The cmd creates a NURBS spline surface (rational or non rational). The surface is created by specifying control vertices (CV’s) and knot sequences in the U and V direction. You cannot query the properties of the surface using this command. See examples below.
Long name (short name) | Argument Types | Properties | |
---|---|---|---|
degreeU (du) | int | ||
|
|||
degreeV (dv) | int | ||
|
|||
formU (fu) | unicode | ||
|
|||
formV (fv) | unicode | ||
|
|||
knotU (ku) | float | ||
|
|||
knotV (kv) | float | ||
|
|||
name (n) | unicode | ||
objectSpace (ob) | bool | ||
point (p) | float, float, float | ||
To specify non rational CV with (x, y, z) values. linearmeans that this flag can take values with units. Note that you must specify (degree+1) surface points in any direction to create a visible surface span. eg. if the surface is degree 3 in the U direction, you must specify 4 CVs in the U direction. Points are specified in rows of U and columns of V. If you want to incorporate units, add the unit name to the value, eg. -p 3.3in 5.5ft 6.6yd |
|||
pointWeight (pw) | float, float, float, float | ||
To specify rational CV with (x, y, z, w) values. linearmeans that this flag can take values with units. Note that you must specify (degree+1) surface points in any direction to create a visible surface span. eg. if the surface is degree 3 in the U direction, you must specify 4 CVs in the U direction. Points are specified in rows of U and columns of V. Flag can have multiple arguments, passed either as a tuple or a list. |
|||
worldSpace (ws) | bool | ||
Derived from mel command maya.cmds.surface
Example:
import pymel.core as pm
# This following command produces a flat, rectangular surface that is degree 3
# in both directions. This means that there must be at least 4 x 4
# points to define the surface, since 4 is the (degree + 1). There
# must be 6 knots in each direction, because the knot vector must
# be (number of points + degree - 1), ie. (4 points + degree 3 - 1).
# The CVs are specified in rows of U and columns of V, as you
# would read a book from left to right, up to down. ie. in this order:
# surface.cv[0][0] surface.cv[0][1] surface.cv[0][2] surface.cv[0][3]
# surface.cv[1][0] surface.cv[1][1] surface.cv[1][2] surface.cv[1][3]
# surface.cv[2][0] surface.cv[2][1] surface.cv[2][2] surface.cv[2][3]
# surface.cv[3][0] surface.cv[3][1] surface.cv[3][2] surface.cv[3][3]
pm.surface( du=3, dv=3, ku=(0, 0, 0, 1, 1, 1), kv=(0, 0, 0, 1, 1, 1), p=((-0.5, 0, 0.5), (-0.5, 0, 0.16), (-0.5, 0, -0.16), (-0.5, 0, -0.5), (-0.16, 0, 0.5), (-0.16, 0, 0.16), (-0.16, 0, -0.16), (-0.16, 0, -0.5), (0.16, 0, 0.5), (0.16, 0, 0.16), (0.16, 0, -0.16), (0.16, 0, -0.5), (0.5, 0, 0.5), (0.5, 0, 0.16), (0.5, 0, -0.16), (0.1, 0, -0.1)) )
# Result: nt.NurbsSurface(u'surfaceShape1') #
# This following command produces a surface that is degree 3 and periodic in
# the U direction, and degree 1 in the V direction. Notice that
# the first 3 pairs of points match the last 3 pairs of
# points, which is required for a degree 3 periodic surface.
pm.surface( du=3, dv=1, fu='periodic', fv='open', ku=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), kv=(0, 1), pw=((4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1), (0, 5.5, 0, 1), (0, 5.5, -2.5, 1), (-4, 4, 0, 1), (-4, 4, -2.5, 1), (-5.5, 0, 0, 1), (-5.5, 0, -2.5, 1), (-4, -4, 0, 1), (-4, -4, -2.5, 1), (0, -5.5, 0, 1), (0, -5.5, -2.5, 1), (4, -4, 0, 1), (4, -4, -2.5, 1), (5.5, 0, 0, 1), (5.5, 0, -2.5, 1), (4, 4, 0, 1), (4, 4, -2.5, 1)) )
# Result: nt.NurbsSurface(u'surfaceShape2') #
# This following command produces a surface that is degree 5 in both directions.
pm.surface( du=5, dv=5, fu='open', fv='open', p=((-7, 0, 1), (-6, 0, 4), (-3, 0, 6), (0, 0, 7), (4, 0, 5), (6, 0, 3), (-7, 2, 1), (-6, 2, 4), (-3, 2, 7), (0, 2, 8), (4, 2, 5), (6, 2, 3), (-7, 3, 1), (-6, 3, 4), (-3, 3, 8), (0, 3, 9), (4, 3, 5), (6, 3, 3), (-7, 4, 1), (-6, 4, 4), (-3, 4, 9), (0, 4, 8), (4, 4, 5), (6, 4, 3), (-7, 5, 1), (-6, 5, 4), (-3, 5, 8), (0, 5, 7.5), (4, 5, 5), (6, 5, 3), (-7, 6, 1), (-6, 6, 4), (-3, 6, 6), (0, 6, 7), (4, 6, 5), (6, 6, 3)), ku=(0, 0, 0, 0, 0, 1, 1, 1, 1, 1), kv=(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) )
# Result: nt.NurbsSurface(u'surfaceShape3') #
# How to query surface properties:
pm.getAttr( 'surface1.degreeU' )
# Result: 3 #
# Returns an integer that is the surface degree in U
pm.getAttr( 'surface1.degreeV' )
# Result: 3 #
# Returns an integer that is the surface degree in V
pm.getAttr( 'surface1.spansU' )
# Result: 1 #
# Returns an integer that is the # spans in U
pm.getAttr( 'surface1.spansV' )
# Result: 1 #
# Returns an integer that is the # spans in V
pm.getAttr( 'surface1.formU' )
# Result: 0 #
# Return 0 = open, 1 = closed, 2 = periodic
pm.getAttr( 'surface1.formV' )
# Result: 0 #
# Returns 0 = open, 1 = closed, 2 = periodic
pm.getAttr( 'surface1.minValueU' )
# Result: 0.0 #
pm.getAttr( 'surface1.maxValueU' )
# Result: 1.0 #
pm.getAttr( 'surface1.minValueV' )
# Result: 0.0 #
pm.getAttr( 'surface1.maxValueV' )
# Result: 1.0 #
# These return the minimum and maximum parameter ranges in each direction.
pm.getAttr( 'surface1.cv[0][0]' )
# Result: dt.Vector([-0.5, 0.0, 0.5]) #
# Returns the position of a CV of surface1 in local space. If the
# surface is a result of construction history, use a surface info
# node instead to get the CV position.
pm.getAttr( 'surface1.cv[*][0]' )
# Result: (-0.5, 0.0, 0.5) #
# Returns the positions of a row of CVs of surface1 in local space.
# If the surface is a result of construction history, use a surface info
# node instead to get the CV positions.
pm.createNode( 'surfaceInfo' )
# Result: nt.SurfaceInfo(u'surfaceInfo1') #
pm.connectAttr( 'surfaceShape1.worldSpace', 'surfaceInfo1.inputSurface', f=True )
pm.getAttr( 'surfaceInfo1.controlPoints[*]' )
# Result: (-0.5, 0.0, 0.5) #
# Returns the surface CVs in world space. A surface info node can
# also be used to query the surface knot vectors.