
Using Parallel Maya
2020

Using Parallel Maya Contents

Contents

Contents 1

Overview 5

Key Concepts 5

Supported Evaluation Modes 9

First Make it Right Then Make it Fast 9
Evaluation Graph Correctness . 10
Thread Safety . 10
Safe Mode . 14

Evaluation Graph Invalidation 14

Idle Actions 15
Benefits . 16
Caveats . 16

Custom Evaluators 17
GPU Override . 17
Dynamics Evaluator . 20
Reference Evaluator . 23
Invisibility Evaluator . 23
Frozen Evaluator . 24

The Frozen Attribute . 25
Operation . 25
Setting Options . 27
Limitations . 27

Curve Manager Evaluator . 28
Other Evaluators . 30
Evaluator Conflicts . 31

2020 1

Using Parallel Maya Contents

API Extensions 31
Parallel Evaluation . 31
Custom GPU Deformers . 33
Custom Evaluator API . 34

The Basics . 34
API Reference . 37
SimpleEvaluator API Example . 39

VP2 Integration . 42
Tracking Topology . 44
Profiling Plug-ins . 45

Profiling Your Scene 45
Understanding Your Profile . 46
Profiler Colors . 47
DG Evaluation . 48
EM Parallel Evaluation . 49
EM Parallel Evaluation with GPU Override . 50
EM Evaluation Cached Playback . 51
EM VP2 Hardware Cached Playback . 51
Evaluation-Bound Performance . 52
Render-Bound Performance . 54
Saving and Restoring Profiles . 57

Troubleshooting Your Scene 57
Analysis Mode . 57
Graph Execution Order . 59
The Evaluation Toolkit . 60

Known Limitations 60

2020 2

Using Parallel Maya Contents

Appendices 60
Profiler File Format . 60
Debugging Commands . 63

dbcount . 63
dbmessage . 64
dbtrace . 64
dgdebug . 66
dgdirty . 66
dgeval . 67
dgInfo . 67
dgmodified . 68
dbpeek . 68
dbpeek -op attributes . 69
dbpeek -op cache . 71
dbpeek -op cmdTracking . 71
dbpeek -op connections . 71
dbpeek -op data . 72
dbpeek -op context . 72
dbpeek -op edits . 74
dbpeek -op evalMgr . 75
dbpeek -op graph . 75
dbpeek -op mesh . 76
dbpeek -op metadata . 77
dbpeek -op node . 77
dbpeek -op nodes . 78
dbpeek -op nodeTracking . 78
dbpeek -op plugs . 79

2020 3

Using Parallel Maya Contents

Revisions 79
2020 . 79
2019 . 80
2018 . 80
2017 . 80
2016 Extension 2 . 81
2016 . 81

2020 4

Using Parallel Maya Key Concepts

Overview

This guide describes the Maya features for accelerating playback and manipulation of animated
scenes. It covers key concepts, shares best practices/usage tips, and lists known limitations
that we aim to address in subsequent versions of Maya.
This guide will be of interest to riggers, TDs, and plug-in authors wishing to take advantage
of speed enhancements in Maya.
If you would like an overview of related topics prior to reading this document, check out
Supercharged Animation Performance in Maya 2016.

Key Concepts

Starting from Maya 2016, Maya accelerates existing scenes by taking better advantage of your
hardware. Unlike previous versions of Maya, which were limited to node-level parallelism,
Maya now includes a mechanism for scene-level analysis and parallelization. For example, if
your scene contains different characters that are unconstrained to one another, Maya can
evaluate each character at the same time.
Similarly, if your scene has a single complex character, it may be possible to evaluate rig
sub-sections simultaneously. As you can imagine, the amount of parallelism depends on how
your scene has been constructed. We will get back to this later. For now, let’s focus on
understanding key Maya evaluation concepts.
At the heart of Maya’s new evaluation architecture is an Evaluation Manager (EM),
responsible for handling the parallel-friendly representation of your scene. It maintains (and
updates while the scene is edited) a few data structures (described below) used for efficient
evaluation.
The basic description of the scene is the Dependency Graph (DG), consisting of DG
nodes and connections. Nodes can have multiple attributes, and instances of these attributes
on a specific node are called plugs. The DG connections are at the plug level, that is, two
nodes can be connected to one another multiple ways through different plugs. Generally
speaking, these connections represent data flow through the nodes as they evaluate. The
following image shows an example DG:

2020 5

https://www.youtube.com/watch?v=KKC7A9bbUuk

Using Parallel Maya Key Concepts

The dotted arrows inside the nodes represent an implicit computation dependency between
an output attribute (on the right of the node) and the input attributes (on the left) being
read to compute the result stored in the output.
Before Parallel Maya, the DG was used to evaluate the scene using a Pull Model or Pull
Evaluation. In this model, the data consumer (for instance the renderer) queries data from
a given node. If the data is already evaluated, the consumer receives it directly. However,
if the data is dirty, the node must first recompute it. It does so by pulling on the inputs
required to compute the requested data. These inputs can also be dirty, in which case the
evaluation request will then be forwarded to those dirty sources until it reaches the point
where the data can be evaluated. The result then propagates back up in the graph, as the
data is being “pulled”.
This evaluation model relies on the ability to mark node data as invalid and therefore requiring
new evaluation. This mechanism is known as the Dirty Propagation in which the invalid
data status propagates to all downstream dependencies. The two main cases where dirty
propagation happened in the Pull Evaluation model were when:

• the current time is changed: in this case, animation curves no longer have the right
value which depends on the current time. Therefore, dirty propagation starts from
each animation curve and the dirty status is propagated through the graph to reach
everything depending on time, directly or indirectly.

• a value is changed on a node: whether the value is being changed through interactive
manipulation or by a script, all data that depends on this new value must be recom-
puted. Therefore, dirty propagation starts from the edited plug and the dirty status is
propagated through the graph to reach everything depending on the edited attribute.

The Pull Evaluation model is not well suited for efficient parallel evaluation because of
potential races that can arise from concurrent pull evaluations.
To have tighter control over evaluation, Maya now uses a Forward Evaluation model to
enable concurrent evaluation of multiple nodes. The general idea is simple: if all a node’s
dependencies have been evaluated before we evaluate the given node, pull evaluation will

2020 6

Using Parallel Maya Key Concepts

not be triggered when accessing evaluated node data, so evaluation remains contained in the
node and is easier to run concurrently.
All data dependencies between the nodes must be known to apply this evaluation model,
and this information is captured in the Evaluation Graph (EG), containing Evaluation
Nodes. The EM uses dirty propagation to capture dependency information between the
nodes, as well as which attributes are animated. EG connections represent node-level
dependencies; destination nodes employ data from source nodes to correctly evaluate the
scene. One important distinction between the DG and the EG is that the former uses plug-
level connections, while the latter uses node-level connections. For example, the previous
DG would create the following EG:

A valid EG may not exist or become invalid for various reasons. For example, you have loaded
a new scene and no EG has been built yet, or you have changed your scene, invalidating a
prior EG. However, once the EG is built, unlike previous versions of Maya that propagated
dirty on every frame, Maya now disables dirty propagation, reusing the EG until it becomes
invalid.

Tip. If your scene contains expression nodes that use getAttr, the DG graph will
be missing explicit dependencies. This results in an incorrect EG. Expression nodes
also reduce the amount of parallelism in your scenes (see Scheduling Types for details).
Consider removing getAttr from expressions and/or using utility nodes.

While the EG holds the dependency information, it is not ready to be evaluated concurrently
as-is. The EM must first create units of work that can be scheduled, that is, tasks. The
main types of task created are:

• Individual Nodes: in the simplest case, an evaluation node can be computed directly.
The task therefore consists of evaluating all of its animated attributes.

• Cycle Clusters: depending on the scene, the EG may contain circular node-level
dependencies. If this is the case, the EM creates clusters that group together nodes in

2020 7

Using Parallel Maya Key Concepts

the same cycle. At scene evaluation time, nodes in cycle clusters are evaluated serially
before continuing with other parallel parts of the EG, hence the evaluation of a cycle
cluster consisting of a single task. While node-level cycles are perfectly legal, creating
scenes with attribute-level cycles should be avoided as this is unsupported and leads to
unspecified behavior.

• Custom Evaluator Clusters: the EM supports the concept of custom evaluators
to override evaluation of sub-section of the EG. One example of this is the GPU
override, which uses your graphics card’s graphics processing unit (GPU) to accelerate
deformations. The custom evaluators will create clusters for nodes for which they take
responsibility, and the EM creates a task for each of these clusters. At scene evaluation
time, control is passed to the specific custom evaluator when the task is up to be
executed.

This step, called partitioning, is where the EM creates the individual pieces of work that
will have to be executed. Each of these tasks will map to a Scheduling Node in the
Scheduling Graph (SG), where connections represent dependencies between the tasks:

The SG is an acyclic graph, otherwise it would be impossible to schedule nodes in a cycle
since there would be no starting point for which all dependencies could be evaluated. In

2020 8

Using Parallel Maya First Make it Right Then Make it Fast

addition to the dependencies that come directly from the EG, the SG can have additional
scheduling constraints to prevent concurrent evaluation of subsets of nodes (see Scheduling
Types for details).

Supported Evaluation Modes

Starting in Maya 2016, 3 evaluation modes are supported:

Mode What does it do?

DG Uses the legacy Dependency Graph-based evaluation of your scene.
This was the default evaluation mode prior to Maya 2016

Serial Evaluation Manager Serial mode. Uses the EG but limits
scheduling to a single core. Serial mode is a troubleshooting mode to
pinpoint the source of evaluation errors.

Parallel Evaluation Manager Parallel mode. Uses the EG and schedules
evaluation across all available cores. This mode is the new Maya
default since 2016.

When using either Serial or Parallel EM modes, you can also activate GPU Override to
accelerate deformations on your GPU. You must be in Viewport 2.0 to use this feature (see
GPU Override).
To switch between different modes, go to the Preferences window (Windows > Set-
tings/Preferences > Preferences > Animation). You can also use the evaluation-
Manager MEL/Python command; see documentation for supported options.
To see the evaluation options that apply to your scene, turn on the Heads Up Display
Evaluation options (Display > Heads Up Display > Evaluation).

First Make it Right Then Make it Fast

Before discussing how to make your Maya scene faster using Parallel evaluation, it is important
to ensure that evaluation in DG and EM modes generates the same results. If you see different
results in the viewport during animation (as compared to previous versions of Maya), or tests
reveal numerical errors, it is critical to understand the cause of these errors. Errors may be
due to an incorrect EG, threading related problems, or other issues.
Below, we review Evaluation Graph Correctness and Thread Safety, two important
concepts to understand errors.

2020 9

Using Parallel Maya First Make it Right Then Make it Fast

Evaluation Graph Correctness

If you see evaluation errors, first test your scene in Serial evaluation mode (see Supported
Evaluation Modes). Serial evaluation mode uses the EM to build an EG of your scene, but
limits evaluation to a single core to eliminate threading as the possible source of differences.
Note that since Serial evaluation mode is provided for debugging, it has not been optimized
for speed and scenes may run slower in Serial than in DG evaluation mode. This is expected.
If transitioning to Serial evaluation eliminates errors, this suggests that differences are most
likely due to threading-related issues. However, if errors persist (even after transitioning
to Serial evaluation) this suggests that the EG is incorrect for your scene. There are a few
possible reasons for this:
Custom Plugins. If your scene uses custom plug-ins that rely on the mechanism provided by
the MPxNode::setDependentsDirty function to manage attribute dirtying, this may be the
source of problems. Plug-in authors sometimes use MPxNode::setDependentsDirty to avoid
expensive calculations in MPxNode::compute by monitoring and/or altering dependencies
and storing computed results for later re-use.
Since the EM relies on dirty propagation to create the EG, any custom plug-in logic that
alters dependencies may interfere with the construction of a correct EG. Furthermore, since
the EM evaluation does not propagate dirty messages, any custom caching or computation in
MPxNode::setDependentsDirty is not called while the EM is evaluating.
If you suspect that your evaluation errors are related to custom plug-ins, temporarily remove
the associated nodes from your scene and validate that both DG and Serial evaluation modes
generate the same result. Once you have made sure this is the case, revisit the plug-in logic.
The API Extensions section covers Maya SDK changes that will help you adapt plug-ins to
Parallel evaluation.
Another debugging option is to use “scheduling type” overrides to force custom nodes to be
scheduled more conservatively. This approach enables the use of Parallel evaluation even if
only some of the nodes are thread-safe. Scheduling types are described in more detail in the
Thread Safety section.
Errors in Autodesk Nodes. Although we have done our best to ensure that all out-of-
the-box Autodesk Maya nodes correctly express dependencies, sometimes a scene uses nodes
in an unexpected manner. If this is the case, we ask you make us aware of scenes where you
encounter problems. We will do our best to address problems as quickly as possible.

Thread Safety

Prior to Maya 2016, evaluation was single-threaded and developers did not need to worry
about making their code thread-safe. At each frame, evaluation was guaranteed to proceed
serially and computation would finish for one node prior to moving onto another. This

2020 10

Using Parallel Maya First Make it Right Then Make it Fast

approach allowed for the caching of intermediate results in global memory and using external
libraries without considering their ability to work correctly when called simultaneously from
multiple threads.
These guarantees no longer apply. Developers working in recent versions of Maya must update
plug-ins to ensure correct behavior during concurrent evaluation.
Two things to consider when updating plug-ins:

• Different instances of a node type should not share resources. Unmanaged
shared resources can lead to evaluation errors since different nodes, of the same type,
can have their compute() methods called at the same time.

• Avoid non thread-safe lazy evaluation. In the EM, evaluation is scheduled from
predecessors to successors on a per-node basis. Once computation has been performed
for predecessors, results are cached, and made available to successors via connections.
Any attempt to perform non-thread safe lazy evaluation could return different answers
to different successors or, depending on the nature of the bug, instabilities.

Here’s a concrete example for a simple node network consisting of 4 nodes:

In this graph, evaluation first calculates outputs for Node1 (that is, Node1.A, Node1.B,
Node1.C), followed by parallel evaluation of Nodes 2, 3, and 4 (that is, Read Node1.A to use
in Node2, Read Node1.B to use in Node3, and so on).

2020 11

Using Parallel Maya First Make it Right Then Make it Fast

Knowing that making legacy code thread-safe requires time, we have added new scheduling
types to provide control over how the EM schedule nodes. Scheduling types provide a
straightforward migration path, so you do not need to hold off on performance improvements,
just because a few nodes still need work.
There are 4 scheduling types:

Scheduling
Type What are you telling the scheduler?

Parallel Asserts that the node and all third-party libraries used by the node
are thread-safe. The scheduler may evaluate any instances of this
node at the same time as instances of other nodes without restriction.

Serial Asserts it is safe to run this node with instances of other nodes.
However, all nodes with this scheduling type should be executed
sequentially within the same evaluation chain.

Globally Serial Asserts it is safe to run this node with instances of other node types
but only a single instance of this node type should be run at a time.
Use this type if the node relies on static state, which could lead to
unpredictable results if multiple node instances are simultaneously
evaluated. The same restriction may apply if third-party libraries
store state.

Untrusted Asserts this node is not thread-safe and that no other nodes should
be evaluated while an instance of this node is evaluated. Untrusted
nodes are deferred as much as possible (that is, until there is nothing
left to evaluate that does not depend on them), which can introduce
costly synchronization.

By default, nodes scheduled as Serial provide a middle ground between performance and
stability/safety. In some cases, this is too permissive and nodes must be downgraded to
GloballySerial or Untrusted. In other cases, some nodes can be promoted to Parallel.
As you can imagine, the more parallelism supported by nodes in your graph, the higher level
of concurrency you are likely to obtain.

Tip. When testing your plug-ins with Parallel Maya, a simple strategy is to schedule
nodes with the most restrictive scheduling type (that is, Untrusted), and then validate
that evaluation produces correct results. Raise individual nodes to the next scheduling
level, and repeat the experiment.

There are three ways to alter the scheduling level of your nodes:

2020 12

Using Parallel Maya First Make it Right Then Make it Fast

Evaluation Toolkit. Use this tool to query or change the scheduling type of different node
types.
C++/Python API methods. Use the OpenMaya API to specify the desired node schedul-
ing by overriding the MPxNode::schedulingType method. This function should return one
of the enumerated values specified by MPxNode::schedulingType. See the Maya MPxNode
class reference for more details.
MEL/Python Commands. Use the evaluationManager command to change the scheduling
type of nodes at runtime. Below, we illustrate how you can change the scheduling of scene
transform nodes:

Scheduling
Type Command

Parallel evaluationManager -nodeTypeParallel on "transform"
Serial evaluationManager -nodeTypeSerialize on "transform"
GloballySerial evaluationManager -nodeTypeGloballySerialize on

"transform"
Untrusted evaluationManager -nodeTypeUntrusted on "transform"

The Evaluation Toolkit and MEL/Python Commands method to alter node scheduling level
works using node type overrides. They add an override that applies to all nodes of a given
type. Using C++/Python API methods and overriding the MPxNode::schedulingType
function gives the flexibility to change the scheduling type for each node instance. For
example, expression nodes are marked as globally serial if the expression outputs are a purely
mathematical function of its inputs.
The expression engine is not thread-safe so only one expression can run at a time, but it
can run in parallel with any other nodes. However, if the expression uses unsafe commands
(expressions could use any command to access any part of the scene), the node is marked as
untrusted because nothing can run while the expression is evaluated.
This changes the way scheduling types should be queried. Using the evaluationManager
command with the above flags in query mode will return whether an override has been set
on the node type, using either the Evaluation Toolkit or the MEL/Python commands.
The Evaluation Toolkit window lets you query both the override type on the node type
(which cannot vary from one node of the same type to the other), or the actual scheduling
type used for a node when building the scheduling graph (which can change from one node
instance to the other).

2020 13

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_node_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_node_html

Using Parallel Maya Evaluation Graph Invalidation

Safe Mode

On rare occasions you may notice that Maya switches from Parallel to Serial evaluation
during manipulation or playback. This is due to Safe Mode, which attempts to trap errors
that possibly lead to instabilities. If Maya detects that multiple threads are attempting to
simultaneously access a single node instance, evaluation will be forced to Serial execution to
prevent problems.

Tip. If Safe Mode forces your scene into Serial mode, the EM may not produce the
expected incorrect results when manipulating. In such cases you can either disable the
EM:
cmds.evaluationManager(mode="off")
or disable EM-accelerated manipulation:
cmds.evaluationManager(man=0)

While Safe Mode exposes many problems, it cannot catch them all. Therefore, we have also
developed a special Analysis Mode that performs a more thorough (and costly) check of
your scene. Analysis mode is designed for riggers/TDs wishing to troubleshoot evaluation
problems during rig creation. Avoid using Analysis Mode during animation since it will slow
down your scene.

Evaluation Graph Invalidation

As previously described, the EG adds necessary node-level scheduling information to the DG.
To make sure evaluation is correct, it’s critical the EG always be up-to-date, reflecting the
state of the scene. The process of detecting things that have changed and rebuilding the EG
is referred to as graph invalidation.
Different actions may invalidate the EG, including:

• Adding/removing nodes
• Changing the scenes transformation (DAG) hierarchy
• Adding/removing extension attributes
• Loading an empty scene or opening a new file

Other, less obvious, actions include:

2020 14

Using Parallel Maya Idle Actions

• Static animation curves. Although animation curves are time-dependent, DG
evaluation treats curves with identical (static) keys as time-independent to avoid
unnecessary calculations. The EG uses a similar optimization, excluding and avoiding
scheduling of static animation curves. This keeps the EG compact, making it fast to
build, schedule, and evaluate. A downside of this approach is that changes to static
animation curves will cause the EG to become invalid; on time change Maya will rebuild
the EG and determine if curves should be treated as time-dependent and added to the
EG.

• Dirty propagation crossing the Evaluation Graph. The DG architecture allowed
for implicit dependencies (that is, dependencies not expressed via connections), using
them during dirty propagation. When dirty propagation is detected for these implicit
dependencies, the EG will invalidate itself since this could signal the need to add new
dependencies to the EG.

Frequent graph invalidations may limit parallel evaluation performance gains or even slow
it down (see Idle Actions), since Maya requires DG dirty propagation and evaluation to
rebuild the EG. To avoid unwanted graph rebuilds, consider adding 2 keys, each with slightly
different values, on rig attributes that you expect to use frequently. You can also lock static
channels to prevent creation of static animation curves during keying. We expect to continue
tuning this area of Maya, with the goal of making the general case as interactive as possible.

Tip. You can use the controller command to identify objects that are used as ani-
mation sources in your scene. If the Include controllers in evaluation graph option
is set (see Windows > Settings/Preferences > Preferences, then Settings >
Animation), the objects marked as controllers will automatically be added to the
evaluation graph even if they are not animated yet. This allows Parallel evaluation for
manipulation even if they have not yet been keyed.

Idle Actions

In this section, we discuss the different idle actions available in Maya that helps rebuild the
EG without any intervention from the user. Prior to Maya 2019, only one idle action, the EG
rebuild, was available, but it was not enabled by default. Since Maya 2019, we have added
another idle action, the EG preparation for manipulation, and both of these are enabled by
default.
Here is a description of the idle actions:

2020 15

http://help.autodesk.com/cloudhelp/2020/ENU/Maya-Tech-Docs/Commands/controller.html

Using Parallel Maya Idle Actions

Idle Action Description

EG Rebuild Builds the graph topology. This idle action is executed after a
file load operation, or after a graph topology invalidation.

EG Preparation for
manipulation

Partitions and schedules the graph. This idle action is
executed after a graph rebuild (either manually or through
the idle action), or after a partitioning invalidation.

Tip. You can use the evaluationManager command to change which idle actions are
enabled. You can enable and disable both idle actions individually.

Benefits

To make use of the Parallel Evaluation and GPU deformation during manipulation, the EG
needs to be properly built, partitioned and scheduled, otherwise it will revert to DG. These
idle actions allow the EG to automatically build and be ready to use when needed, since they
are triggered at file load and after graph invalidation.
If you use Cached Playback, your cache automatically refills, too. This way, you can start
playing from cache as soon as the scene is loaded or after you modify to the scene.

Caveats

In a typical frame evaluation, temporary values that are set on keyed attributes are restored
to their original values, that is, the values on their associated curves. With the idle actions,
this is an unwanted behavior, otherwise you would not be able to do any modifications to
keyed attributes. To circumvent that issue, we had to add some special behaviors. One of
these is the dirty propagation from stale plugs after an idle preparation for manipulation.
When not in idle preparation for manipulation, this operation is done during the partitioning
and scheduling phase. With idle preparation for manipulation, this operation is done at the
next complete evaluation. Therefore, if you have many static curves, you might experience a
slowdown on the first frame of playback.
If you do frequent operations that invalidate the graph or partitioning, you may experience
some slowdowns due to the graph always being rebuilt. In such cases, it is advised that you
disable the offending idle action until you are done.

2020 16

http://help.autodesk.com/cloudhelp/2020/ENU/Maya-Tech-Docs/Commands/evaluationManager.html

Using Parallel Maya Custom Evaluators

Custom Evaluators

In this section, we describe mechanisms to perform targeted evaluation of node sub-graphs.
This approach is used by Maya to accelerate deformations on the GPU and to catch evaluation
errors for scenes with specific nodes. Maya 2017 also introduced new Open API extensions,
allowing user-defined custom evaluators.

Tip. Use the evaluator command to query the available/active evaluators or modify
currently active evaluators. Some evaluators support using the nodeType flag to filter
out or include nodes of certain types. Query the info flag on the evaluator for more
information on what it supports.

Returns a list of all currently available evaluators.
import maya.cmds as cmds
cmds.evaluator(query=True)
Result: [u'invisibility',
u'frozen' ,
...
u'transformFlattening' ,
u'pruneRoots'] #

Returns a list of all currently enabled evaluators.
cmds.evaluator(query=True, enable=True)
Result: [u'invisibility',
u'timeEditorCurveEvaluator' ,
...
u'transformFlattening' ,
u'pruneRoots'] #

Note: Enabling or disabling custom evaluators only applies to the current Maya
session: the state is not saved in the scene nor in the user preferences. The same
applies to configuration done using the evaluator command and the configuration flag.

GPU Override

Maya contains a custom deformer evaluator that accelerates deformations in Viewport 2.0
by targeting deformation to the GPU. GPUs are ideally suited to tackle problems such as
mesh deformations that require the same operations on streams of vertex and normal data.
We have included GPU implementations for several of the most commonly-used deformers

2020 17

Using Parallel Maya Custom Evaluators

in animated scenes: skinCluster, blendShape, cluster, tweak, groupParts, softMod,
deltaMush, lattice, nonLinear and tension.
Unlike Maya’s previous deformer stack that performed deformations on the CPU and subse-
quently sent deformed geometry to the graphics card for rendering, the GPU override sends
undeformed geometry to the graphics card, performs deformations in OpenCL and then hands
off the data to Viewport 2.0 for rendering without read-back overhead. We have observed
substantial speed improvements from this approach in scenes with dense geometry.
Even if your scene uses only supported deformers, GPU override may not be enabled due
to the use of unsupported node features in your scene. For example, with the exception of
softMod, there is no support for incomplete group components. Additional deformer-specific
limitations are listed below:

Deformer Limitation(s)

skinCluster The following attribute values are ignored:
- bindMethod
- bindPose
- bindVolume
- dropOff
- heatmapFalloff
- influenceColor
- lockWeights
- maintainMaxInfluences
- maxInfluences
- nurbsSamples
- paintTrans
- smoothness
- weightDistribution

blendShape The following attribute values are ignored:
- baseOrigin
- icon
- normalizationId
- origin
- parallelBlender
- supportNegativeWeights
- targetOrigin
- topologyCheck

cluster n/a
tweak Only relative mode is supported. relativeTweak must be set to 1.
groupParts n/a
softMod Only volume falloff is supported when distance cache is disabled

Falloff must occur on all axes

2020 18

Using Parallel Maya Custom Evaluators

Deformer Limitation(s)

Partial resolution must be disabled
deltaMush n/a
lattice n/a
nonLinear n/a
tension n/a

A few other reasons that can prevent GPU override from accelerating your scene:

• Meshes not sufficiently dense. Unless meshes have a large number of vertices, it
is still faster to perform deformations on the CPU. This is due to the driver-specific
overhead incurred when sending data to the GPU for processing. For deformations to
happen on the GPU, your mesh needs over 500/2000 vertices, on AMD/NVIDIA hard-
ware respectively. Use the MAYA_OPENCL_DEFORMER_MIN_VERTS environment variable
to change the threshold. Setting the value to 0 sends all meshes connected to supported
deformation chains to the GPU.

• Downstream graph nodes required deformed mesh results. Since GPU read-
back is a known bottleneck in GPGPU, no node, script, or Viewport can read the
mesh data computed by the GPU override. This means that GPU override is unable
to accelerate portions of the EG upstream of deformation nodes, such as follicle or
pointOnPolyConstraint, that require information about the deformed mesh. We will
re-examine this limitation as software/hardware capabilities mature. When diagnosing
GPU Override problems, this situation may appear as an unsupported fan-out pattern.
See deformerEvaluator command, below, for details.

• Animated Topology. If your scene animates the number of mesh edges, vertices,
and/or faces during playback, corresponding deformation chains are removed from the
GPU deformation path.

• Maya Catmull-Clark Smooth Mesh Preview is used. We have included acceler-
ation for OpenSubDiv (OSD)-based smooth mesh preview, however there is no support
for Maya’s legacy Catmull-Clark. To take advantage of OSD OpenCL acceleration,
select OpenSubDiv Catmull-Clark as the subdivision method and make sure that
OpenCL Acceleration is selected in the OpenSubDiv controls.

• Unsupported streams are found. Depending on which drawing mode you select
for your geometry (for example, shrunken faces, hedge-hog normals, and so on) and
the material assigned, Maya must allocate and send different streams of data to the
graphics card. Since we have focused our efforts on common settings used in production,
GPU override does not currently handle all stream combinations. If meshes fail to
accelerate due to unsupported streams, change display modes and/or update the
geometry material.

2020 19

http://help.autodesk.com/cloudhelp/2020/ENU/Maya-Tech-Docs/Commands/deformerEvaluator.html

Using Parallel Maya Custom Evaluators

• Back face culling is enabled.

• Driver-related issues. We are aware of various hardware issues related to driver
support/stability for OpenCL. To maximize Maya’s stability, we have disabled GPU
Override in the cases that will lead to problems. We expect to continue to eliminate
restrictions in the future and are actively working with hardware vendors to address
detected driver problems.

You can also increase support for new custom/proprietary deformers by using new API
extensions (refer to Custom GPU Deformers for details).
If you enable GPU Override and the HUD reports Enabled (0 k), this indicates that no
deformations are happening on the GPU. There could be several reasons for this, such as
those mentioned above.
To troubleshoot factors that limit the use of GPU override for your particular scene, use the
deformerEvaluator command. Supported options include:

Command What does it do?

deformerEvaluator Prints the chain or each selected node is not supported.
deformerEvaluator
-chains

Prints all active deformation chains.

deformerEvaluator
-meshes

Prints a chain for each mesh or a reason if it is not
supported.

Dynamics Evaluator

Starting in Maya 2017, the dynamics evaluator fully supports parallel evaluation of scenes
with Nucleus (nCloth, nHair, nParticles), Bullet, and Bifrost dynamics. Legacy dynamics
nodes (for example, particles, fluids) remain unsupported. If the dynamics evaluator finds
unsupported node types in the EG, Maya will revert to DG-based evaluation. The dynamics
evaluator also manages the tricky computation necessary for correct scene evaluation. This is
one of the ways custom evaluators can be used to change Maya’s default evaluation behavior.
The dynamics evaluator supports several configuration flags to control its behavior.

Flag What does it do?

disablingNodes specifies the set of nodes that will force the dynamics
evaluator to disable the EM. Valid values are: legacy2016,
unsupported, and none.

2020 20

http://help.autodesk.com/cloudhelp/2020/ENU/Maya-Tech-Docs/Commands/deformerEvaluator.html

Using Parallel Maya Custom Evaluators

Flag What does it do?

handledNodes specifies the set of nodes that are going to be captured by the
dynamics evaluator and scheduled in clusters that it will
manage. Valid values are: dynamics and none.

action specifies how the dynamics evaluator will handle its nodes.
Valid values are: none, evaluate, and freeze.

In Maya 2017, the default configuration corresponds to:

cmds.evaluator(name="dynamics", c="disablingNodes=unsupported")
cmds.evaluator(name="dynamics", c="handledNodes=dynamics")
cmds.evaluator(name="dynamics", c="action=evaluate")

where unsupported (that is, blacklisted) nodes are:

• collisionModel
• dynController
• dynGlobals
• dynHolder
• fluidEmitter
• fluidShape
• membrane
• particle (unless also a nBase)
• rigidNode
• rigidSolver
• spring
• nodes derived from the above

This configuration disables evaluation if any unsupported nodes are encountered, and performs
evaluation for the other handled nodes in the scene.
To revert to Maya 2016 / 2016 Extension 2 behavior, use the configuration:

cmds.evaluator(name="dynamics", c="disablingNodes=legacy2016")
cmds.evaluator(name="dynamics", c="handledNodes=none")
cmds.evaluator(name="dynamics", c="action=none")

where unsupported (that is, blacklisted) nodes are:

• field

2020 21

Using Parallel Maya Custom Evaluators

• fluidShape
• geoConnector
• nucleus
• particle
• pointEmitter
• rigidSolver
• rigidBody
• nodes derived from the above

Tip. To get a list of nodes that cause the dynamics evaluator to disable the EM in its
present configuration, use the following command:

cmds.evaluator(name="dynamics", valueName="disabledNodes", query=True)

You can configure the dynamics evaluator to ignore unsupported nodes. If you want to try
Parallel evaluation on a scene where it is disabled because of unsupported node types, use
the following commands:

cmds.evaluator(name="dynamics", c="disablingNodes=none")
cmds.evaluator(name="dynamics", c="handledNodes=dynamics")
cmds.evaluator(name="dynamics", c="action=evaluate")

Note: Using the dynamics evaluator on unsupported nodes may cause evaluation
problems and/or application crashes; this is unsupported behavior. Proceed with
caution.

Tip. If you want the dynamics evaluator to skip evaluation of all dynamics nodes in
the scene, use the following commands:

cmds.evaluator(name="dynamics", c="disablingNodes=unsupported")
cmds.evaluator(name="dynamics", c="handledNodes=dynamics")
cmds.evaluator(name="dynamics", c="action=freeze")

This can be useful to quickly disable dynamics when the simulation impacts animation
performance.

2020 22

Using Parallel Maya Custom Evaluators

Dynamics simulation results are very sensitive to evaluation order, which may differ between
DG and EM-based evaluation. Even for DG-based evaluation, evaluation order may depend
on multiple factors. For example, in DG-mode when rendering simulation results to the
Viewport, the evaluation order may be different than when simulation is performed in ‘headless
mode’. Though EM-based evaluation results are not guaranteed to be identical to DG-based,
evaluation order is consistent; once the evaluation order is scheduled by the EM, it will
remain consistent regardless of whether results are rendered or Maya is used in batch. This
same principle applies to non-dynamics nodes that are order-dependent.

Reference Evaluator

When a reference is unloaded it leaves several nodes in the scene representing reference edits
to preserve. Though these nodes may inherit animation from upstream nodes, they do not
contribute to what is rendered and can be safely ignored during evaluation. The reference
evaluator ensures all such nodes are skipped during evaluation.

Invisibility Evaluator

Toggling scene object visibility is a critical artist workflow used to reduce visual clutter and
accelerate performance. To bring this workflow to parallel evaluation, Maya 2017 and above
includes the invisibility evaluator, whose goal is to skip evaluation of any node that does not
contribute to a visible object.
The invisibility evaluator will skip evaluation of DAG nodes meeting any of the below criteria:

• visibility attribute is false.
• intermediateObject attribute is true.
• overrideEnabled attribute is true and overrideVisibility attribute is false.
• node belongs to a display layer whose enabled attribute is true and visibility

attribute is false.
• every instance path contains at least one node for which one of the above statements

are true.

As of Maya 2018, the invisibility evaluator supports the isolate select method of hiding
objects. If there is only a single Viewport, and it has one or more objects isolated, then all of
the other, unrelated objects are considered invisible by the evaluator.
There is also support in Maya (2018 and up) for the animated attribute on expression nodes.
When this attribute is set to 1, the expression node is not skipped by the invisibility evaluator,
even if only invisible objects are connected to it.

2020 23

Using Parallel Maya Custom Evaluators

Note: The default value of the animated attribute is 1, so in an expression-heavy scene
you may see a slowdown from Maya 2017 to Maya 2018. To restore performance, run
the script below to disable this attribute on all expression nodes. (It is only required
when the expression has some sort of side-effect external to the connections, such as
printing a message or checking a cache file size.)

for node in cmds.ls(type='expression'):
cmds.setAttr('{}.animated'.format(node), 0)

Tip: The invisibility evaluator is off by default in Maya 2017. Use the Evaluation
Toolkit or this:

cmds.evaluator(enable=True, name='invisibility')

to enable the evaluator.

The invisibility evaluator only considers static visibility; nodes with animated visibility are
still evaluated, even if nodes meet the above criteria. If nodes are in a cycle, all cycle nodes
must be considered invisible for evaluation to be skipped. Lastly, if a node is instanced and
has at least one visible path upward, then all upward paths will be evaluated.

Tip: The invisibility evaluator determines visibility solely from the node’s visibility
state; if your UI or plug-in code requires invisible nodes to evaluate, do not use the
invisibility evaluator.

Frozen Evaluator

The frozen evaluator allows users to tag EG subsections as not needing evaluation. It
enhances the frozen attribute by propagating the frozen state automatically to related nodes,
according to the rules defined by the evaluator’s configuration. It should only be used by those
comfortable with the concepts of connection and propagation in the DAG and Evaluation
Graph. Many users may prefer the invisibility evaluator; it is a simpler interface/workflow
for most cases.

2020 24

Using Parallel Maya Custom Evaluators

The Frozen Attribute

The frozen attribute has existed on nodes since Maya 2016. It can be used to control whether
node is evaluated in Serial or Parallel EM evaluation modes. In principle, when the frozen
attribute is set, the EM skips evaluation of that node. However, there are additional nuances
that impact whether or not this is the case:

• Everything downstream of frozen nodes is still evaluated, unless they also have the
frozen attribute set, or they are affected by the frozen evaluator as described below.

• Some nodes may perform optimizations that leave their outputs invalid and susceptible
to change once evaluated. Freezing these nodes may have unexpected results as nothing
preserves the old values. See the documentation on the nodeState attribute for ways to
specifically enable caching for nodes you want to freeze.

• You may have inconsistent per-frame results when the frozen attribute is animated.
The node “freezes” when the attribute is set, so if you jump from frame to frame, your
object state reflects the last time you visited in an unfrozen state. Playback is only
consistent if your object is not frozen from the first frame.

• When the frozen node is in the middle of a cycle, it is not respected. Cycles evaluate
using the pull model, which does not respect the frozen attribute value.

• Custom evaluators may or may not respect the frozen attribute value. Take this into
consideration as part of their implementation.

Warning: All the frozen attribute does is skip evaluation, nothing is done to preserve
the current node data during file store; if you load a file with frozen attributes set, the
nodes may not have the same data as when you stored them.

Operation

The evaluation manager does not evaluate any node that has its frozen attribute set to True,
referred to here as explicitly frozen nodes. An implicitly frozen node is one that is
disabled because of the operation of the frozen evaluator, but whose frozen attribute is not
set to True. When the frozen evaluator is enabled it will also prevent evaluation of related
nodes according to the rules corresponding to the enabled options, in any combination.
The frozen evaluator operates in three phases. In phase one, it gathers together all of the
nodes flagged by the invisible and displayLayers options as being marked for freezing. In
phase two, it propagates the freezing state outwards through the evaluation graph according
to the values of the downstream and upstream options.

2020 25

Using Parallel Maya Custom Evaluators

Phase 1: Gathering The Nodes
The list of nodes for propagation is gathered as follows:

• The nodes with their frozen attribute set to True are found. (Note: This does not
include those whose frozen attribute is animated. They are handled via Phase 3.)

• If the invisible option is True then any node that is explicitly frozen and invisible
(directly, or if its parents are all invisible) will have all of its DAG descendants added
to the list of nodes for Phase 2.

• If the displayLayers option is True then any node that is a member of a display layer
that is explicitly frozen, enabled, and invisible will have it, and all its DAG descendants
added to the list of nodes for Phase 2.

Phase 2: Propagating The Freezing
The list gathered by Phase 1 will all be implicitly frozen. In addition, the downstream and
upstream options may implicitly freeze nodes related to them. For each of the nodes gathered
so far, the evaluation graph will be traversed in both directions, implicitly freezing nodes
encountered according to the following options:

• downstream option value

– “none” : No further nodes downstream in the EG will be implicitly frozen
– “safe” : Nodes downstream in the EG will be implicitly frozen only if every one of

their upstream nodes has already been implicitly or explicitly frozen
– “force” : Nodes downstream in the EG will be implicitly frozen

• upstream option value

– “none” : No further nodes upstream in the EG will be implicitly frozen
– “safe” : Nodes upstream in the EG will be implicitly frozen only if every one of

their downstream nodes has already been implicitly or explicitly frozen
– “force” : Nodes upstream in the EG will be implicitly frozen

Phase 3: Runtime Freezing
If a node has its frozen or visibility states animated, the evaluator still has to schedule
it. The runtime freezing can still assist at this point in preventing unnecessary evaluation.
Normally any explicitly frozen node will have its evaluation skipped, with all other nodes
evaluating normally. When the runtime option is enabled, after skipping the evaluation of an
explicitly frozen node no further scheduling of downstream nodes will occur. As a result, if
the downstream nodes have no other unfrozen inputs they will also be skipped.
Note: The runtime option does not really modify the evaluator operation, it modifies
the scheduling of nodes for evaluation. You will not see nodes affected by this option in

2020 26

Using Parallel Maya Custom Evaluators

the evaluator information (for example, the output from cmds.evaluator(query=True,
clusters=True, name='frozen'))

Setting Options

Options can be set for the frozen evaluator in one of two ways:

• Accessing them through the Evaluation Toolkit

• Using the evaluator command’s configuration option:

cmds.evaluator(name='frozen', configuration='KEY=VALUE')

Legal KEY and VALUE values are below, and correspond to the options as described above:

KEY VALUES DEFAULT
runtime True/False False
invisible True/False False
displayLayers True/False False
downstream ‘off’/‘safe’/‘force’ ‘off’
upstream ‘off’/‘safe’/‘force’ ‘off’

Unlike most evaluators the frozen evaluator options are stored in user preferences and persists
between sessions.

Limitations

• You must set at least one frozen attribute to True to instruct the frozen evaluator to
shut off evaluation on affected nodes. The most practical use of this would be on a
display layer so that nodes can be implicitly frozen as a group.

• If the frozen attribute, or any of the attributes used to define related implicit nodes for
freezing (for example, visibility) are animated then the evaluator will not remove
them from evaluation. They will still be scheduled and only the runtime option will
help in avoiding unnecessary evaluation.

• Cycle members are not frozen by the evaluator unless every input to the cycle is frozen.
This is a design choice to reflect that as cycles evaluate as a unit, it is impossible to
freeze individual members of a cycle. It must be all or nothing.

2020 27

Using Parallel Maya Custom Evaluators

Curve Manager Evaluator

The curve manager evaluator can be used to include additional nodes in the Evaluation
Graph, which can have two main benefits:

• The additional nodes can be manipulated using parallel evaluation and GPU deforma-
tion, which can result in higher responsiveness during interactive manipulation.

• Fewer Evaluation Graph rebuilds can result, since static nodes can already be included
in the Evaluation Graph.

To achieve those benefits efficiently, the curve manager evaluator performs two main tasks:

• During Evaluation Graph construction, it triggers dirty propagation from extra nodes
so they are included in the graph construction process and the resulting Evaluation
Graph.

• During scene evaluation, it handles the evaluation of some of those extra nodes to
maintain performance, since they do not really need to be evaluated.

To illustrate this result, let’s compare the three following situations.

1. A scene where all controllers have a single key (that is, static animation curves). Since
the resulting animation curves are constant, they are considered static and are not
included in the Evaluation Graph. Playback will have nothing to evaluate.

2. A scene where all controllers have keys of different values (that is, animated curves).
Therefore, they will be included in the Evaluation Graph and playback will evaluate
everything.

3. A scene where all controllers have a single key (that is, static animation curves), but
where the curve manager evaluator is used to prepopulate the Evaluation Graph with
those static curves.

The third situation is where we are trying to take advantage of the curve manager evaluator
to have an Evaluation Graph that is already set up to allow parallel evaluation when the
controllers will be manipulated.
The following table summarizes the differences between the situations and the compromises
provided by the curve manager evaluator.

2020 28

Using Parallel Maya Custom Evaluators

Situation
of nodes in

EG Playback
EM

Manip
Rebuild when

keying

Static curves +
curve manager off

Lowest Fastest No Yes

Animated curves Highest Slowest Yes No
Static curves +
curve manager on

Highest Middle Yes No

In summary, the curve manager evaluator benefits from having the Evaluation Graph already
populated with nodes so it is ready to evaluate interactive manipulation, while paying as
little of a cost as possible for those constant nodes during playback.
It can be activated using:

cmds.evaluator(
name="curveManager",
enable=True
)

cmds.evaluator(
name="curveManager",
configuration="forceAnimatedCurves=keyed"
)

The available values for forceAnimatedCurves are:

• “none” : No curve will be forced in the evaluation graph.
• “controller” : Curves connected to controller nodes will be forced in the evaluation

graph. This is basically a generalization of the controller concept.
• “keyed” : Keyed static curves, that is, curves with a single key or multiple keys with

the same value, will be forced in the evaluation graph.
• “all” : All curves are forced in the evaluation graph.

Another option, forceAnimatedNodes, can be used:

• “none” : No node will be forced in the evaluation graph.
• “forcedAnimatedAttribute” : Nodes with the forced-animated attribute set to true will

be forced in the evaluation graph.

This allows tagging nodes to be added with a boolean dynamic attribute. By default, the
name of this attribute is forcedAnimated. If it is present on a node and set to true, the

2020 29

Using Parallel Maya Custom Evaluators

node is added to the graph. The name of the attribute can be controlled by using the
“forcedAnimatedAttributeName” option.
By default, the curve manager evaluator tries to skip the evaluation of the static parts of
the graph. For debugging or performance measurement purposes, this optimization can be
disabled:

cmds.evaluator(
name="curveManager",
configuration="skipStaticEvaluation=disable"
)

Other Evaluators

In addition to evaluators described above, additional evaluators exist for specialized tasks:

Evaluator What does it do?

cache Constitutes the foundation of Cached Playback. See the
Maya Cached Playback whitepaper for more information.

timeEditorCurveEvaluator Finds all paramCurves connected to time editor nodes
and puts them into a cluster that will prevent them from
evaluating at the current time, since the time editor will
manage their evaluation.

ikSystem Automatically disables the EM when a multi-chain solver
is present in the EG. For regular IK chains it will
perform any lazy update prior to parallel execution.

disabling Automatically disables the EM if user-specified nodes are
present in the EG. This evaluator is used for
troubleshooting purposes. It allows Maya to keep working
stably until issues with problem nodes can be addressed.

hik Handles the evaluation of HumanIK characters in an
efficient way by recognizing HumanIK common
connection patterns.

cycle Unrolls cycle clusters to augment the opportunity for
parallelism and improve performance. Likely gives the
best performance improvements when large cycle clusters
are present in the scene. Prototype, work in
progress.

2020 30

http://download.autodesk.com/us/company/files/2020/MayaCachedPlaybackWhitePaper.pdf#overview

Using Parallel Maya API Extensions

Evaluator What does it do?

transformFlattening Consolidates deep transform hierarchies containing
animated parents and static children, leading to faster
evaluation. Consolidation takes a snapshot of the relative
parent/child transformations, allowing concurrent
evaluation of downstream nodes.

pruneRoots We found that scenes with several thousand paramCurves
become bogged down because of scheduling overhead
from resulting EG nodes and lose any potential gain from
increased parallelism. To handle this situation, special
clusters are created to group paramCurves into a small
number of evaluation tasks, thus reducing overhead.

Custom evaluator names are subject to change as we introduce new evaluators and expand
these functionalities.

Evaluator Conflicts

Sometimes, multiple evaluators will want to “claim responsibility” for the same node(s). This
can result in conflict, and negatively impact performance. To avoid these conflicts, upon
registration each evaluator is associated with a priority; nodes are assigned to the evaluator
with the highest priority. Internal evaluators have been ordered to prioritize correctness and
stability over speed.

API Extensions

Several API extensions and tools have been added to help you make the most of the EM
in your pipeline. This section reviews API extensions for Parallel Evaluation, Custom
GPU Deformers, Custom Evaluator API, VP2 Integration and Profiling Plug-ins.

Parallel Evaluation

If your plug-in plays by the DG rules, you will not need many changes to make the plug-in
work in Parallel mode. Porting your plug-in so that it works in Parallel may be as simple as
recompiling it against the latest version of OpenMaya!
If the EM generates different results than DG-based evaluation, make sure that your plug-in:

2020 31

Using Parallel Maya API Extensions

• Overrides MPxNode::compute(). This is especially true of classes extending
MPxTransform which previously relied on asMatrix(). See the rockingTransform
SDK sample. For classes deriving from MPxDeformerNode and MPxGeometryFilter,
override the deform() method.

• Handles requests for evaluation at all levels of the plug tree. While the DG
can request plug values at any level, the EM always requests the root plug. For example,
for plug N.gp[0].p[1] your compute() method must handle requests for evaluation of
N.gp, N.gp[0], N.gp[0].p, and N.gp[0].p[1].

If your plug-in relies on custom dependency management, you need to use new API extensions
to ensure correct results. As described earlier, the EG is built using the legacy dirty-
propagation mechanism. Therefore, optimizations used to limit dirty propagation during DG
evaluation, such as those found in MPxNode::setDependentsDirty, may introduce errors
in the EG. Use MEvaluationManager::graphConstructionActive() to detect if this is
occurring.
There are new virtual methods you will want to consider implementing:

• MPxNode::preEvaluation. To avoid performing expensive calculations each
time the evaluation method MPxNode::compute() is called, one strategy plug-
in authors use is to store results from previous evaluations and then rely on
MPxNode::setDependentsDirty to trigger re-computation. As discussed previously,
once the EG has been built, dirty propagation is disabled and the EG is re-used.
Threrefore, any custom logic in your plug-in that depends on setDependentsDirty
no longer applies. MPxNode::preEvaluation allows your plug-in to determine which
plugs/attributes are dirty and if any action is needed. Use the new MEvaluationNode
class to determine what has been dirtied. Refer to the simpleEvaluationNode devkit
example for an illustration of how to use MPxNode::preEvaluation.

• MPxNode::postEvaluation. Until now, it was difficult to determine at which point
all processing for a node instance was complete. Users sometimes resorted to complex
bookkeeping/callback schemes to detect this situation and perform additional work,
such as custom rendering. This mechanism was cumbersome and error-prone. Once
all computations have been performed on a specific node instance, a new method,
MPxNode::postEvaluation, is called. Since this method is called from a worker thread,
it performs calculations for downstream graph operations without blocking other Maya
processing tasks of non-dependent nodes. See the simpleEvaluationDraw devkit example
to understand how to use this method. If you run this example in regular evaluation,
Maya slows down, since evaluation is blocked whenever expensive calculations are
performed. When you run in Parallel Evaluation Mode, a worker thread calls the
postEvaluation method and prepares data for subsequent drawing operations. When
testing, you will see higher frame rates in Parallel evaluation versus regular or Serial
evaluation. Please note that code in postEvaluation should be thread-safe.

2020 32

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_evaluation_manager_html#aedb4df14a76f10672127a768071670f5
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_simple_evaluation_node_2simple_evaluation_node_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_simple_evaluation_draw_2simple_evaluation_draw_8cpp_example_html

Using Parallel Maya API Extensions

Other recommended best practices include:

• Avoid storing state in static variables. Store node state/settings in attributes.
This has the additional benefit of automatically saving/restoring the plug-in state when
Maya files are written/read.

• Node computation should not have any dependencies beyond input values.
Maya nodes should be like functions. Output values should be computed from input
state and node-specific internal logic. Your node should never walk the graph or try to
circumvent the DG.

Custom GPU Deformers

To make GPU Override work on scenes containing custom deformers, Maya provides new
API classes that allow the creation of fast OpenCL deformer back-ends.
Though you still need to have a CPU implementation for the times when it is not possible to
target deformations on the GPU (see GPU Override), you can augment this with an alternate
deformer implementation inheriting from MPxGPUDeformer. This applies to your own nodes
as well as to standard Maya nodes.
The GPU implementation will need to:

• Declare when it is valid to use the GPU-based backend (for example, you may want
to limit you GPU version to cases where various attributes are fixed, omit usage for
specific attribute values, and so on)

• Extract MDataBlock input values and upload values to the GPU
• Define and call the OpenCL kernel to perform needed computation
• Register itself with the MGPUDeformerRegistry system. This will tell the system which

deformers you are claiming responsibility for.

When you have done this, do not forget to load your plug-in at startup. Two working devkit
examples (offsetNode and identityNode) have been provided to get you started.

2020 33

https://www.khronos.org/opencl/
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_g_p_u_deformer_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_g_p_u_deformer_registry_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_offset_node_2offset_node_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_identity_node_2identity_node_8cpp_example_html

Using Parallel Maya API Extensions

Tip. To get a sense for the maximum speed increase you can expect by providing a
GPU backend for a specific deformer, tell Maya to treat specific nodes as passthrough.
Here’s an example applied to polySoftEdge:

cmds.GPUBuiltInDeformerControl(
name="polySoftEdge",
inputAttribute="inputPolymesh",
outputAttribute="output",
passthrough=True
)

Although results will be incorrect, this test will confirm if it is worth investing time
implementing an OpenCL version of your node.

Custom Evaluator API

API classes and methods introduced in Maya 2017 let you define custom evaluators that
allow control over how the Maya scene is computed.
To create a custom evaluator, you must define a plug-in that extends the MPxCustomEvaluator
class. The key class methods to override are described below.

The Basics

Before you can use the new evaluators, they must be registered:

MStatus registerEvaluator(
// name of the evaluator
const char * evaluatorName,

// evaluator priority. Higher priority evaluators get 'first-dibs'
unsigned int uniquePriority,

// function pointer to method returning a new evaluator instance
MCreatorFunction creatorFunction

)

and deregistered:

2020 34

Using Parallel Maya API Extensions

MStatus deregisterEvaluator(
// name of the evaluator
const char* evaluatorName

)

using MFnPlugin methods. These functions should be used during plug-in initialization:

MStatus initializePlugin(MObject obj)
{

MFnPlugin plugin(obj, PLUGIN_COMPANY, "3.0", "Any");
MStatus status = plugin.registerEvaluator(

"SimpleEvaluator",
40,
simpleEvaluator::creator);

if (!status)
status.perror("registerEvaluator");

return status;
}

and uninitialization:

MStatus uninitializePlugin(MObject obj)
{

MFnPlugin plugin(obj);
MStatus status = plugin.deregisterEvaluator("SimpleEvaluator");
if (!status)

status.perror("deregisterEvaluator");
return status;

}

as illustrated above.
Once the plug-in has been loaded, use Python or MEL commands to enable:

import maya.cmds as cmds
cmds.evaluator(enable=True, name='SimpleEvaluator')

Result: False

disable:

2020 35

Using Parallel Maya API Extensions

cmds.evaluator(enable=False, name='SimpleEvaluator')

Result: True

and query information about evaluators:

print cmds.evaluator(query=True)

[u'invisibility', ... u'SimpleEvaluator']

NOTE: The evaluator command returns the previous state of the evaluator (as
described in the documentation). This command fails if the evaluator cannot be
enabled.

To view the priorities of all loaded evaluators, use the priority flag on the evaluator command:

for evaluatorName in cmds.evaluator():
print "%-25s : %d" % (

evaluatorName,
cmds.evaluator(name=evaluatorName, query=True, priority=True))

invisibility : 1003000
frozen : 1002000
curveManager : 1001000
cache : 1000000
timeEditorCurveEvaluator : 104000
dynamics : 103000
ikSystem : 102000
disabling : 100000
hik : 7000
reference : 6000
deformer : 5000
cycle : 4000
transformFlattening : 3000
pruneRoots : 1000
SimpleEvaluator : 40

2020 36

Using Parallel Maya API Extensions

API Reference

This section provides more detail on different MPxCustomEvaluator API methods.

Claiming clusters
During EG partitioning, each evaluator gets to claim evaluation nodes, using the:

bool MPxCustomEvaluator::markIfSupported(const MEvaluationNode* node)

method. You can safely cause evaluation in this call but doing so increases partitioning and
evaluation time. The developer can decide whether evaluation is required (call .inputValue
/ .inputArrayValue), or the previously-evaluated datablock values can be re-used (call
.outputValue / .outputArrayValue). If multiple evaluators mark a specific node, which
evaluator is assigned a node at run-time is determined by priority. For example, if you
have two evaluators, A and B, mark node C of interest, if evaluator A has priority 100, and
evaluator B has priority 10, during graph partitioning, evaluator A will get the opportunity
to grab node C before evaluator B. Evaluators should not try to grab a node already grabbed
by a higher-priority evaluator.

Scheduling
To determine if an evaluator can evaluate clusters in Parallel, use:

MCustomEvaluatorClusterNode::SchedulingType schedulingType(
// a disjoint set of nodes on a custom evaluator layer
const MCustomEvaluatorClusterNode * cluster

)

where:

SchedulingType Details

kParallel any number of nodes of the same type can run in parallel
kSerial all nodes of this type should be chained and executed sequentially
kGloballySerial only one node of this type can be run at a time
kUntrusted nothing else can execute with this node since we cannot predict what

will happen

During EG scheduling:

2020 37

Using Parallel Maya API Extensions

bool MPxCustomEvaluator::clusterInitialize(
// evaluation cluster node
const MCustomEvaluatorClusterNode* cluster

)

can be used to perform the required cluster preparation. The pointer to the cluster remains
valid until graph invalidation, such as when the scene topology changes.
Before the cluster is deleted,

void MPxCustomEvaluator::clusterTerminate(
// the cluster to terminate
const MCustomEvaluatorClusterNode* cluster

)

is called to allow needed cleanup, for example, releasing evaluator-specific resources. It is up
to the custom evaluator to decide if it wants to clear its internal representation.

Execution
There are 3 main methods used during execution.
Prior to graph execution, the EM calls:

void MPxCustomEvaluator::preEvaluate(
// the graph about to be evaluated
const MEvaluationGraph* graph

)

during execution, the EM calls:

void MPxCustomEvaluator::clusterEvaluate(
// the cluster to be evaluated
const MCustomEvaluatorClusterNode* cluster

)

You will only receive clusters that belong to this evaluator. This call always happens after
clusterInitialize and never after clusterTerminate. Finally,

void MPxCustomEvaluator::postEvaluate(
// the graph that was evaluated
const MEvaluationGraph* graph

)

is called just after a graph evaluation is finished.

2020 38

Using Parallel Maya API Extensions

SimpleEvaluator API Example

Now that we have reviewed relevant API methods, the following example limits evaluation
by caching previous results. simpleEvaluator assumes the existence of scene nodes that tag
controller nodes with animation and works as follows:
In clusterInitialize, we build a list of translation and rotation attribute plugs.

// Build a list of plugs by scanning the scene for controller nodes.
// This gets called during scheduling.
bool simpleEvaluator::clusterInitialize(

const MCustomEvaluatorClusterNode* cluster
)

{
if (fControllerPlugs.length() == 0)

buildPlugListWithControllerTag();
return true;

}

// Scan the scene for any controller nodes, populating the plug list.
// Called during the scheduling phase
void simpleEvaluator::buildPlugListWithControllerTag()
{

MStatus stat;
MItDependencyNodes dgIter(MFn::kControllerTag, &stat);
if (stat != MS::kSuccess)

return;

const char* values[] = {
"translateX",
"translateY",
"translateZ",
"rotateX",
"rotateY",
"rotateZ"

};

for (; !dgIter.isDone(); dgIter.next())
{

MFnDependencyNode controllerTagNode(dgIter.thisNode(), &stat);
if (stat != MS::kSuccess)

continue;

2020 39

Using Parallel Maya API Extensions

MPlug currControllerTagPlug =
controllerTagNode.findPlug("controllerObject", &stat);

if (stat != MS::kSuccess)
continue;

// found controller tag node, now get its source controller
MPlugArray source;
bool retval = currControllerTagPlug.connectedTo(

source,
true /* asDst */ ,
false /* asSrc */ ,
&stat)

if ((retval == false) || (stat != MS::kSuccess))
continue;

// there should only be one source with the controller tag node
// as destination
MObject controllerNode = source[0].node(&stat);
if (stat != MS::kSuccess)

continue;

MFnDependencyNode currControllerNode(controllerNode, &stat);
if (stat != MS::kSuccess)

continue;

for (unsigned int j = 0; j < 6; j++)
{

MPlug currPlug = currControllerNode.findPlug(values[j], &stat);
if (stat == MS::kSuccess)

fControllerPlugs.append(currPlug);
else

std::cerr
<< "NO PLUG: "
<< currControllerNode.name().asChar()
<< "."
<< values[j]
<< std::endl;

}
}

}

Later, during preEvaluate, which is called per-frame, a hash value is calculated based on

2020 40

Using Parallel Maya API Extensions

the plug values of the current frame.

void simpleEvaluator::preEvaluate(const MEvaluationGraph* graph)
{

buildHashValue();
}

void simpleEvaluator::buildHashValue()
{

unsigned int length = fControllerPlugs.length();
MStatus stat = MS::kSuccess;

for (unsigned int i = 0; i < length; i++)
{

float value = 0;
stat = fControllerPlugs[i].getValue(value);

if (stat == MS::kSuccess)
{

boost::hash_combine(fCurrentHashValue, value);
}
else
{

std::cerr
<< "NO VALUE: "
<< fControllerPlugs[i].name().asChar()
<< std::endl;

}
}

}

This value is compared with the previous frame’s hash in clusterEvaluate. If the hash is
different, the evaluation proceeds, otherwise we do nothing.

void simpleEvaluator::clusterEvaluate(
const MCustomEvaluatorClusterNode* cluster
)

{
if (fOldHashValue != fCurrentHashValue)

cluster->evaluate();
}

To make sure the hash value is up-to-date, the hash value is stored in postEvaluate.

2020 41

Using Parallel Maya API Extensions

void simpleEvaluator::postEvaluate(const MEvaluationGraph* graph)
{

fOldHashValue = fCurrentHashValue;
fCurrentHashValue = 0;

}

Finally, when the graph topology becomes invalid, we call clusterTerminate to clear the
cached list of plugs.

void simpleEvaluator::clusterTerminate(
const MCustomEvaluatorClusterNode* cluster
)

{
if (fControllerPlugs.length() > 0)

fControllerPlugs.clear();
}

Since simpleEvaluator claims control over the entire graph, markIfSupported returns true
for all nodes. Additionally, nothing special is done to alter the cluster’s scheduling behavior.

bool simpleEvaluator::markIfSupported(const MEvaluationNode* node)
{

return true;
}

MCustomEvaluatorClusterNode::SchedulingType
simpleEvaluator::schedulingType(const MCustomEvaluatorClusterNode* cluster)
{

return cluster->schedulingType();
}

See the provided simpleEvaluator devkit example for more details and complete source code.

VP2 Integration

Evaluation Manager Parallel Evaluation executes the Dependency Graph in parallel. Internally,
Maya nodes begin preparing render data for VP2 immediately after a node is evaluated, and
before the rest of the graph has finished evaluation. This is exposed to users as Evaluation
Manager Parallel Update in the MPxGeometryOverride API (this feature may also be referred
to as “Direct Update”). Supporting Evaluation Manager Parallel Update can significantly
reduce time spent in Vp2BuildRenderLists and improve overall scene performance.

2020 42

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_simple_evaluator_2simple_evaluator_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html

Using Parallel Maya API Extensions

The following profiler images were created from the same scene (100 footPrintN-
ode_GeometryOverride nodes with animated “size” attributes). In the first image Evaluation
Manager Parallel Update is not enabled, and a large amount of time is spent serially
preparing draw data for each footPrint node in Vp2BuildRenderLists.

In the second image the footPrintNode_GeometryOverride has been modified to support
Evaluation Manager Parallel Update. You can see that the long serial execution time in
Vp2BuildRenderLists has been eliminated. All the data marshalling for VP2 is occurring in
parallel while the Evaluation Manager is evaluating the Dependency Graph.

2020 43

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html

Using Parallel Maya API Extensions

The footPrintNode_GeometryOverride example plug-in provides a detailed example for you
to create an efficient MPxGeometryOverride plugin which supports Evaluation Manager
Parallel Update and gives excellent performance in VP2.
Supporting Evaluation Manager Direct Update adds some restrictions to which operations can
safely be performed from MPxGeometryOverride function calls. All MPxGeometryOverride
functions (except cleanUp() and the destructor) may be called from a worker thread in
parallel with other Maya execution. These methods must all be thread safe. An MPxGeome-
tryOverride object is guaranteed to have at most one of its member functions called at a time.
If two different MPxGeometryOverride objects “A” and “B” both require updating, then any
member function on “A” could be called at the same time as any member function on “B”.
Furthermore, because these methods may be called from a worker thread, direct access to
the rendering context is prohibited. MVertexBuffer and MIndexBuffer can still be used,
but some of their features are prohibited from use when in Evaluation Manager Parallel
Update. Details about which features are safe to use are provided in the documentation for
MVertexBuffer and MIndexBuffer.

Tracking Topology

Evaluation Manager Parallel Update currently has the limitation that it can only be used on
geometries that do not have animated topology. The status of whether topology is animated

2020 44

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_foot_print_node_geometry_override_2foot_print_node_geometry_override_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_px_geometry_override_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_vertex_buffer_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_index_buffer_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_vertex_buffer_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_h_w_render_1_1_m_index_buffer_html

Using Parallel Maya Profiling Your Scene

or not needs to be tracked from the geometry’s origin to its display shape.
If the nodes in the graph are built-in nodes, Maya can know if an animated input will
affect the output geometry topology. Similarly, deformers (even custom ones derived from
MPxDeformerNode), are assumed to simply deform their input in their output, keeping the
same topology.
However, more generic nodes can also generate geometries. When a custom node is a
MPxNode, Maya cannot know whether an output geometry has animated topology. It
therefore assumes the worst and treats the topology as animated. While this approach is the
safest, it can prevent optimizations such as Evaluation Manager Parallel Update.
As of Maya 2019, a new API has been added to inform Maya about attributes that might
not affect the topology of an output geometry.

• The first step is to override the MPxNode::isTrackingTopology() method so that
Maya can track topology information for this node.

• The second step is the use the new version of the MPxNode::attributeAffects()
method to inform Maya that while the source attribute affects the output attribute, it
does not affect its topology.

Using this new API helps Maya to know that it is safe to use Evaluation Manager Parallel
Update and benefit from its performance boost in more situations.

Profiling Plug-ins

To visualize how long custom plug-ins take in the new profiling tools (see Profiling Your
Scene) you will need to instrument your code. Maya provides C++, Python, and MEL
interfaces for you to do this. Refer to the Profiling using MEL or Python or the API technical
docs for more details.

Profiling Your Scene

In the past, it could be challenging to understand where Maya was spending time. To remove
the guess-work out of performance diagnosis, Maya includes a new integrated profiler that
lets you see exactly how long different tasks are taking.
Open the Profiler by selecting:

• Windows > General Editors > Profiler from the Maya menu
• Persp/Graph Layout from the Quick Layout buttons and choosing Panel Layout

> Profiler.

2020 45

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_deformer_node_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_node_html
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_node_html#a9e054d22b4addd21d5b92c969a7a1ee6
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=Maya_SDK_MERGED_cpp_ref_class_m_px_node_html#a214deb1c971a5879657c8b1de4156422
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=GUID-3723226B-8A46-41A4-9FB4-AF5B55DF72A2
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=GUID-3423BE20-0F03-422D-A05A-A1757C7B0A70

Using Parallel Maya Profiling Your Scene

Once the Profiler window is visible:

1. Load your scene and start playback
2. Click Start in the Profiler to record information in the pre-allocated record buffer.
3. Wait until the record buffer becomes full or click Stop in the Profiler to stop recording.

The Profiler shows a graph demonstrating the processing time for your animation.
4. Try recording the scene in DG, Serial, Parallel, and GPU Override modes.

Tip. By default, the Profiler allocates a 20MB buffer to store results. The record
buffer can be expanded in the UI or by using the profiler -b value; command,
where value is the desired size in MB. You may need this for more complex scenes.

The Profiler includes information for all instrumented code, including playback, manipulation,
authoring tasks, and UI/Qt events. When profiling your scene, make sure to capture several
frames of data to ensure gathered results are representative of scene bottlenecks.
The Profiler supports several views depending on the task you wish to perform. The
default Category View, shown below, classifies events by type (e.g., dirty, VP1, VP2,
Evaluation, etc). The Thread and CPU views show how function chains are subdivided
amongst available compute resources. Currently the Profiler does not support visualization
of GPU-based activity.

Understanding Your Profile

Now that you have a general sense of what the Profiler tool does, let’s discuss key phases
involved in computing results for your scene and how these are displayed. By understanding
why scenes are slow, you can target scene optimizations.

2020 46

Using Parallel Maya Profiling Your Scene

Every time Maya updates a frame, it must compute and draw the elements in your scene.
Hence, computation can be split into one of two main categories:

1) Evaluation (i.e., doing the math that determines the most up-to-date values for scene
elements)

2) Rendering (i.e., doing the work that draws your scene in the viewport).

When the main bottleneck in your scene is evaluation, we say the scene is evaluation-bound.
When the main bottleneck in your scene is rendering, we say the scene is render-bound.

Profiler Colors

Each event recorded by the profiler has an associated color. Each color represents a different
type of event. By understanding event colors you can quickly interpret profiler results. Some
colors are re-used and so have different meanings in different categories.

• Dirty Propagation (Pink and Purple)
• Pull Evaluation (Dark Green)
• Forward or Evaluation Manager Evaluation (Peach, Tan and Brown)
• Set Time (Light Green)
• Qt Events (Light Blue)
• VP2 Rendering (Light Blue)
• VP2 Pull Updates (Light and Dark Yellow and Blue)
• VP2 Push or Direct Updates (Light and Dark Blue)
• GPU Override CPU usage (Light and Dark Yellow)
• Cache Restore (Yellow)
• Cache Skipped (Gray)

We can’t see every different type of event in a single profile, because some events like Dirty
Propagation only occur with Evaluation Manager off, and other events like GPU Override
CPU usage only occur with Evaluation Manager on. In the following example profiles we will
show DG Evaluation, Evaluation Manager Parallel Evaluation, GPU Override Evaluation,
Evaluation Cached Evaluation and VP2 Cached Evaluation.
Through these examples we’ll see how to interpret a profile based on graph colors and
categories, and we’ll learn how each performance optimization in Maya can impact a scene’s
performance. The following example profiles are all generated from the same simple FK
character playing back.

2020 47

Using Parallel Maya Profiling Your Scene

DG Evaluation

In this profile of DG Evaluation we can see several types of event.

1. Pink and purple Dirty Propagation events in the Dirty Propagation category.
2. Dark green Pull Evaluation events in the Evaluation category.
3. Blue VP2 Pull Translation and light blue VP2 Rendering in the VP2 Evaluation

category.
4. Yellow events in the VP2 Evaluation category show time VP2 spent waiting for data

from Dependency Graph nodes.

A significant fraction of each frame is spent on Dirty Propagation, a problem which is
alleviated by Evaluation Manager.

2020 48

Using Parallel Maya Profiling Your Scene

EM Parallel Evaluation

In this profile of EM Parallel Evaluation we can see all the purple and pink dirty propagation
is gone.

1. Peach, tan and brown EM Parallel Evaluation events of the FK rig colored. The high
stack of events represents some evaluation occurring in parallel (use thread view to
better understand parallelism).

2. Tan and brown EM Parallel Evaluation events while Maya evaluates the skin cluster
to compute the deformed mesh. These events occur serially because the Dependency
Graph has no parallelism.

3. Dark blue and blue VP2 Direct Update events translate data into a VP2 render-able
format.

4. Yellow in the Main category and light blue in the VP2 Evaluation category are VP2
Rendering events.

In this profile we see much less time spent on Vp2SceneRender (4). This occurs because
time spent reading data from dependency nodes has been moved from rendering to EM
Parallel Evaluation (1). DG evaluation uses a data pull model, while EM Evaluation uses a
data push model. Additionally, some geometry translation (2), is also moved from rendering
to evaluation. We call geometry translation during evaluation “VP2 Direct Update”. A
significant portion of each frame is spent deforming and translating the geometry data, a
problem which is alleviated by GPU Override.

2020 49

Using Parallel Maya Profiling Your Scene

EM Parallel Evaluation with GPU Override

In this profile of EM Parallel Evaluation we can see one major new difference from the
previous profile of EM Parallel Evaluation.

1. Light and dark yellow GPU Override events have replaced the long serial central part
of the EM Parallel Evaluation profile (2 & 3 from EM Parallel Evaluation). The GPU
Override events represent the time taken on the CPU to marshal data and launch the
GPU computation.

2. Peach, tan and brown EM Parallel Evaluation events here have roughly the same
duration as EM Parallel Evaluation even though the relative size of the rig evaluation
events with GPU Override is larger. This is because the scale of this profile is different
from the scale of the previous profile. In the profile of EM Parallel Evaluation with
GPU Override the total time displayed is about 5ms. In the previous profile of EM
Parallel Evaluation the total time displayed is about 12ms.

3. Light blue VP2 Render events have experienced a similar relative stretching (2).

2020 50

Using Parallel Maya Profiling Your Scene

EM Evaluation Cached Playback

In this profile of EM Evaluation Cached Playback we can see several new types of event.

1. Yellow Restore Cache events recording the time taken to update each FK rig node
which has cached data. There are also brown VP2 Direct Update events used to track
update of the VP2 representation of the data.

2. Yellow Restore Cache event for the deformed mesh. This represents the time taken to
restore the data into the Maya node, and to translate the data into VP2 for drawing
using VP2 Direct Update.

EM VP2 Hardware Cached Playback

2020 51

Using Parallel Maya Profiling Your Scene

1. Dark blue VP2 Hardware Cache Restore events have replaced the long serial Cache
Restore event (2 from EM Evaluation Cached Playback). Restoring the VP2 Hardware
Cache is much faster because the data is already in in the render-able format and stored
on the GPU.

2. Gray Cache Skipped event signaling data in the dependency node is not updated.

Evaluation-Bound Performance

When the main bottleneck in your scene is evaluation, we say the scene is evaluation-bound.
There are several different problems that may lead to evaluation-bound performance.
Lock Contention. When many threads try to access a shared resource you may experience
Lock Contention, due to lock management overhead. One clue that this may be happening is
that evaluation takes roughly the same duration regardless of which evaluation mode you use.
This occurs since threads cannot proceed until other threads are finished using the shared
resource.

Here the Profiler shows many separate identical tasks that start at nearly the same time on
different threads, each finishing at different times. This type of profile offers a clue that there
might be some shared resource that many threads need to access simultaneously.
Below is another image showing a similar problem.

2020 52

Using Parallel Maya Profiling Your Scene

In this case, since several threads were executing Python code, they all had to wait for the
Global Interpreter Lock (GIL) to become available. Bottlenecks and performance loses caused
by contention issues may be more noticeable when there is a high concurrency level, such as
when your computer has many cores.
If you encounter contention issues, try to fix the code in question. For the above example,
changing node scheduling converted the above profile to the following one, providing a nice
performance gain. For this reason, Python plug-ins are scheduled as Globally Serial by
default. As a result, they will be scheduled one after the other and will not block multiple
threads waiting for the GIL to become available.

Clusters. As mentioned earlier, if the EG contains node-level circular dependencies, those
nodes will be grouped into a cluster which represents a single unit of work to be scheduled
serially. Although multiple clusters may be evaluated at the same time, large clusters limit
the amount of work that can be performed simultaneously. Clusters can be identified in the
Profiler as bars with the opaqueTaskEvaluation label, shown below.

2020 53

Using Parallel Maya Profiling Your Scene

If your scene contains clusters, analyze your rig’s structure to understand why circularities
exist. Ideally, you should strive to remove coupling between parts of your rig, so rig sections
(e.g., head, body, etc.) can be evaluated independently.

Tip. When troubleshooting scene performance issues, you can temporarily disable
costly nodes using the per-node frozen attribute. This removes specific nodes from
the EG. Although the result you see will change, it is a simple way to check that you
have found the bottleneck for your scene.

Render-Bound Performance

When the main bottleneck in your scene is rendering, we say the scene is render-bound.
The following is an illustration of a sample result from the Maya Profiler, zoomed to a single
frame measured from a large scene with many animated meshes. Because of the number of
objects, different materials, and the amount of geometry, this scene is very costly to render.

2020 54

Using Parallel Maya Profiling Your Scene

The attached profile has four main areas:

• Evaluation (A)
• GPUOverridePostEval (B)
• Vp2BuildRenderLists (C)
• Vp2Draw3dBeautyPass (D)

In this scene, a substantial number of meshes are being evaluated with GPU Override and
some profiler blocks appear differently from what they would otherwise.
Evaluation. Area A depicts the time spent computing the state of the Maya scene. In this
case, the scene is moderately well-parallelized. The blocks in shades of orange and green
represent the software evaluation of DG nodes. The blocks in yellow are the tasks that initiate
mesh evaluation via GPU Override. Mesh evaluation on the GPU starts with these yellow
blocks and continues concurrently with the other work on the CPU.
An example of a parallel bottleneck in the scene evaluation appears in the gap in the center
of the evaluation section. The large group of GPU Override blocks on the right depend on a
single portion of the scene and must wait until that is complete.
Area A2 (above area A), depicts blue task blocks that show the work that VP2 does in
parallel to the scene evaluation. In this scene, most of the mesh work is handled by GPU

2020 55

Using Parallel Maya Profiling Your Scene

Override so it is mostly empty. When evaluating software meshes, this section shows the
preparation of geometry buffers for rendering.
GPUOverridePostEval. Area B is where GPU Override finalizes some of its work. The
amount of time spent in this block varies with different GPU and driver combinations. At some
point there will be a wait for the GPU to complete its evaluation if it is heavily loaded. This
time may appear here or it may show as additional time spent in the Vp2BuildRenderLists
section.
Vp2BuildRenderLists. Area C. Once the scene has been evaluated, VP2 builds the list of
objects to render. Time in this section is typically proportional to the number of objects in
the scene.
Vp2PrepareToUpdate. Area C2, very small in this profile. VP2 maintains an internal
copy of the world and uses it to determine what to draw in the viewport. When it is time to
render the scene, we must ensure that the objects in the VP2 database have been modified
to reflect changes in the Maya scene. For example, objects may have become visible or
hidden, their position or their topology may have changed, and so on. This is done by VP2
Vp2PrepareToUpdate.
Vp2PrepareToUpdate is slow when there are shape topology, material, or object visibility
changes. In this example, Vp2PrepareToUpdate is almost invisible since the scene objects
require little extra processing.
Vp2ParallelEvaluationTask is another profiler block that can appear in this area. If time is
spent here, then some object evaluation has been deferred from the main evaluation section
of the Evaluation Manager (area A) to be evaluated later. Evaluation in this section uses
traditional DG evaluation.
Common cases for which Vp2BuildRenderLists or Vp2PrepareToUpdate can be slow during
Parallel Evaluation are:

• Large numbers of rendered objects (as in this example)
• Mesh topology changes
• Object types, such as image planes, requiring legacy evaluation before rendering
• 3rd party plug-ins that trigger API callbacks

Vp2Draw3dBeautyPass. Area D. Once all data has been prepared, it is time to render
the scene. This is where the actual OpenGL or DirectX rendering occurs. This area is broken
into subsections depending on viewport effects such as depth peeling, transparency mode,
and screen space anti-aliasing.
Vp2Draw3dBeautyPass can be slow if your scene:

• Has Many Objects to Render (as in this example).

2020 56

Using Parallel Maya Troubleshooting Your Scene

• Uses Transparency. Large numbers of transparent objects can be costly since the
default transparency algorithm makes scene consolidation less effective. For very large
numbers of transparent objects, setting Transparency Algorithm (in the vp2 settings)
to Depth Peeling instead of Object Sorting may be faster. Switching to untextured
mode can also bypass this cost

• Uses Many Materials. In VP2, objects are sorted by material prior to rendering, so
having many distinct materials makes this time-consuming.

• Uses Viewport Effects. Many effects such as SSAO (Screen Space Ambient Occlu-
sion), Depth of Field, Motion Blur, Shadow Maps, or Depth Peeling require additional
processing.

Other Considerations. Although the key phases described above apply to all scenes, your
scene may have different performance characteristics.
For static scenes with limited animation, or for non-deforming animated objects, consolidation
is used to improve performance. Consolidation groups objects that share the same material.
This reduces time spent in both Vp2BuildRenderLists and Vp2Draw3dBeatyPass, since there
are fewer objects to render.

Saving and Restoring Profiles

Profile data can be saved at any time for later analysis using the Edit -> Save Recording...
or Edit -> Save Recording of Selected Events... menu items in the Profiler window.
Everything is saved as plain string data (see the appendix describing the profiler file format
for a description of how it is stored) so that you can load profile data from any scene using
the Edit -> Load Recording... menu item without loading the scene that was profiled.

Troubleshooting Your Scene

Analysis Mode

The purpose of Analysis Mode is to perform more rigorous inspection of your scene to catch
evaluation errors. Since Analysis Mode introduces overhead to your scene, only use this during
debugging activities; animators should not enable Analysis Mode during their day-to-day
work. Note that Analysis Mode is not thread-safe, so it is limited to Serial; you cannot use
analysis mode while in Parallel evaluation.
The key function of Analysis Mode is to:

• Search for errors at each playback frame. This is different than Safe Mode, which
only tries to identify problems at the start of parallel execution.

2020 57

Using Parallel Maya Troubleshooting Your Scene

• Monitor read-access to node attributes. This ensures that nodes have a correct
dependency structure in the EG.

• Return diagnostics to better understand which nodes influence evaluation.
This is currently limited to reporting one destination node at a time.

Tip. To activate Analysis Mode, use the dbtrace -k evalMgrGraphValid; MEL
command.
Once active, error detection occurs after each evaluation. Missing de-
pendencies are saved to a file in your machine’s temporary folder (e.g.,
%TEMP%_MayaEvaluationGraphValidation.txt on Windows). The temporary di-
rectory on your platform can be determined using the internalVar -utd; MEL
command.
To disable Analysis Mode, type: dbtrace -k evalMgrGraphValid -off;

Let’s assume that your scene contains the following three nodes. Because of the dependencies,
the evaluation manager must compute the state of nodes B and C prior to calculating the
state of A.

Now let’s assume Analysis Mode returns the following report:

Detected missing dependencies on frame 56
{

A.output <-x- B
A.output <-x- C [cluster]

}
Detected missing dependencies on frame 57

2020 58

Using Parallel Maya Troubleshooting Your Scene

{
A.output <-x- B
A.output <-x- C [cluster]

}

The <-x- symbol indicates the direction of the missing dependency. The [cluster] term
indicates that the node is inside of a cycle cluster, which means that any nodes from the
cycles could be responsible for attribute access outside of evaluation order
In the above example, B accesses the output attribute of A, which is incorrect. These types
of dependency do not appear in the Evaluation Graph and could cause a crash when running
an evaluation in Parallel mode.
There are multiple reasons that missing dependencies occur, and how you handle them
depends on the cause of the problem. If Analysis Mode discovers errors in your scene from
bad dependencies due to:

• A user plug-in. Revisit your strategy for managing dirty propagation in your node.
Make sure that any attempts to use “clever” dirty propagation dirty the same attributes
every time. Avoid using different notification messages to trigger pulling on attributes
for computation.

• A built-in node. You should communicate this information to us. This may highlight
an error that we are unaware of. To help us best diagnose the causes of this bug, we
would appreciate if you can provide us with the scene that caused the problem.

Graph Execution Order

There are two primary methods of displaying the graph execution order.
The simplest is to use the ‘compute’ trace object to acquire a recording of the computation
order. This can only be used in Serial mode, as explained earlier. The goal of compute trace
is to compare DG and EM evaluation results and discover any evaluation differences related
to a different ordering or missing execution between these two modes.
Keep in mind that there will be many differences between runs since the EM executes the
graph from the roots forward, whereas the DG uses values from the leaves. For example in the
simple graph shown earlier, the EM guarantees that B and C will be evaluated before A, but
provides no information about the relative ordering of B and C. However in the DG, A pulls
on the inputs from B and C in a consistent order dictated by the implementation of node A.
The EM could show either "B, C, A" or "C, B, A" as their evaluation order and although
both might be valid, the user must decide if they are equivalent or not. This ordering of
information can be even more useful when debugging issues in cycle computation since in
both modes a pull evaluation occurs, which will make the ordering more consistent.

2020 59

Using Parallel Maya Appendices

The Evaluation Toolkit

A set of debugging tools used to be shipped as a special shelf in Maya Bonus Tools, but they
are now built-in within Maya. The Evaluation Toolkit provides features to query and analyze
your scene and to activate / deactivate various modes. See the accompanying Evaluation
Toolkit documentation for a complete list of all helper features.

Known Limitations

This section lists known limitations for the new evaluation system.

• VP2 Motion Blur will disable Parallel evaluation. For Motion Blur to work,
the scene must be evaluated at different points in time. Currently the EM does not
support this.

• Scenes using FBIK will revert to Serial. For several years now, Autodesk has
been deprecating FBIK. We recommend using HIK for full-body retargeting/solving.

• dbtrace will not work in Parallel mode. As stated in the Analysis Mode section,
the dbtrace command only works in Serial evaluation. Having traces enabled in Parallel
mode will likely cause Maya to crash.

• The DG Profiler crashes in Parallel Mode. Unless you are in DG evaluation
mode, you will be unable to use the legacy DG profiler. Time permitting, we expect to
move features of the DG profiler into the new thread-safe integrated profiler.

• Batch rendering scenes with XGen may produce incorrect results.
• Evaluation manager in both Serial and Parallel mode changes the way at-

tributes are cached. This is done to allow safe parallel evaluation and prevent
re-computation of the same data by multiple threads. This means that some scenes
may evaluate differently if multiple computations of the same attribute occur in one
evaluation cycle. With the Evaluation Manager, the first value will be cached.

• VP2 Direct update does not work with polySoftEdge nodes.

Appendices

Profiler File Format

The profiler stores its recording data in human-readable strings. The format is versioned so
that older format files can still be read into newer versions of Maya (though not necessarily
vice-versa).
This is a description of the version 1 format.
First, a content example:

2020 60

http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=GUID-E22B253D-914B-4056-93F5-755702A6C998
http://help.autodesk.com/view/MAYAUL/2020/ENU/?guid=GUID-E22B253D-914B-4056-93F5-755702A6C998

Using Parallel Maya Appendices

1 #File Version, # of events, # of CPUs
2 2\t12345\t8
3 Main\tDirty
4 #Comment mapping---------
5* @27 = MainMayaEvaluation
6 #End comment mapping---------
7 #Event time, Comment, Extra comment, Category id, Duration, \

Thread Duration, Thread id, Cpu id, Color id
8* 1234567\t@12\t@0\t2\t12345\t11123\t36\t1\t14
9 #Begin Event Tag Mapping---------
10 #Event ID, Event Tag
11* 123\tTaggy McTagface
12 #End Event Tag Mapping---------
13 #Begin Event Tag Color Mapping---------
14 #Tag Label, Tag Color
15* Taggy\tMcTagface\t200\t200\t13
16 #End Event Tag Color Mapping---------
EOF

The following table describes the file format structure by referring to the previous content:

Line(s) Description
1 A header line with general file information names
2 A tab-separated line containing the header information
3 A tab-separated line containing the list of categories used by the events

(category ID is the index of the category in the list)
4 A header indicating the start of comment mapping (a mapping from an ID to

the string it represents)
5* Zero or more lines lines mapping a number onto a string in the form @LINE =

STRING. The IDs do not correspond to anything outside of the file.
6 A footer indicating the end of comment mapping

2020 61

Using Parallel Maya Appendices

Line(s) Description
7 A header indicating the start of event information. The names are the titles of

the event columns.

• Event time is the absolute time, in ticks, the event started
• Duration is the total amount of time, in ticks, for the entire event
• Thread duration is the total amount of time, in ticks, the event took

inside the thread
• Comment and Extra comment use an ID from the comment mapping

above
• Category id is the index of the event’s category from the list at line 3
• Cpu id and Thread id are the ones in which the event took place. Actual

values are arbitrary; only meant to distinguish unique CPUs and Threads
• Color id is an index into the color mapping internal to the app (colors at

the time of creation are not stored in the file).

8* Zero or more tab-separated lines mapping to all of the events that were stored
in the file

9 A header indicating the start of the event tag maps
10 A title line showing what values are in the event tag map columns
11* Zero or more tab-separated lines attaching an event tag, defined through the

profiler tool, to a specific event ID. The event ID will correspond to the ID
given to it in the comment mapping section.

12 A footer indicating the end of the event tag maps
13 A header indicating the start of the event tag color maps
14 A title line showing what values are in the event tag color map columns
15* Zero or more tab-separated lines mapping a tag label defined above to an

R,G,B color
16 A header indicating the end of the event tag color maps
EOF

Sample version 2 file on 4 CPUs containing a single event of type “ETName”, description
“ETDescription”, in category “ETCategory” with description “Category description”, using
color 7, of duration 100 ticks, starting at tick 999, on a single thread with ID 22, tagged with
“TagMe” which has color red (255 0 0)

#File Version, # of events, # of CPUs
2 1 4
ETCategory
Category description

2020 62

Using Parallel Maya Appendices

#Comment mapping---------
@0 = ETName
#End comment mapping---------
999 @0 @0 1 100 100 22 1 7
#Begin comment description mapping---------
@1 = ETDescription
#End comment description mapping---------
#Begin Event Tag Mapping---------
#Event ID, Event Tag
1 TagMe
#End Event Tag Mapping---------
#Begin Event Tag Color Mapping---------
#Tag Label, Tag Color
TagMe 255 0 0
#End Event Tag Color Mapping---------

Debugging Commands

Several commands can be used to help display information about your scene to help in
debugging or optimizations. This is a summary of some of the more common ones, and
represents only the available runtime information. Consult the command documentation in
Maya’s online technical documentation for more information about each command.

dbcount

Maintains embedded code location counters for higher-level debugging of scene operation.
Generally, this uses specialized code that is only available in custom builds.

Synopsis: dbcount [flags]
Flags:

-e -enabled on|off
-f -file String
-k -keyword String
-l -list
-md -maxdepth UnsignedInt
-q -quick
-r -reset
-s -spreadsheet

Command Type: Command

2020 63

http://help.autodesk.com/cloudhelp/2020/ENU/Maya-Tech-Docs/CommandsPython/index.html

Using Parallel Maya Appendices

dbmessage

Monitors messaging that adds and removes DAG and DG nodes.

Synopsis: dbmessage [flags]
Flags:

-f -file String
-l -list
-m -monitor on|off
-t -type String

Command Type: Command

dbtrace

Turns on conditional code, typically to print out status information or to take different code
paths when enabled.
To find available trace objects use dbtrace –q to list currently-enabled traces, and dbtrace –q
–off to list currently-disabled traces.
To find the current trace output target, use dbtrace -q -k keyword -o.
See below for information on specific keywords.
Note: Work is currently in progress to make these trace objects more flexible. It is a current
design constraint that sometimes they are visible in a release, even though they only function
internally, and some cannot be used when using Parallel evaluation.

Synopsis: dbtrace [flags]
Flags:

-q -query
-f -filter String
-i –info
-k -keyword String (multi-use)

(Query Arg Optional)
-m -mark
-o -output String

-off -
-t -title String
-tm -timed on|off
-v -verbose

Command Type: Command

2020 64

Using Parallel Maya Appendices

Keyword Description Contents (Default Output File)
OGSPolyGhosts Shows progress of data

extraction from the
evaluation of poly
ghosts through OGS

(stdout)

cacheConfig Shows cache
configuration rules
evaluation

Result of cache configuration rules for
each evaluation node
(_Trace_CacheConfig.txt)

cipEM Shows what Customer
Improvement Program
data is being collected.

Generic usage information. No longer
being used (stdout)

cmdTracking Enables the tracking of
counts of commands.
Use the dbpeek
‘cmdTracking’ operation
to view the results.

No output, but enables tracking of the
counts for all commands being executed.
(For example, you can turn it on during
file load to get a count of the number of
createNode calls, including those in
referenced files, a task that is difficult to
do manually) (stdout)

compute High level trace of the
compute path

Nested output showing compute
methods being called. Typically in EM
mode you should see nesting only in
cycles. DG mode will show the full set
of nodes triggered by a single evaluation
request (_Trace_Compute.txt)

dbCache Data block
manipulation

Details of the creation and manipulation
of datablock information
(_Trace_DataBlockCache.txt)

deformerEvaluator Statistics for the
deformer evaluator
setup

Shows statistics on what the deformer
evaluator was able to ingest, once
enabled (stderr)

evalMgr Evaluation manager
interactions

(_Trace_EvalManager.txt)

evalMgrGraphInvalid Evaluation manager
graph invalidation

(stdout)

evalMgrGraphValid Evaluation manager
execution graph
validation errors and
warnings

Nodes that were evaluated while in EMS
mode using the pull (DG) model. This
indicates missing dependencies in the
evaluation graph, possibly caused by
custom dirty propagation
(_MayaEvaluationGraphValidation.txt)

evalMgrSched Internal use only (_MayaScheduling.txt)

2020 65

Using Parallel Maya Appendices

Keyword Description Contents (Default Output File)
idleBuild Operation of the idle

build mechanism for the
evaluation graph

When the idle build is active, this
appears when the idle build is triggered
and executed (_Trace_EGBuild.txt)

nodeTracking Enables tracking of
counts of created nodes.
Use the dbpeek
‘nodeTracking’
operation to view
results.

(stdout)

peekCache Shows progress of the
dbpeek -op cache
operation

Dumps data collected by the dbpeek
operation, and how
(_Trace_DbPeekCache.txt)

peekContext Shows progress of the
dbpeek -op context
operation

Dumps data collected by the dbpeek
operation, and how (stdout)

peekData Shows progress of the
dbpeek -op data
operation

Dumps data collected by the dbpeek
operation, and how
(_Trace_DbPeekData.txt)

peekMesh Shows progress of the
dbpeek -op mesh
operation

Dumps data collected by the dbpeek
operation, and with what flags
(_Trace_DbPeekMesh.txt)

dgdebug

Historical debugging command; not robust or documented. Deprecated: Use the newer
dbpeek command.

No help is provided for this command.

dgdirty

Forces dirty/clean states onto specified plugs and everything downstream from them. Meant
to be a safety net for restoring proper states to your scene when something has gone wrong.
You should not need to use this command, but it will continue to exist as a “reset button”,
just in case.

Synopsis: dgdirty [flags] [String...]
Flags:

2020 66

Using Parallel Maya Appendices

-q -query
-a -allPlugs
-c -clean
-i -implicit
-l -list String
-p -propagation
-st -showTiming
-v -verbose

Command Type: Command

dgeval

Forces the node to compute certain plugs. Like dgdirty, this command is meant to be a safety
net if computation has not occurred in the proper order. Similar in function to the getAttr
command, but since it returns no results, it can handle all attribute types, not only those
supported by getAttr.

Synopsis: dgeval [flags] String...
Flags:
-src -

-v -verbose

Command Type: Command

dgInfo

Dumps information about the current state of the graph. Be aware that when plug dirty
states are reported, they represent the connection associated with the plug. In fan-out or
in-out connections there will be more than one dirty state associated with the connection
attached to the plug. This means it is legal to see A->B as dirty but B->A as clean if A has
multiple connections. Being Deprecated: Use the newer dbpeek command.

Synopsis: dgInfo [flags] [String...]
Flags:
-all -allNodes

-c -connections
-d -dirty on|off
-n -nodes
-nd -nonDeletable
-nt -type String

2020 67

Using Parallel Maya Appendices

-of -outputFile String
-p -propagation on|off
-s -short

-sub -subgraph
-sz -size

Command Type: Command

dgmodified

Checks on the reason a file requests saving when no changes have been made.

Synopsis: dgmodified

No Flags.

dbpeek

This command is called out intentionally, as it combines multiple operations into a single
command by use of various operations.
It runs one of several operations that provide a view into the data internals in the scene.
This is the most useful and flexible of the debugging commands, and new variations of it are
often being introduced. Use dbpeek -q -op to show a list of currently available operations and
dbpeek -op X -q to show detailed help for operation X.
See below for information on specific keywords.
Note: The syntax of the argument flag allows for both keyword argument=’key’ and key-
word/value argument=’key=value’ forms.

Synopsis: dbpeek [flags] [String...]
Flags:

-q -query
-a -argument String (multi-use) (Query Arg Mandatory)

-all -allObjects
-c -count UnsignedInt
-eg -evaluationGraph
-of -outputFile String
-op -operation String (Query Arg Optional)

Command Type: Command

2020 68

Using Parallel Maya Appendices

dbpeek -op attributes

Analyzes node or node-type attributes and dumps information about them based on what
the selected operation type.
Various arguments to the operation change the content of the output. The essence remains
the same; the attributes belong to the node or node type.

Argument Meaning

detail Adds all internal details from attributes being dumped, otherwise dumps
only the names and structure. The details are output as object members
of the attribute, including the children.

nodeType Dumps all attributes belonging to the selected node(s) types. If nothing is
selected, it dumps the attributes for all available node types. This
includes all node types up the hierarchy to the base node class.

noDynamic Skips dynamic attributes in all output.
noExtension Skips extension attributes in all output.
noStatic Skips static attributes in all output.
onlyPlugins Restricts any output to nodes and node types that originate from a

plug-in.
type=affects Dumps attribute structure and affects relationships in the graphical .dot

format.
type=detail Dumps attribute information in .json format. This is the default if no

type is specified.
type=validate Validates flags and structure for consistency and validity.

If no nodes are selected, then this command prints the list of all attributes on all nodes. For
example, if you had a node type called reversePoint with a vector input and a vector output.
type=detail would output this JSON data:

{
"nodes" :
{

"reversePoint" :
{
"staticAttributes" : [
{ "pointInput" : [

"pointInputX",
"pointInputY",
"pointInputZ",

]

2020 69

Using Parallel Maya Appendices

},
{ "pointOutput" :

[
"pointOutputX",
"pointOutputY",
"pointOutputZ",

]
}

],
"extensionAttributes" : []

}
}

}

type=affects would output this DOT data:

digraph G
{

compound=true;
subgraph cluster_NODENAME
{

label="Node NODENAME, Type NODETYPE";
color=".7 .0 .0";
ia [label="ia/inputAttribute",style="rounded",shape=ellipse];
oa [label="oa/outputAttribute",style="rounded",shape=rectangle];
ia -> oa;

}
}

and type=validate would output this JSON validation summary:

{
"Attribute Validation" :
{

"NODENAME" :
{

"staticAttributes" :
[

{
"Both input and output attributes in compound" :
[

2020 70

Using Parallel Maya Appendices

{ "root" : "rootAttribute",
"inputs" : ["inputChild"],
"outputs" : ["outputChild"],

}
]

}
]

}
}

}

dbpeek -op cache

This operation is explained in detail in the Debugging section of the Maya Cached
Playback whitepaper.

dbpeek -op cmdTracking

By default, when no detail argument is present it shows a list of all commands run since the
last reset as well as a count of how many of each type were executed.
Outputs in command/count pair form, one per line, with a tab character separating them.

Argument Meaning

reset Set all of the command tracking statistics to zero

dbpeek -op connections

By default, when no type argument is present, shows a list of all connections in the DG.

Argument Meaning

summary Reduces the output to show only the connection counts on the nodes. It
separates by single and multi but no further information is added. Useful
for getting basic usage information.

verbose Shows extra information about every connection, including
dirty/propagation states, plug ownership, and type connectivity of the
connection. Connections can be single or multi, and be connected either to
each other or to plugs.

2020 71

http://download.autodesk.com/us/company/files/2020/MayaCachedPlaybackWhitePaper.pdf#debugging

Using Parallel Maya Appendices

dbpeek -op data

Dumps the current contents of a node’s plug data in a standard format. By default the
output is in CSV format consisting of 5 columns: NODE PLUG DATA_TYPE CLEAN_STATE
DATA_AS_TEXT

Example for a simple integer attribute with a dirty value of 5: MyNode MyPlug Int32 0 5

Argument Meaning

eval Evaluates plugs first to guarantee that they are clean. Note: Some plugs
are always dirty so there may still be plugs that show a dirty value.

full Includes plugs with default values in the output.
json Uses JSON format for the output. The general form is { "NODE" : {

"PLUG" : { "TYPE", "CLEAN", "VALUE" } } }. For example, a simple
numeric attribute with a dirty value of 5 { "MyNode" : { "MyPlug",
"0", "5" } }

matrix Includes all plugs with a “matrix” data type in the output. This does not
include generic data that may have a matrix value at runtime, only
attributes that are exclusively matrix types.

number Includes all plugs with any numerical data type in the output. This does
not include any generic data that may have numerical value at runtime,
only attributes that are exclusively numeric types. It includes all types of
numeric values, including linear, angular, time, and unitless values.

state Includes the current dirty state of the data in the output.
time=TIME Rather than evaluating at the normal context, evaluates at a context using

the given time. This is somewhat equivalent to getAttr -t TIME.
vector Includes all plugs with a “vector” data type in the output. Does not

include generic data that may have a vector value at runtime, only
attributes that are exclusively double[3] types.

dbpeek -op context

Analyzes context evaluation to detect various errors violating the design.

Argument Meaning

isolationType=animatedAttributes Filters errors, reporting only those involving
animated attributes

isolationType=animatedNodes Filters errors, reporting only those involving
animated nodes

isolationType=staticAndAnimated Reports all errors

2020 72

Using Parallel Maya Appendices

Argument Meaning

test=isolation During evaluation, detects when evaluation context
is violated causing data to be read or written into a
state that belongs to some other evaluation context

test=correctness Evaluates the scene in the background, comparing
evaluation data stored for background and main
context; compares traversing evaluation graph
visiting nodes only if all upstream nodes generate
equivalent data in both the background and the
main context

time=TIME Takes a string value indicating the frame time at
which evaluation should be performed.

verbose Adds extra information to output report. Each test
will have its own verbose data. Isolation: Adds
callstack information to the report for each detected
error. Correctness: Adds attributes which compare
failed to compare (due to missing logic)

Sample output for isolation tests:

{
"context isolation": {

"frame": 5.0,
"type": "animatedNodes",
"verbose": true,
"errors": [

{
"node": "ikHandle1",
"type": "ikHandle",
"attribute": "ikFkManipulation",
"call stack": [

"METHOD Line NUMBER",
"METHOD Line NUMBER",
"METHOD Line NUMBER"

]
},
{

"node": "shape",
"type": "mesh",
"attribute": "displaySmoothMesh",
"call stack": [

2020 73

Using Parallel Maya Appendices

"METHOD Line NUMBER",
"METHOD Line NUMBER",
"METHOD Line NUMBER"

]
}

],
"time out": true

}
}

Sample output for correctness tests:

{
"context correctness": {

"frame": 14.0,
"verbose": true,
"errors": [

{
"node": "IKSpineCurveShape",
"type": "nurbsCurve",
"attributes": [

"worldSpace"
]

}
],
"failed to compare": [

"input",
"clusterXforms",
"clusterTransforms",
"target",
"mySpecialAttribute"

],
"time out": true

}
}

dbpeek -op edits

Shows a list of all nodes for which tracking is currently enabled. The “track” flag is mandatory.

2020 74

Using Parallel Maya Appendices

Argument Meaning

track Shows a list of all nodes for which tracking is currently enabled.

dbpeek -op evalMgr

Outputs the current state of all of the custom evaluators used by the Evaluation Manager.

Argument Meaning

custom Outputs the custom evaluators registered with the evaluation manager.
global Adds output that is independent of scene contents, for example, node types

enabled for the custom evaluators.
local Adds output that is specific to the scene contents, for example, nodes

supported by a custom evaluator.

dbpeek -op graph

Gets a list of nodes or connections from either the dependency graph or the underlying
evaluation graph.

Argument Meaning

connections Dumps the list of all connections in the chosen graph. The sorting
order is alphabetical by destination plug name.

dot Dumps the graph information in .dot format for parsing and display
by an external application such as graphViz.

evaluationGraph Gets the structure information from the evaluation graph, otherwise
uses the raw dependency graph. The dbpeek command flag
“evaluationGraph” does the same thing.

graph Dumps the graph state and contents, not including what is dumped by
any of the other flags.

nodes Dumps the list of all nodes in the chosen type of graph, in
alphabetical order by full node name.

plugs For the evaluation graph option, dumps the list of all plugs in its dirty
plug list in the evaluation nodes. For the DG option, dumps the list of
plugs currently in the plug trees.

scheduling Dumps the scheduling type used for all nodes in the type of graph in
the form NODE = SCHEDULING_TYPE. If a node type is specified,
the default scheduling type for nodes of that specific node type is
returned in the same format.

2020 75

Using Parallel Maya Appendices

Argument Meaning

verbose When dumping the scheduling graph in .dot format, adds all of the
names of the nodes to the clusters. Otherwise, it is only a count of
nodes in each cluster

dbpeek -op mesh

Dumps the current contents of the mesh to a standard format. There are two types of
formatting and two levels of detail to present.

Argument Meaning

eval Evaluates mesh plugs first to guarantee they are clean. Otherwise the
values currently present in the mesh shape are used as-is.

json Dumps data in JSON format instead of CSV.
verbose Puts full values for all of the data in the output. Otherwise, only a number

count of each type is returned. See the flag descriptions for more
information on which data can be requested and what is returned for each
type.

vertex Includes vertex position or vertex count in the output. The short return is
a count of vertices in the mesh. The verbose values are a list of vertex
number and the {X,Y,Z} positions of the vertex, with W factored in, if
appropriate.

For the default level of detail, the default CSV format output will look like this:

NODE_NAME,DATA_TYPE,DATA_COUNT

For example, a cube containing 32 vertices would have these lines:

Node,DataType,Count
pCubeShape1,outMesh,32

The JSON equivalent format would look like this:

{
"pCubeShape1" : {

"outMesh" : "32"
}

}

2020 76

Using Parallel Maya Appendices

If the full detail is requested, then the (abbreviated) output for CSV format will look like
this:

Node,Plug,Clean,Value
pCubeShape1,outMesh[0],1,0.0 0.0 0.0
pCubeShape1,outMesh[1],1,0.0 0.5 0.0
...
pCubeShape1,outMesh[32],1,1.0 1.0 1.0

and like this for JSON format:

{
"pCubeShape1" : {

"outMesh" : {
"clean" : 1,
"0" : [0.0, 0.0, 0.0],
"1" : [0.0, 0.5, 0.0],
"..." : "...",
"32": [1.0, 1.0, 1.0]

}
}

}

dbpeek -op metadata

Shows node metadata. The default operation shows a list of all nodes containing metadata.

Argument Meaning

summary Shows a single line per node, with metadata indicating how many channels,
streams, and values are present in the metadata.

verbose Shows a detailed list of all metadata on nodes, including a dump in the
debug serialization format for each of the metadata streams.

dbpeek -op node

Show select debugging information on DG nodes. See also the “plug” and “connection”
operations for display of information specific to those facets of a node. If no arguments are
used then the ones marked as [default] will all be enabled, for convenience.

2020 77

Using Parallel Maya Appendices

Argument Meaning

datablock [default] Shows the values in the datablock(s)
datablockMemory Shows raw datablock memory. This is independent of the other other

datablock flags.
dynamicAttr Shows dynamic attributes.
evaluationGraph [default] Includes evaluation graph information on the node
extensionAttr Shows the extension attributes
node [default] Shows information specific to individual node types, such

internal caches, flags, or special relationships it maintains. All other
data shown is common to all node types

plug [default] Shows the nodes plug information
skipClean Does not include datablock values that are clean
skipDirty [default] Does not include the datablock values that are dirty
skipMulti Does not include the datablock values that are multi (array)

attributes
staticAttr Shows the static attributes
verbose Shows much more detail where available. This will include things

such as flags set on objects, full detail on heavy data, and any extra
detail specific to a node type, such as caches.

dbpeek -op nodes

By default, when no detail argument is present, shows a list of all currently registered node
types.

Argument Meaning

binary Also includes the IFF tag used to identify each node type in the “.mb” file
format

dbpeek -op nodeTracking

By default, when no argument is present, shows a list of all nodes created since the last
reset along with a count of how many of each type were created. Output is in the form of
nodeType/count pairs, one per line, with a tab character separating them.

Argument Meaning

reset Erases all of the node tracking statistics.

2020 78

Using Parallel Maya Revisions

dbpeek -op plugs

Shows information about all of the plugs in a scene. By default, when no argument is present,
shows static plug footprint. A lot of this is only displayed in specially-instrumented builds,
and generally only of use internally.

Argument Meaning

details Includes the full plug/node name information in the output.
Otherwise only the total and summary counts are dumped.

group=stat Groups all output by statistic name
group=node Groups all output by node name
mode=footprint Reports size information for currently-existing networked plugs.
mode=usage Reports dynamic code path statistics, if they have been enabled in the

current build
mode=reset When used in conjunction with “usage”, resets the statistics back to

zero.
mode=state Gets unevaluated state information for boolean plugs. Only available

on specially-built cuts.
nodeType=TYPE Restricts the operation to the node types specified in the argument.

This includes inherited types, for example if the value is “transform”,
then the operation also applies to “joint” nodes, as the node type
“joint” inherits from the node type “transform”. See the node type
documentation or the nodeType command for complete information
on which node types inherit from each other.

stat=STAT If this argument has no STAT, then sorts by the name of the statistic.
If this argument does have a STAT, for example, “stat=addToNet”,
then only reports that statistic. Only available on specially-built cuts.

Revisions

2020

• Updated the dbtrace section to add info about:

– OGSPolyGhosts
– cacheConfig
– evalMgr
– evalMgrGraphInvalid
– peekCache
– peekContext

2020 79

Using Parallel Maya Revisions

• Added a link in the dbpeek section to details regarding the new cache operation.

2019

• Updated the Key Concepts section.

– Added more info about the different graphs (DG, EG, SG).

• Added a section about VP2 Integration and Evaluation Manager Parallel Update.
• Added a section about Tracking Topology for Evaluation Manager Parallel Update.
• Updated the Custom Evaluators section to describe the new evaluators.

– New evaluators:
∗ curveManager (now with its own subsection)
∗ cache
∗ cycle

2018

• Created an Appendices section.

– Added a section that describes the Profiler File Format.
– Moved Debugging Commands section to the Appendices.

• Updated the Custom Evaluators section to describe the new evaluators.

– New evaluators:
∗ curveManager
∗ hik

– Added information on isolate-select and expressions to the Invisibility Evaluator
– Added new deformer types supported in GPU override:

∗ deltaMush
∗ lattice
∗ nonLinear
∗ tension

2017

• Added section on graph invalidation.
• Added information about different ways to query scheduling information (see Thread

Safety).
• Updated the Custom Evaluators section to describe the new evaluators.

2020 80

Using Parallel Maya Revisions

– New evaluators:
∗ invisibility
∗ frozen
∗ timeEditorCurveEvaluator

– dynamics evaluator support for Parallel evaluation of scenes with dynamics is now
enabled by default.

• Added Custom Evaluator API section.
• Added Evaluation Toolkit section.
• Added Debugging Commands section.
• Miscellaneous typo fixes and small corrections.

2016 Extension 2

• Added tip about the controller command.
• Updated Other Evaluators subsection in the Custom Evaluators section to describe the

new evaluators.

– New evaluators:
∗ transformFlattening
∗ reference

– deformer evaluator is now enabled by default.
– dynamics evaluator has a new behavior, disabled by default, to support Parallel

evaluation of scenes with dynamics.

• Updated Evaluator Conflicts subsection in the Custom Evaluators section.
• Updated Python plug-ins scheduling to Globally Serial.
• Updated Render-Bound Performance subsection in the Profiling Your Scene section.
• Added new images for graph examples.
• Miscellaneous typo fixes and small corrections.

2016

• Initial version of the document.

2020 81

http://help.autodesk.com/cloudhelp/2016/ENU/Maya-Tech-Docs/Commands/controller.html

	Contents
	Overview
	Key Concepts
	Supported Evaluation Modes
	First Make it Right Then Make it Fast
	Evaluation Graph Correctness
	Thread Safety
	Safe Mode

	Evaluation Graph Invalidation
	Idle Actions
	Benefits
	Caveats

	Custom Evaluators
	GPU Override
	Dynamics Evaluator
	Reference Evaluator
	Invisibility Evaluator
	Frozen Evaluator
	The Frozen Attribute
	Operation
	Setting Options
	Limitations

	Curve Manager Evaluator
	Other Evaluators
	Evaluator Conflicts

	API Extensions
	Parallel Evaluation
	Custom GPU Deformers
	Custom Evaluator API
	The Basics
	API Reference
	SimpleEvaluator API Example

	VP2 Integration
	Tracking Topology
	Profiling Plug-ins

	Profiling Your Scene
	Understanding Your Profile
	Profiler Colors
	DG Evaluation
	EM Parallel Evaluation
	EM Parallel Evaluation with GPU Override
	EM Evaluation Cached Playback
	EM VP2 Hardware Cached Playback
	Evaluation-Bound Performance
	Render-Bound Performance
	Saving and Restoring Profiles

	Troubleshooting Your Scene
	Analysis Mode
	Graph Execution Order
	The Evaluation Toolkit

	Known Limitations
	Appendices
	Profiler File Format
	Debugging Commands
	dbcount
	dbmessage
	dbtrace
	dgdebug
	dgdirty
	dgeval
	dgInfo
	dgmodified
	dbpeek
	dbpeek -op attributes
	dbpeek -op cache
	dbpeek -op cmdTracking
	dbpeek -op connections
	dbpeek -op data
	dbpeek -op context
	dbpeek -op edits
	dbpeek -op evalMgr
	dbpeek -op graph
	dbpeek -op mesh
	dbpeek -op metadata
	dbpeek -op node
	dbpeek -op nodes
	dbpeek -op nodeTracking
	dbpeek -op plugs

	Revisions
	2020
	2019
	2018
	2017
	2016 Extension 2
	2016

