.InteropServices.ComVisibleAttribute(true)]
 public class Class1 : IRobotAddIn
 {
 private IRobotApplication iapp = null;

 public bool Connect(RobotApplication robot_app, int add_in_id, bool first_time)
 {
 iapp = robot_app;
 return true;
 }

 public bool Disconnect()
 {
 iapp = null;
 return true;
 }

 public void DoCommand(int cmd_id)
 {

 //exemplary implementation
 System.Windows.Forms.MessageBox.Show("Command " + cmd_id.ToString() + " executed.");

 // or execute any of your command for e.g. new Form1().Show();
 }

 public double GetExpectedVersion()
 {
 return 10;
 }

 public int InstallCommands(RobotCmdList cmd_list)
 {

 //exemplary implementation

 cmd_list.New(1, "My Command 1"); // Text in Robot menu

 return cmd_list.Count;
 }

 }

// ----------
}

6. Setting new GUID for IRobotAddIn implementation and COM visible

attribute for all forms

 … COM visibility attribute must be set to FALSE for all forms in your add-in.

7. Add your own functionality code and build project

 Implement DoCommand method with instructions responsible for the appropriate functionalities of
your add-in extension.
Implement InstallCommands to add individual commands to the Robot Structure Analysis pull down
menu.
Build project.

8. Preparing add-in .dll file to run with Robot Structure Analysis

• Create .tlb file

Go to folder where your add-in .dll file is generated (…\MyAddin\bin\Debug in our

example)

Run command :

 c:\Windows\Microsoft.NET\Framework64\v4.0.30319\regasm.exe /tlb /codebase

MyAddin.dll

 or

 c:\Windows\Microsoft.NET\Framework64\v2.0.50727\RegAsm.exe /tlb

/codebase MyAddin.dll

• Add created .tlb library to add-in .dll file:

From the File menu \Open\File -> open created add-in .dll file

(…\MyAddin\bin\Debug\MyAddin.dll in our example) and add created .tlb library to .dll

file (right hand mouse click menu).

Resource type should be named as TYPELIB.

• Change TYPELIB number

Change number to e.g 1.0 using Properties (right hand mouse click menu)

• Close Visual Studio and save changes to .dll file

9. Registration of created add-in .dll file to enable its visibility in Robot

Structure Analysis

 Register add-in .dll file after its locating in target folder on any computer you want it to use as

described below:

• Open Command Prompt window as Admin

• Go to the folder where the add-in .dll file is located and register it by commands:

 c:\Windows\Microsoft.NET\Framework64\v4.0.30319\regasm.exe /tlb /codebase

MyAddin.dll

 or

 c:\Windows\Microsoft.NET\Framework64\v2.0.50727\RegAsm.exe /tlb /codebase

MyAddin.dll

9. Making new option available in Robot Structure Analysis pull down

menu

 Start RSA, select any structure type, then from Add-ins menu start Add-ins Manage and using “…”
button show path to add-in .dll file, then press Add button.

 … after closing manager the new option should be available in robot menu

 as it is showed above.

How to create an Add-In extension .dll
file and make it available from Robot pull
down menu. (language VB Net)

1. Visual Studio VBNet template project

Create a class library project:

Inside Visual Studio, on the File menu, click New Project. In the Installed Templates

tab in the left-hand window, click Visual Basic. In the middle window, click Class

Library.

Enter MyAddinVBNet in the Name box and enter D:\Add-in in Location box then

click OK.

Visual Studio will create a default code project for you and display the code in the

code window.

2. Add references:
In the Solution Explorer window on the right-hand side of the Visual Studio window,

right-click References and click Add Reference…

Click the Browse tab and in the Add Reference dialog and browse to the Autodesk

Robot Structural Analysis Professional product installation sub-folder. (The sub-

folder path depends on where you have installed RSA 201x. The default path is

C:\Program Files\Autodesk\Autodesk Robot Structural Analysis Professional

201x*).

You will add reference file from this folder. Select robotom.tlb, and then click OK.

Now the interface DLL file is referenced in your project. All the RSA APIs are

exposed by these interface files and your project can use all of those available APIs

from them.

3. Project configuration

The following screen shots briefly summarize the necessary project settings.

4. Implementation of IRobotAddIn interface

 Below you can see the simplest implementation of the IRobotAddIn interface.
The DoCommand method will be executed after clicking on the appropriate pull down menu item .
Therefore, it must contain instructions responsible for the appropriate functionalities of your add-in
extension. The commands can be distinguished using the cmd_id parameter.
By means of the InstallCommands method individual commands are added to the Robot Structure
Analysis pull down menu This is done using cmd_list parameter being RobotCmdList type.

Imports RobotOM

<ComClass(Class1.ClassId)>
Public Class Class1
 Implements RobotOM.IRobotAddIn

 ' This GUID provides the COM identity For this Class
 ' and its COM interfaces. If you change it, existing
 ' clients will no longer be able to access the class.
 Public Const ClassId As String = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

 Private robotApp As RobotOM.IRobotApplication

 ' A creatable COM class must have a Public Sub New()
 ' with no parameters, otherwise, the class will not be
 ' registered in the COM registry and cannot be created
 ' via CreateObject.
 Public Sub New()
 MyBase.New()
 End Sub
 Public Sub DoCommand(cmd_id As Integer) Implements IRobotAddIn.DoCommand
 Select Case cmd_id
 Case 1
 'Clicking on first command in menu user gets message
 MsgBox("Message From AddinVBNet")
 Case 2
 'Clicking on second command in menu user gets dialog
 Dim frm As New Form1()
 Dim value As Integer
 value = robotApp.Project.Structure.Bars.GetAll().Count
 frm.Init(value)
 frm.ShowDialog()
 End Select
 End Sub

 Public Function Connect(robot_app As RobotApplication, add_in_id As Integer,
first_time As Boolean) As Boolean Implements IRobotAddIn.Connect
 robotApp = robot_app
 Return True
 End Function

 Public Function Disconnect() As Boolean Implements IRobotAddIn.Disconnect
 robotApp = Nothing
 Return True
 End Function

 Public Function GetExpectedVersion() As Double Implements
IRobotAddIn.GetExpectedVersion
 Return 19.0
 End Function

 Public Function InstallCommands(cmd_list As RobotCmdList) As Integer Implements
IRobotAddIn.InstallCommands
 cmd_list.[New](1, "Command 1 from AddinVBNet")
 cmd_list.[New](2, "Command 2 from AddinVBNet")
 Return cmd_list.Count
 End Function
End Class

5. Setting new GUID for IRobotAddIn implementation

Replace xxxx.. with new GUID .

6. Preparing add-in .dll file to run with Robot Structure Analysis

• Create .tlb file

Go to folder where your add-in .dll file is generated (…\MyAddinVBNet\bin\Debug in

our example)

Run command :

 c:\Windows\Microsoft.NET\Framework64\v4.0.30319\regasm.exe /tlb /codebase

MyAddinVBNet.dll

 or

 c:\Windows\Microsoft.NET\Framework64\v2.0.50727\RegAsm.exe /tlb

/codebase MyAddinVBNet.dll

• Add created .tlb library to add-in .dll file:

From the File menu \Open\File -> open created add-in .dll file

(…\MyAddinVBNet\bin\Debug\MyAddinVBNet.dll in our example) and add created .tlb

library to .dll file (right hand mouse click menu).

Resource type should be named as TYPELIB.

• Change TYPELIB number

Change number to e.g 1.0 using Properties (right hand mouse click menu)

• Close Visual Studio and save changes to .dll file

7. Registration of created add-in .dll file to enable its visibility in Robot

Structure Analysis

 Register add-in .dll file after its locating in target folder on any computer you want it to use as
described below:

• Open Command Prompt window as Admin

• Go to the folder where the add-in .dll file is located and register it by commands:

 c:\Windows\Microsoft.NET\Framework64\v4.0.30319\regasm.exe /tlb /codebase

MyAddinVBNet.dll

 or

 c:\Windows\Microsoft.NET\Framework64\v2.0.50727\RegAsm.exe /tlb /codebase

MyAddinVBNet.dll

8. Making new option available in Robot Structure Analysis pull down

menu

 Start RSA, select any structure type, then from Add-ins menu start Add-ins Manage and using “…”
button show path to add-in .dll file, then press Add button.

 … after closing manager the new option should be available in robot menu

 as it is showed above.

