
Using Parallel Maya
2018

Using Parallel Maya Contents

Contents

Overview 4

Key Concepts 4

Supported EvaluaƟon Modes 5

First Make it Right Then Make it Fast 6

EvaluaƟon Graph Correctness . 6

Thread Safety . 7

Safe Mode . 9

EvaluaƟon Graph InvalidaƟon 10

Custom Evaluators 11

GPU Override . 12

Dynamics Evaluator . 14

Reference Evaluator . 16

Invisibility Evaluator . 17

Frozen Evaluator . 18

The Frozen AƩribute . 18

OperaƟon . 19

Seƫng OpƟons . 20

LimitaƟons . 21

Other Evaluators . 21

Evaluator Conflicts . 22

API Extensions 22

Parallel EvaluaƟon . 22

Custom GPU Deformers . 24

Custom Evaluator API . 24

The Basics . 25

2018 1

Using Parallel Maya Contents

API Reference . 27

SimpleEvaluator API Example . 29

Profiling Plug-ins . 33

Profiling Your Scene 33

EvaluaƟon-Bound Performance . 34

Render-Bound Performance . 37

Saving and Restoring Profiles . 39

TroubleshooƟng Your Scene 39

Analysis Mode . 39

Graph ExecuƟon Order . 41

The EvaluaƟon Toolkit . 42

Known LimitaƟons 42

Appendices 42

Profiler File Format . 42

Debugging Commands . 45

dbcount . 45

dbmessage . 45

dbtrace . 46

dgdebug . 48

dgdirty . 48

dgeval . 48

dgInfo . 49

dgmodified . 49

dbpeek . 50

dbpeek -op aƩributes . 50

dbpeek -op cmdTracking . 52

dbpeek -op connecƟons . 53

dbpeek -op data . 53

2018 2

Using Parallel Maya Contents

dbpeek -op context . 54

dbpeek -op edits . 56

dbpeek -op evalMgr . 56

dbpeek -op graph . 56

dbpeek -op mesh . 57

dbpeek -op metadata . 58

dbpeek -op node . 59

dbpeek -op nodes . 59

dbpeek -op nodeTracking . 59

dbpeek -op plugs . 60

Revisions 60

2018 . 60

2017 . 61

2016 Extension 2 . 61

2016 . 62

2018 3

Using Parallel Maya Key Concepts

Overview

This guide describes the Maya features for acceleraƟng playback and manipulaƟon of animated scenes.
It covers key concepts, shares best pracƟces/usage Ɵps, and lists known limitaƟons that we will aim to
address in subsequent versions of Maya.

This guide will be of interest to riggers, TDs, and plug-in authors wishing to take advantage of speed
enhancements in Maya.

If you would like an overview of related topics prior to reading this document, check out Supercharged
AnimaƟon Performance in Maya 2016.

Key Concepts

StarƟng from Maya 2016, Maya accelerates exisƟng scenes by taking beƩer advantage of your hardware.
Unlike previous versions of Maya, which was limited to node-level parallelisms, Maya now includes a
mechanism for scene-level analysis and parallelizaƟon. For example, if your scene contains different char-
acters that are unconstrained to one another, Maya can evaluates each character at the same Ɵme.

Similarly, if your scene has a single complex character, it may be possible to evaluate rig sub-secƟons
simultaneously. As you can imagine, the amount of parallelism depends on how your scene has been
constructed. We will get back to this later. For now, let’s focus on understanding key Maya evaluaƟon
concepts.

At the heart ofMaya’s newevaluaƟon architecture is an EvaluaƟonManager (EM), responsible for creaƟng
a parallel-friendly descripƟon of your scene, called the EvaluaƟonGraph (EG). The EM schedules EG nodes
across available compute resources.

Prior to evaluaƟng your scene, the EM checks if a valid EG graph exists. The EG is a simplified version of
the Dependency Graph (DG), consisƟng of DG nodes and connecƟons. EG connecƟons represent node-
level dependencies; desƟnaƟon nodes employ data from source nodes to correctly evaluate the scene. A
valid EG may not exist or become invalid for various reasons. For example, you may have loaded a new
scene and no EG may have been built yet, or you may have changed your scene, invalidaƟng a prior EG.

Maya uses the DG’s dirty propagaƟon mechanism to build the EG. Dirty propagaƟon is the process of
walking through the DG, from animaƟon curves to renderable objects, andmarking DG node aƩributes as
requiring evaluaƟon (i.e., dirty). Unlike previous versions of Maya, that propagated dirty on every frame,
Maya now disables dirty propagaƟon once the EG exists, reusing the EG unƟl it becomes invalid.

With dirty propagaƟon disabled, compuƟng a given scene frame involves walking the EG, scheduling EG
nodes, and evaluaƟng them. Because the EG encodes node-level dependencies, when evaluaƟng a given
EG node, you are guaranteed that inputs from dependent nodes have already been calculated. This
further enables pipelining of some operaƟons. Specifically, when EG nodes have no dependents, it is
possible to immediately iniƟate addiƟonal processing (e.g., rendering) since we are guaranteed that no
downstream nodes require computed results.

2018 4

https://www.youtube.com/watch?v=KKC7A9bbUuk
https://www.youtube.com/watch?v=KKC7A9bbUuk

Using Parallel Maya Supported EvaluaƟon Modes

Tip. If your scene contains expression nodes, that use getAttr, the DG graph will be missing
explicit dependencies. This will result in an incorrect EG. Expression nodes also reduce the amount
of parallelism in your scenes (see Scheduling Types for details). Consider removing getAttr from
expressions and/or using uƟlity nodes.

Depending on your scene, the EGmay contain circular node-level dependencies. If this is the case, the EM
creates node clusters. At scene evaluaƟon Ɵme, nodes in clusters are evaluated serially before conƟnuing
with other parallel parts of the EG. MulƟple clusters may be evaluated at the same Ɵme. As with previous
versions of Maya, you should avoid creaƟng scenes with aƩribute-level cycles as this is unsupported and
leads to unspecified behavior.

By default, the EM schedules node evaluaƟon on available CPU resources. However, the EM also provides
the ability to override evaluaƟon for sub-secƟons of the EG, using custom evaluators that target compu-
taƟon to specific runƟmes and/or hardware. One example of this is the GPU override, which uses your
graphics card’s graphics processing unit (GPU) to accelerate deformaƟons.

Supported EvaluaƟon Modes

StarƟng in Maya 2016, 3 evaluaƟon modes are supported:

Mode What does it do?

DG Uses the legacy Dependency Graph-based evaluaƟon of your scene. This was
the default evaluaƟon mode prior to Maya 2016

Serial EvaluaƟon Manager Serialmode. Uses the EG but limits scheduling to a single
core. Serial mode is a troubleshooƟng mode to pinpoint the source of
evaluaƟon errors.

Parallel EvaluaƟon Manager Parallelmode. Uses the EG and schedules evaluaƟon
across all available cores. This mode is the new Maya default since 2016.

When using either Serial or Parallel EM modes, you can also acƟvate GPU Override to accelerate defor-
maƟons on your GPU. You must be in Viewport 2.0 to use this feature (see GPU Override).

To switch between different modes, go to the Preferences window (Windows > Seƫngs/Preferences >
Preferences > AnimaƟon). You can also use the evaluaƟonManager MEL/Python command; see docu-
mentaƟon for supported opƟons.

To see the evaluaƟon opƟons that apply to your scene, turn on the Heads Up Display EvaluaƟon opƟons
(Display > Heads Up Display > EvaluaƟon).

2018 5

Using Parallel Maya First Make it Right Then Make it Fast

First Make it Right Then Make it Fast

Before discussing how to make your Maya scene fast using Parallel evaluaƟon, it is important to ensure
that evaluaƟon in DG and EM modes generates the same results. If you see different results in the view-
port during animaƟon (as compared to previous versions of Maya), or tests reveal numerical errors, it is
criƟcal to understand the cause of these errors. Errors may be due to an incorrect EG, threading related
problems, or other issues.

Below, we review EvaluaƟon Graph Correctness and Thread Safety, two important concepts to under-
stand errors.

EvaluaƟon Graph Correctness

In the event that you see evaluaƟon errors, first try to test your scene in Serial evaluaƟon mode (see
Supported EvaluaƟon Modes). Serial evaluaƟon mode uses the EM to build an EG of your scene, but
limits evaluaƟon to a single core to eliminate threading as the possible source of differences. Note that
since Serial evaluaƟon mode is provided for debugging, it has not been opƟmized for speed and scenes
may run slower in Serial than in DG evaluaƟon mode. This is expected.

If transiƟoning to Serial evaluaƟon eliminates errors, this suggests that differences are most likely due
to threading-related issues. However, if errors persist (even aŌer transiƟoning to Serial evaluaƟon) this
suggests that the EG is incorrect for your scene. There are a few possible reasons for this:

Custom Plugins. If your scene uses custom plug-ins that rely on the MPxNode::setDependentsDirty
funcƟon tomanage aƩribute dirtying, this may be the source of problems. Plug-in authors someƟmes use
MPxNode::setDependentsDirty to avoid expensive calculaƟons in MPxNode::compute by monitoring
and/or altering depencies and storing computed results for later re-use.

Since the EM relies on dirty propagaƟon to create the EG, any custom plug-in logic that alters dependen-
cies may interfere with the construcƟon of a correct EG. Furthermore, since the EM evaluaƟon does not
propagate dirty messages, any custom caching or computaƟon in MPxNode::setDependentsDirty is
not called while the EM is evaluaƟng.

If you suspect that your evaluaƟon errors are related to custom plug-ins, temporarily remove the associ-
ated nodes from your scene and validate that both DG and Serial evaluaƟon modes generate the same
result. Once you have made sure this is the case, you will need to revisit the plug-in logic. The API Exten-
sions secƟon covers Maya SDK changes that will help you adapt plug-ins to Parallel evaluaƟon.

Another debugging opƟon is to use scheduling type overrides to force custom nodes to be scheduled
more conservaƟvely. This approach can enable the usage of Parallel evaluaƟon even if only some of the
nodes are thread-safe. Scheduling types are described in more details in the Thread Safety secƟon.

Errors in Autodesk Nodes. Although we have done our best to ensure that all out-of-the-box Autodesk
Maya nodes correctly express dependencies, someƟmes a scene uses nodes in an unexpected manner. If
this is the case, we ask you make us aware of scenes where you encounter problems. We will do our best
to address problems as quickly as possible.

2018 6

Using Parallel Maya First Make it Right Then Make it Fast

Thread Safety

Prior to Maya 2016, evaluaƟon was single-threaded and developers did not need to worry about making
their code thread-safe. At each frame, they were guaranteed that evaluaƟon would proceed serially and
computaƟon would finish for one node prior to moving onto another. This approach allowed for the
caching of intermediate results in global memory and using external libraries without considering their
ability to work correctly when called simultaneously from mulƟple threads.

These guarantees no longer apply. Developers working in recent versions of Maya must update plug-ins
to ensure correct behavior during concurrent evaluaƟon.

Two things to consider when updaƟng plug-ins:

• Different instances of a node type should not share resources. Unmanaged shared resources can
lead to evaluaƟon errors since different nodes, of the same type, can have their compute()meth-
ods called at the same Ɵme.

• Avoid non thread-safe lazy evaluaƟon. In the EM, evaluaƟon is scheduled from predecessors to
successors on a per-node basis. Once computaƟon has been performed for predecessors, results
are cached, and made available to successors via connecƟons. Any aƩempt to perform non-thread
safe lazy evaluaƟon could return different answers to different successors or, depending on the
nature of the bug, instabiliƟes.

Here’s a concrete example for a simple node network consisƟng of 4 nodes:

In this graph, evaluaƟon first calculates outputs for Node1 (i.e., Node1.A, Node1.B, Node1.C), followed by
parallel evaluaƟon of Nodes 2, 3, and 4 (that is, Read Node1.A to use in Node2, Read Node1.B to use in
Node3, etc.).

2018 7

Using Parallel Maya First Make it Right Then Make it Fast

Since we know that making legacy code thread-safe requires Ɵme, we have added new scheduling types
to provide control over how the EM schedule nodes. Scheduling types provide a straighƞorwardmigraƟon
path, so you do not need to pass up performance improvements, just because a few nodes sƟll needwork.

There are 4 scheduling types:

Scheduling Type What are you telling the scheduler?

Parallel Asserts that the node and all third-party libraries used by the node are
thread-safe. The scheduler may evaluate any instances of this node at the
same Ɵme as instances of other nodes without restricƟon.

Serial Asserts it is safe to run this node with instances of other nodes. However, all
nodes with this scheduling type should be executed sequenƟally within the
same evaluaƟon chain.

Globally Serial Asserts it is safe to run this node with instances of other node types but only
a single instance of this node type should be run at a Ɵme. Use this type if
the node relies on staƟc state, which could lead to unpredictable results if
mulƟple node instances are simultaneously evaluated. The same restricƟon
may apply if third-party libraries store state.

Untrusted Asserts this node is not thread-safe and that no other nodes should be
evaluated while an instance of this node is evaluated. Untrusted nodes are
deferred as much as possible (i.e. unƟl there is nothing leŌ to evaluate that
does not depend on them), which can introduce costly synchronizaƟon.

By default, nodes scheduled as Serial provide a middle ground between performance and stability/safety.
In some cases, this is too permissive and nodes must be downgraded to GloballySerial or Untrusted. In
other cases, somenodes can be promoted to Parallel. As you can imagine, themore parallelism supported
by nodes in your graph, the higher level of concurrency you are likely to obtain.

Tip. When tesƟng your plug-ins with parallel Maya, a simple strategy is to schedule nodes with the
most restricƟve scheduling type (i.e., Untrusted), and then validate that the evaluaƟon produces
correct results. Raise individual nodes to the next scheduling level, and repeat the experiment.

There are three ways to alter the scheduling level of your nodes:

EvaluaƟon Toolkit. Use this tool to query or change the scheduling type of different node types.

C++/Python APImethods. Use the OpenMaya API to override the MPxNode::schedulingType and spec-
ify the desired node scheduling type. This funcƟon should return one of the enumerated values specified
by MPxNode::schedulingType. See the Maya MPxNode class reference for more details.

Mel/Python Commands. Use the evaluaƟonManager command to change the scheduling type of nodes
at runƟme. Below, we illustrate how you can change the scheduling of scene transform nodes:

2018 8

http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_class_m_px_node_html

Using Parallel Maya First Make it Right Then Make it Fast

Scheduling Type Command

Parallel evaluationManager -nodeTypeParallel on "transform"
Serial evaluationManager -nodeTypeSerialize on "transform"
GloballySerial evaluationManager -nodeTypeGloballySerialize on "transform"
Untrusted evaluationManager -nodeTypeUntrusted on "transform"

The EvaluaƟon Toolkit and Mel/Python Commands method to alter node scheduling level works using
node type overrides. They add an override that applies to all nodes of a given type. Using C++/Python
API methods and overriding the MPxNode::schedulingType funcƟon gives the flexibility to change the
scheduling type for each node instance. For example, expression nodes are marked as globally serial if
the expression outputs are a purely mathemaƟcal funcƟon of its inputs.

The expression engine is not thread-safe so only one expression can run at a Ɵme, but it can run in parallel
with any other nodes. However, if the expression uses unsafe commands (expressions could use any
command to access any part of the scene), the node is marked as untrusted because nothing can run
while the expression is evaluated.

This changes the way scheduling types should be queried. Using the evaluationManager command
with the above flags in query mode will return whether or not an override has been set on the node type,
using either the EvaluaƟon Toolkit or the Mel/Python commands.

The EvaluaƟon Toolkit window lets you query both the override type on the node type (which cannot vary
from one node of the same type to the other) or the actual scheduling type used for a nodewhen building
the scheduling graph (which can change from one node instance to the other).

Safe Mode

On rare occasions you may noƟce that Maya switches from Parallel to Serial evaluaƟon during manipula-
Ɵon or playback. This is due to Safe Mode, which aƩempts to trap errors possibly leading to instabiliƟes,
such as crashes. If Maya detects that mulƟple threads are aƩempƟng to simultaneously access a single
node instance, evaluaƟon will be forced to Serial execuƟon to prevent problems.

Tip. If Safe Mode forces your scene into Serial mode, the EMmay not produce the expected incor-
rect results when manipulaƟng. In such cases you can either disable the EM:

evaluationManager -mode "off";

or disable EM-accelerated manipulaƟon:

evaluationManager -man 0;

2018 9

Using Parallel Maya EvaluaƟon Graph InvalidaƟon

While Safe Mode catches many problems, it cannot catch them all. Therefore, we have also developed
a special Analysis Mode that performs a more thorough and costly check of your scene. Analysis mode
is designed for riggers/TDs wishing to troubleshoot evaluaƟon problems during rig creaƟon. Avoid using
Analysis Mode during animaƟon since it will slow down your scene.

EvaluaƟon Graph InvalidaƟon

As previously described, the EG adds necessary node-level scheduling informaƟon to the DG. To make
sure evaluaƟon is correct, it’s criƟcal the EG always be up-to-date, reflecƟng the state of the scene. The
process of detecƟng that things have changed and rebuilding the EG is referred to as graph invalidaƟon.

Different acƟons may invalidate the EG, including:

• Adding/removing nodes
• Changing the scenes transformaƟon (DAG) hierarchy
• Adding/removing extension aƩributes
• Loading an empty scene or opening a new file

Other less obvious acƟons include:

• StaƟc animaƟon curves. Although animaƟon curves are Ɵme-dependent, DG evaluaƟon treats
curves with idenƟcal (staƟc) keys as Ɵme-independent to avoid unnecessary calculaƟons. The EG
uses a similar opƟmizaƟon, excluding and avoiding scheduling of staƟc animaƟon curves. This keeps
the EG compact, making it fast to build, schedule, and evaluate. One downside of this approach is
that changes to staƟc animaƟon curves will cause the EG to become invalid; on Ɵme change Maya
will rebuild the EG and determine if curves should be treated as Ɵme-dependent and added to the
EG.

• Dirty propagaƟon crossing the EvaluaƟon Graph. The DG architecture allowed for implicit depen-
dencies (i.e., dependencies not expressed via connecƟons), using them during dirty propagaƟon.
When dirty propagaƟon is detected for these implicit dependencies, the EG will invalidate itself
since this could signal the need to add new dependencies to the EG.

Frequent graph invalidaƟons may limit parallel evaluaƟon performance gains, since Maya requires DG
dirty propagaƟon and evaluaƟon to rebuild the EG. To avoid unwanted graph rebuilds, consider imme-
diately adding 2 keys, with slightly different values, on rig aƩributes you expect to use frequently. You
can also lock staƟc channels to prevent creaƟon of staƟc animaƟon curves during keying. We expect to
conƟnue tuning this area of Maya, with the goal of making the general case as interacƟve as possible.

2018 10

Using Parallel Maya Custom Evaluators

Tip. You can use the controller command to idenƟfy objects that will be used animaƟon sources
in your scene. If the Include controllers in evaluaƟon graph opƟon is set (see Windows > Set-
Ɵngs/Preferences > Preferences, then Seƫngs > AnimaƟon), the objects marked as controllers
will automaƟcally be added to the evaluaƟon graph even if they are not animated yet. This will
allow Parallel evaluaƟon for manipulaƟon even if they have not been keyed yet.

Custom Evaluators

In this secƟon, we describe mechanisms to perform targeted evaluaƟon of node sub-graphs. This ap-
proach is used by Maya to accelerate deformaƟons on the GPU and to catch evaluaƟon errors for scenes
with specific nodes. Maya 2017 also introduced new Open API extensions, allowing user-defined custom
evaluators.

Tip. Use the evaluator command to query the available/acƟve evaluators or modify currently ac-
Ɵve evaluators. Some evaluators support using the nodeType flag to filter out or include nodes of
certain types. Query the info flag on the evaluator for more informaƟon on what it supports.

Returns a list of all currently available evaluators.
import maya.cmds as cmds
cmds.evaluator(query=True)
Result: [u'invisibility',
u'frozen',
...
u'transformFlattening',
u'pruneRoots'] #

Returns a list of all currently enabled evaluators.
cmds.evaluator(query=True, enable=True)
Result: [u'invisibility',
u'timeEditorCurveEvaluator',
...
u'transformFlattening',
u'pruneRoots'] #

2018 11

http://help.autodesk.com/cloudhelp/2018/ENU/Maya-Tech-Docs/Commands/controller.html

Using Parallel Maya Custom Evaluators

GPU Override

Maya contains a custom deformer evaluator that aims to accelerate deformaƟons in Viewport 2.0 by tar-
geƫng deformaƟon to the GPU. GPUs are ideally suited to tackle problems such as mesh deformaƟons
that require the same operaƟons on streams of vertex and normal data. We have includedGPU implemen-
taƟons for several of the most commonly-used deformers in animated scenes: skinCluster, blendShape,
cluster, tweak, groupParts, soŌMod, deltaMush, laƫce, nonLinear and tension.

Unlike Maya’s previous deformer stack that performed deformaƟons on the CPU and subsequently sent
deformed geometry to the graphics card for rendering, the GPU override sends undeformed geometry to
the graphics card, performs deformaƟons in OpenCL and hands off the data to Viewport 2.0 for rendering
without read-back overhead. We have observed substanƟal speed improvements from this approach in
scenes with dense geometry.

Even if your scene uses only supported deformers, GPU override may not be enabled due to use of un-
supported node features in your scene. For example, with the excepƟon of soŌMod, there is no support
for incomplete group components. AddiƟonal deformer-specific limitaƟons are listed below:

Deformer LimitaƟon(s)

skinCluster The following aƩribute values will be ignored:
- bindMethod
- bindPose
- bindVolume
- dropOff
- heatmapFalloff
- influenceColor
- lockWeights
- maintainMaxInfluences
- maxInfluences
- nurbsSamples
- paintTrans
- smoothness
- weightDistribuƟon

blendShape The following aƩribute values will be ignored:
- baseOrigin
- icon
- normalizaƟonId
- origin
- parallelBlender
- supportNegaƟveWeights
- targetOrigin
- topologyCheck

cluster n/a

2018 12

Using Parallel Maya Custom Evaluators

Deformer LimitaƟon(s)

tweak Only relaƟve mode is supported. relaƟveTweak must be set to 1.
groupParts n/a
soŌMod Only volume falloff is supported when distance cache is disabled

Falloff must occur on all axes
ParƟal resoluƟon must be disabled

deltaMush n/a
laƫce n/a
nonLinear n/a
tension n/a

A few other reasons that can prevent GPU override from acceleraƟng your scene:

• Meshes not sufficiently dense. Unless meshes have a large number of verƟces, it is sƟll
faster to perform deformaƟons on the CPU. This is due to driver-specific overhead incurred
when sending data to the GPU for processing. For deformaƟons to happen on the GPU,
your mesh needs over 500/2000 verƟces, on AMD/NVIDIA hardware respecƟvely. Use the
MAYA_OPENCL_DEFORMER_MIN_VERTS environment variable to change the threshold. Seƫng the
value to 0 sends all meshes, connected to supported deformaƟon chains, to the GPU.

• Downstream graph nodes required deformed mesh results. Since GPU read-back is a known bot-
tleneck in the area of GPGPU, no node, script, or viewport can read themesh data computed by the
GPU override. This means that GPU override is unable to accelerate porƟons of the EG upstream
of deformaƟon nodes, such as follicle or pointOnPolyConstraint, that require informaƟon about
the deformed mesh. We will re-examine this limitaƟon as soŌware/hardware capabiliƟes mature.
When diagnosing GPU Override problems, this situaƟon may be reported as an unsupported fan-
out paƩern. See deformerEvaluator command, below, for details.

• Animated Topology. If your scene animates the number of mesh edges, verƟces, and/or faces
during playback, corresponding deformaƟon chains are removed from the GPU deformaƟon path.

• Maya Catmull-Clark SmoothMesh Preview is used. Wehave included acceleraƟon for OpenSubDiv
(OSD)-based smooth mesh preview, however there is no support for Maya’s legacy Catmull-Clark.
To take advantage of OSDOpenCL acceleraƟon, selectOpenSubDiv Catmull-Clark as the subdivision
method and make sure that OpenCL AcceleraƟon is selected in the OpenSubDiv controls.

• Unsupported streams are found. Depending on the drawing mode you select for your geometry
(e.g., shrunken faces, hedge-hog normals, etc.) and the material assigned to your geometry, Maya
must allocate and send different streams of data to the graphics card. Since we have focused our
efforts on the most common seƫngs used in producƟon, GPU override does not currently handle
all streams combinaƟons. If meshes are failing to accelerate due to unsupported streams, change
display modes and/or update the geometry material.

2018 13

http://help.autodesk.com/cloudhelp/2018/ENU/Maya-Tech-Docs/Commands/deformerEvaluator.html

Using Parallel Maya Custom Evaluators

• Back face culling is enabled.

• Driver-related issues. We are aware of various hardware issues related to driver support/stability
for OpenCL. To maximize Maya’s stability, we have disabled GPU Override in the specific cases that
will lead to problems. We expect to conƟnue to eliminate restricƟons in the future and are acƟvely
working with hardware vendors to address detected driver problems.

You can also increase support for new custom/proprietary deformers using new API extensions (refer to
Custom GPU Deformers for details).

If you have enabled GPU Override and the HUD reports Enabled (0 k), this indicates that no deformaƟons
are happening on the GPU. There could be a number of reasons for this, such as those menƟoned above.

To troubleshoot factors limiƟng use of GPU override for your parƟcular scene, use the deformerEvaluator
command. Supported opƟons include:

Command What does it do?

deformerEvaluator Prints the chain or a each selected node is not supported.
deformerEvaluator -chains Prints all acƟve deformaƟon chains.
deformerEvaluator -meshes Prints a chain for each mesh or a reason if it is not supported.

Dynamics Evaluator

StarƟng in Maya 2017, the dynamics evaluator fully supports parallel evaluaƟon of scenes with Nucleus
(nCloth, nHair, nParƟcles), Bullet, and Bifrost dynamics. Legacy dynamics nodes (e.g., parƟcles, fluids)
remain unsupported. If the dynamics evaluator finds unsupported node types in the EG, Maya will revert
to DG-based evaluaƟon. The dynamics evaluator also manages the tricky computaƟon necessary for cor-
rect scene evaluaƟon. This is one of the ways custom evaluators can be used to change Maya’s default
evaluaƟon behavior.

The dynamics evaluator supports a number of configuraƟon flags to control its behavior.

Flag What does it do?

disablingNodes specifies the set of nodes that will force the dynamics evaluator to
disable the EM. Valid value are: legacy2016, unsupported, and
none.

handledNodes specifies the set of nodes that are going to be captured by the
dynamics evaluator and scheduled in clusters that it will manage.
Valid values are: dynamics and none.

action specifies how the dynamics evaluator will handle its nodes. Valid
values are: none, evaluate, and freeze.

2018 14

http://help.autodesk.com/cloudhelp/2018/ENU/Maya-Tech-Docs/Commands/deformerEvaluator.html

Using Parallel Maya Custom Evaluators

In Maya 2017, the default configuraƟon corresponds to:

evaluator -name dynamics -c "disablingNodes=unsupported";
evaluator -name dynamics -c "handledNodes=dynamics";
evaluator -name dynamics -c "action=evaluate";

where unsupported (i.e., blacklisted) nodes are:

• collisionModel
• dynController
• dynGlobals
• dynHolder
• fluidEmiƩer
• fluidShape
• membrane
• parƟcle (unless also a nBase)
• rigidNode
• rigidSolver
• spring
• nodes derived from the above

This configuraƟon will disable evaluƟon if any unsupported nodes are encountered and perform evalua-
Ɵon for the other handled nodes in the scene.

To revert to Maya 2016 / 2016 Extension 2 behavior, use the configuraƟon:

evaluator -name dynamics -c "disablingNodes=legacy2016";
evaluator -name dynamics -c "handledNodes=none";
evaluator -name dynamics -c "action=none";

where unsupported (i.e., blacklisted) nodes are:

• field
• fluidShape
• geoConnector
• nucleus
• parƟcle
• pointEmiƩer
• rigidSolver
• rigidBody
• nodes derived from the above

2018 15

Using Parallel Maya Custom Evaluators

Tip. To get a list of nodes that will make the dynamics evaluator disable the EM in its present
configuraƟon, use the following command:

evaluator -name "dynamics" -valueName "disabledNodes" -query;

You can configure the dynamics evaluator to ignore unsupported nodes. If you want to try Parallel evalua-
Ɵon on a scenewhere it is disabled because of the presence of unsupported node types, use the following
commands:

evaluator -name dynamics -c "disablingNodes=none";
evaluator -name dynamics -c "handledNodes=dynamics";
evaluator -name dynamics -c "action=evaluate";

Note: Using the dynamics evaluator on unsupported nodes may cause evaluaƟon problems and/or ap-
plicaƟon crashes; this is unsupported behavior. Proceed with cauƟon.

Tip. If you want the dynamics evaluator to skip evaluaƟon of all dynamics nodes in the scene, use
the following commands:

evaluator -name dynamics -c "disablingNodes=unsupported";
evaluator -name dynamics -c "handledNodes=dynamics";
evaluator -name dynamics -c "action=freeze";

This can be useful to quickly disable dynamics when the simulaƟon has a big impact on animaƟon
performance.

Dynamics simulaƟon results are very sensiƟve to evaluaƟon order, which may differ between DG and EM-
based evaluaƟon. Even for DG-based evaluaƟon, evaluaƟon order may depend on mulƟple factors. For
example, in DG-mode when rendering simulaƟon results to the viewport, the evaluaƟon order may be
different than when simulaƟon are performed in ‘headless mode’. Though EM-based evaluaƟon results
are not guaranteed to be idenƟcal to DG-based, evaluaƟon order is consistent; once the evaluaƟon order
is scheduled by the EM, it will remain consistent regardless of whether results are rendered or Maya is
used in batch. This same principle applies to non-dynamics nodes that are order-dependent.

Reference Evaluator

When a reference is unloaded it leaves several nodes in the scene represenƟng reference edits to pre-
serve. Though these nodes may inherit animaƟon from upstream nodes, they do not contribute to what

2018 16

Using Parallel Maya Custom Evaluators

is rendered and can be safely ignored during evaluaƟon. The reference evaluator ensures all such nodes
are skipped during evaluaƟon.

Invisibility Evaluator

Toggling scene object visibility is a criƟcal arƟst workflow used to reduce visual cluƩer and accelerate
performance. To bring this workflow to parallel evaluaƟon, Maya 2017 and above includes the invisibility
evaluator, whose goal is to skip evaluaƟon of any node that does not contribute to a visible object.

The invisibility evaluator will skip evaluaƟon of DAG nodes meeƟng any of the below criteria:

• visibility aƩribute is false.
• intermediateObject aƩribute is true.
• overrideEnabled aƩribute is true and overrideVisibility aƩribute is false.
• node belongs to a display layer whose enabled aƩribute is true and visibility aƩribute is false.
• every instance path contains at least one node for which one of the above statements are true.

As of Maya 2018 the invisibility evaluator supports the isolate select method of hiding objects. If
there is only a single viewport and it has one or more objects isolated then all of the other, unrelated
objects will be considered invisible by the evaluator.

Also in Maya 2018 is support for the animated aƩribute on expression nodes. When this aƩribute is set
to 1 the expression node is not skipped by the invisibility evaluator, even if there are only invisible objects
connected to it.

Note: The default value of the animated aƩribute is 1 so in an expression-heavy scene you may
see a slowdown from Maya 2017 to Maya 2018. To restore performance run the script below to
disable this aƩribute on all expression nodes. (It is only required when the expression has some
sort of side-effect external to the connecƟons, such as prinƟng a message or checking a cache file
size.)

for node in cmds.ls(type='expression'):
cmds.setAttr('{}.animated'.format(node), 0)

Tip: The invisibility evaluator is off by default in Maya 2017. Use the EvaluaƟon Toolkit or this:

cmds.evaluator(enable=True, name='invisibility')

2018 17

Using Parallel Maya Custom Evaluators

to enable the evaluator.

The invisibility evaluator only considers staƟc visibility; nodeswith animated visibilitywill sƟll be evaluated,
even if nodes meet the above criteria. If nodes are in a cycle, all cycle nodes must be considered invisible
for evaluaƟon to be skipped. Lastly, if a node is instanced and has at least one visible path upward, then
all upward paths will be evaluated.

Tip: The invisibility evaluator determines its definiƟon of visible solely from the node’s visibility
state; if your UI or plug-in code requires invisible nodes to evaluate, do not use the Invisibility
Evaluator.

Frozen Evaluator

The frozen evaluator allows users to tag EG subsecƟons as not needing evaluaƟon. It enhances the frozen
aƩribute by propagaƟng the frozen state automaƟcally to related nodes, according to the rules defined by
the evaluator’s configuraƟon. It should only be used by those comfortable with the concepts of connec-
Ɵon and propagaƟon in the DAG and EvaluaƟon Graph. Many users may prefer the invisibility evaluator;
it presents a simpler interface/workflow for most cases.

The Frozen AƩribute

The frozen aƩribute has existed on nodes sinceMaya 2016. It can be used to control whether or not node
is evaluated in Serial or Parallel EM evaluaƟon modes. In principle, when the frozen aƩribute is set, the
EM skips evaluaƟon of that node. However, there are addiƟonal nuances that impact whether or not this
is the case:

• Everything downstream of frozen nodes will sƟll be evaluated, unless they also have the frozen
aƩribute set, or are affected by the frozen evaluator as described below.

• Some nodes may perform opƟmizaƟons that leave their outputs invalid and suscepƟble to change
once evaluated. Freezing these nodes may have unexpected results as nothing preserves the old
values. See the documentaƟon on the nodeState aƩribute for ways to specifically enable caching
on nodes you want to freeze.

• You may have inconsistent per-frame results when the frozen aƩribute is animated. The node
“freezes” when the aƩribute is set, so if you jump around from frame to frame, your object state
reflects the last Ɵme you visited in an unfrozen state. Playback is only consistent if your object is
not frozen from the first frame.

• When the frozen node is in the middle of a cycle, it will not be respected. Cycles evaluate using the
pull model, which does not respect the frozen aƩribute value.

2018 18

Using Parallel Maya Custom Evaluators

• Custom evaluators may or may not respect the frozen aƩribute value. Take this into consideraƟon
as part of their implementaƟon.

Warning: Since all the frozen aƩribute does is skip evaluaƟon, nothing is done to preserve the
current node data during file store; if you load a file with frozen aƩributes set, the nodes may not
have the same data as when you stored them.

OperaƟon

The evaluaƟon manager will not evaluate any node that has its frozen aƩribute set to True, herein re-
ferred to as explicitly frozen nodes. An implicitly frozen node is one that is disabled as a result of the
operaƟon of the frozen evaluator, but whose frozen aƩribute is not set to True. When the frozen eval-
uator is enabled it will also prevent evaluaƟon of related nodes according to the rules corresponding to
the enabled opƟons, in any combinaƟon.

The frozen evaluator operates in three phases. In phase one it gathers together all of the nodes flagged
by the invisible and displayLayers opƟons as being marked for freezing. In phase two it propagates the
freezing state outwards through the evaluaƟon graph according to the values of the downstream and
upstream opƟons.

Phase 1: Gathering The Nodes

The list of nodes for propagaƟon is gathered as follows:

• The nodes with their frozen aƩribute set to True are found. (Note: This does not include those
whose frozen aƩribute is animated. They are handled via Phase 3.)

• If the invisible opƟon is True then any node that is explicitly frozen and invisible (directly, or by
virtue of the fact that its parents are all invisible) will have all of its DAG descendants added to the
list of nodes for Phase 2.

• If the displayLayers opƟon is True then any node that is a member of a display layer that is explicitly
frozen, enabled, and invisible will have it, and all of its DAG descendants added to the list of nodes
for Phase 2.

Phase 2: PropagaƟng The Freezing

The list gathered by Phase 1 will all be implicitly frozen. In addiƟon, the downstream and upstream op-
Ɵons may implicitly freeze nodes related to them. For each of the nodes gathered so far, the evaluaƟon
graph will be traversed in both direcƟons, implicitly freezing nodes encountered according to the follow-
ing opƟons:

2018 19

Using Parallel Maya Custom Evaluators

• downstream opƟon value

– “none” : No further nodes downstream in the EG will be implicitly frozen
– “safe” : Nodes downstream in the EG will be implicitly frozen only if every one of their up-

stream nodes has already been implicitly or explicitly frozen
– “force” : Nodes downstream in the EG will be implicitly frozen

• upstream opƟon value

– “none” : No further nodes upstream in the EG will be implicitly frozen
– “safe” : Nodes upstream in the EG will be implicitly frozen only if every one of their down-

stream nodes has already been implicitly or explicitly frozen
– “force” : Nodes upstream in the EG will be implicitly frozen

Phase 3: RunƟme Freezing

If a node has its frozen or visibility states animated the evaluator sƟll has to schedule it. The runƟme
freezing can sƟll assist at this point in prevenƟng unnecessary evaluaƟon. Normally any explicitly frozen
node will have its evaluaƟon skipped, with all other nodes evaluaƟng normally. When the runƟme opƟon
is enabled, aŌer skipping the evaluaƟon of an explicitly frozen node no further scheduling of downstream
nodes will occur. As a result, if the downstream nodes have no other unfrozen inputs they will also be
skipped.

Note: The runƟme opƟon does not really modify the evaluator operaƟon, it modifies the scheduling of
nodes for evaluaƟon. You will not see nodes affected by this opƟon in the evaluator informaƟon (e.g. the
output from cmds.evaluator(query=True, clusters=True, name='frozen'))

Seƫng OpƟons

OpƟons can be set for the frozen evaluator in one of two ways:

• Accessing them through the EvaluaƟon Toolkit

• Using the evaluator command’s configuraƟon opƟon:

python cmds.evaluator(name='frozen', configuration='KEY=VALUE')

Legal KEY and VALUE values are below, and correspond to the opƟons as described above:

KEY VALUES DEFAULT

runƟme True/False False
invisible True/False False
displayLayers True/False False
downstream ‘off’/‘safe’/‘force’ ‘off’
upstream ‘off’/‘safe’/‘force’ ‘off’

2018 20

Using Parallel Maya Custom Evaluators

Unlike most evaluators the frozen evaluator opƟons are stored in user preferences and will persist be-
tween sessions.

LimitaƟons

• In order to instruct the frozen evaluator to shut off evaluaƟon on affected nodes, you must set at
least one frozen aƩribute to True. The most pracƟcal use of this would be on a display layer so
that nodes can be implicitly frozen as a group.

• If the frozen aƩribute, or any of the aƩributes used to define related implicit nodes for freezing
(e.g. visibility) are animated then the evaluator will not remove them from evaluaƟon. They
will sƟll be scheduled and only the runƟme opƟon will help in avoiding unnecessary evaluaƟon.

• Cycle members are not frozen by the evaluator unless every input to the cycle is frozen. This is a de-
sign choice to reflect that as cycles evaluate as a unit, it is impossible to freeze individual members
of a cycle. It must be all or nothing.

Other Evaluators

In addiƟon to evaluators described above, addiƟonal evaluators exist for specialized tasks:

Evaluator What does it do?

curveManager Prepopulates the evaluaƟon graph with unanimated nodes to be
ready to use parallel evaluaƟon with interacƟve manipulaƟon.
Prototype, work in progress.

ƟmeEditorCurveEvaluator Finds all paramCurves connected to Ɵme editor nodes and puts them
into a cluster that will prevent them from evaluaƟng at the current
Ɵme, since the Ɵme editor will manage their evaluaƟon.

ikSystem AutomaƟcally disables the EM when a mulƟ-chain solver is present in
the EG. For regular IK chains it will perform any lazy update prior to
parallel execuƟon.

disabling AutomaƟcally disables the EM if user-specified nodes are present in
the EG. This evaluator is used for troubleshooƟng purposes. It allow
Maya to keep working stably unƟl issues with problem nodes can be
addressed.

hik Handles the evaluaƟon of HumanIK characters in an efficient way by
recognizing HumanIK common connecƟon paƩerns.

transformFlaƩening Consolidates deep transform hierarchies containing animated parents
and staƟc children, leading to faster evaluaƟon. ConsolidaƟon takes a
snapshot of the relaƟve parent/child transformaƟons, allowing
concurrent evaluaƟon of downstream nodes.

2018 21

Using Parallel Maya API Extensions

Evaluator What does it do?

pruneRoots We found that scenes with several thousand paramCurves become
bogged down because of scheduling overhead from resulƟng EG
nodes and lose potenƟal gains from increased parallelism. To handle
this situaƟon, special clusters are created to group paramCurves into
a small number of evaluaƟon tasks, thus reducing overhead.

Custom evaluator names are subject to change as we introduce new evaluators and expand these func-
ƟonaliƟes.

Evaluator Conflicts

SomeƟmes, mulƟple evaluators will want to “claim responsibility” for the same node(s). This can result
in conflict, negaƟvely impacƟng performance. To avoid these conflicts, each evaluator is associated with
a priority upon registraƟon and nodes are assigned to the evaluator with the highest priority. Internal
evaluators has been ordered to prioriƟze correctness and stability over speed.

API Extensions

Several API extensions and tools have been added to help you make the most of the EM in your pipeline.
This secƟon reviews API extensions for Parallel EvaluaƟon, Custom GPU Deformers, Custom Evaluator
API, and Profiling Plug-ins.

Parallel EvaluaƟon

If your plug-in plays by the DG rules, you probably will not need many changes to make the plug-in work
in Parallel mode. PorƟng your plug-in so it works in Parallel may be as simple as recompiling it against the
latest version of OpenMaya!

If the EM generates different results than DG-based evaluaƟon, make sure that your plug-in:

• Overrides MPxNode::compute(). This is especially true of classes extending MPxTransformwhich
previously relied on asMatrix(). See the rockingTransform SDK sample. For classes deriving from
MPxDeformerNode and MPxGeometryFilter, override the deform()method.

• Handles requests for evaluaƟon at all levels of the plug tree. While the DG can request plug values
at any level, the EM always requests the root plug. For example, for plug N.gp[0].p[1] your com-
pute() method must handle requests for evaluaƟon of N.gp, N.gp[0], N.gp[0].p, and N.gp[0].p[1].

2018 22

Using Parallel Maya API Extensions

If your plug-in relies on custom dependency management, you need to use new API extensions to
ensure correct results. As described earlier, the EG is built using the legacy dirty-propagaƟon mech-
anism. Therefore, opƟmizaƟons used to limit dirty propagaƟon during DG evaluaƟon, such as those
found in MPxNode::setDependentsDirty, may introduce errors in the EG. Use MEvaluaƟonMan-
ager::graphConstrucƟonAcƟve() to detect if this is occurring.

There are new virtual methods you will want to consider implemenƟng:

• MPxNode::preEvaluation. To avoid performing expensive calculaƟons each Ɵme the evalua-
Ɵon method MPxNode::compute() is called, one strategy that plug-in authors use is to store re-
sults from previous evaluaƟons and then rely on MPxNode::setDependentsDirty to trigger re-
computaƟon. As discussed previously, once the EG has been built, dirty propagaƟon is disabled
and the EG is re-used. Threrefore, any custom logic in your plug-in that depends on setDepen-
dentsDirty no longer applies. MPxNode::preEvaluation allows your plug-in to determine which
plugs/aƩributes are dirty and if any acƟon is needed. Use the newMEvaluaƟonNode class to deter-
mine what has been dirƟed. Refer to the simpleEvaluaƟonNode devkit example for an illustraƟon
of how to use MPxNode::preEvaluation.

• MPxNode::postEvaluation. UnƟl now it was difficult to determine at which point all pro-
cessing for a parƟcular node instance was complete. Users someƟmes resorted to complex
bookkeeping/callbacks schemes to detect this situaƟon and perform addiƟonal work, such
as custom rendering. This mechanism was cumbersome and error-prone. A new method,
MPxNode::postEvaluation, is called once all computaƟons have been performed on a specific
node instance. Since this method is called from a worker thread, it performs calculaƟons for
downstream graph operaƟons without blocking other Maya processing tasks of non-dependent
nodes. See the simpleEvaluaƟonDraw devkit example to understand how to use this method. If
you run this example in regular evaluaƟon,Maya slows down, since evaluaƟon is blockedwhenever
expensive calculaƟons are performed. When you run in Parallel EvaluaƟon Mode, a worker thread
calls the postEvaluaƟon method and prepares data for subsequent drawing operaƟons. When
tesƟng, you will see higher frame rates in Parallel evaluaƟon versus regular or Serial evaluaƟon.
Please note that code in postEvaluaƟon should be thread-safe.

Other recommended best pracƟces include:

• Avoid storing state in staƟc variables. Store node state/seƫngs in aƩributes. This has the addi-
Ɵonal benefit of automaƟcally saving/restoring the plug-in state when Maya files are wriƩen/read.

• Node computaƟon should not have any dependencies beyond input values. Maya nodes should
be like funcƟons. Output values should be computed from input state and node-specific internal
logic. Your node should never walk the graph or try to circumvent the DG.

2018 23

http://help.autodesk.com/cloudhelp/2018/ENU/Maya-SDK/cpp_ref/class_m_evaluation_manager.html#aedb4df14a76f10672127a768071670f5
http://help.autodesk.com/cloudhelp/2018/ENU/Maya-SDK/cpp_ref/class_m_evaluation_manager.html#aedb4df14a76f10672127a768071670f5
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_simple_evaluation_node_2simple_evaluation_node_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_simple_evaluation_draw_2simple_evaluation_draw_8cpp_example_html

Using Parallel Maya API Extensions

Custom GPU Deformers

To make GPU Override work on scenes containing custom deformers, Maya provides new API classes that
allow the creaƟon of fast OpenCL deformer back-ends.

Though you will sƟll need to have a CPU implementaƟon for the Ɵmes when it is not possible to target
deformaƟons on the GPU (see GPU Override), you can augment this with an alternate deformer imple-
mentaƟon inheriƟng fromMPxGPUDeformer. This applies to your own nodes as well as to standardMaya
nodes.

The GPU implementaƟon will need to:

• Declare when it is valid to use the GPU-based backend (e.g., youmay want to limit you GPU version
to cases where various aƩributes are fixed, omit usage for specific aƩribute values, etc.)

• Extract MDataBlock input values and upload values to the GPU
• Define and call the OpenCL kernel to perform needed computaƟon
• Register itself with the MGPUDeformerRegistry system. This will tell the system which deformers

you are claiming responsibility for.

When you have done this, do not forget to load your plug-in at startup. Two working devkit examples
(offsetNode and idenƟtyNode) have been provided to get you started.

Tip. To get a sense for the maximum speed increase you can expect by providing a GPU backend
for a specific deformer, tell Maya to treat specific nodes as passthrough. Here’s an example applied
to polySoŌEdge:

GPUBuiltInDeformerControl
-name polySoftEdge
-inputAttribute inputPolymesh
-outputAttribute output
-passthrough;

Although results will be incorrect, this test can confirm if it is worth invesƟng Ɵme implemenƟng
an OpenCL version of your node.

Custom Evaluator API

API classes and methods introduced in Maya 2017 let you define custom evaluators that allow control
over how the Maya scene is computed.

To create a custom evaluator, youmust define a plug-in that extends the MPxCustomEvaluator class. We
describe the key class methods to override, below.

2018 24

https://www.khronos.org/opencl/
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_class_m_px_g_p_u_deformer_html
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_class_m_g_p_u_deformer_registry_html
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_offset_node_2offset_node_8cpp_example_html
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_identity_node_2identity_node_8cpp_example_html

Using Parallel Maya API Extensions

The Basics

Before you can use the new evaluators, they must be registered:

MStatus registerEvaluator(
// name of the evaluator
const char * evaluatorName,

// evaluator priority. Higher priority evaluators get 'first-dibs'
unsigned int uniquePriority,

// function pointer to method returning a new evaluator instance
MCreatorFunction creatorFunction

)

and deregistered:

MStatus deregisterEvaluator(
// name of the evaluator
const char* evaluatorName

)

using MFnPluginmethods. These funcƟons should be used during plug-in iniƟalizaƟon:

MStatus initializePlugin(MObject obj)
{

MFnPlugin plugin(obj, PLUGIN_COMPANY, "3.0", "Any");
MStatus status = plugin.registerEvaluator(

"SimpleEvaluator",
40,
simpleEvaluator::creator);

if (!status)
status.perror("registerEvaluator");

return status;
}

and uniniƟalizaƟon:

MStatus uninitializePlugin(MObject obj)
{

MFnPlugin plugin(obj);

2018 25

Using Parallel Maya API Extensions

MStatus status = plugin.deregisterEvaluator("SimpleEvaluator");
if (!status)

status.perror("deregisterEvaluator");
return status;

}

as illustrated above.

Once the plug-in has been loaded, you can to use Python or MEL commands to enable:

import maya.cmds as cmds
cmds.evaluator(enable=True, name='SimpleEvaluator')

Result: False

disable:

cmds.evaluator(enable=False, name='SimpleEvaluator')

Result: True

and query informaƟon about evaluators:

print cmds.evaluator(query=True)

[u'invisibility', ... u'SimpleEvaluator']

NOTE: The evaluator command returns the previous state of the evaluator (as described in the
documenaƟon). This command fails if the evaluator cannot be enabled.

To view the prioriƟes of all loaded evaluators, use the priority flag on the evaluator command:

for evaluatorName in cmds.evaluator():
print "%-25s : %d" % (

evaluatorName,
cmds.evaluator(name=evaluatorName, query=True, priority=True))

invisibility : 1003000

2018 26

Using Parallel Maya API Extensions

frozen : 1002000
curveManager : 1001000
timeEditorCurveEvaluator : 104000
dynamics : 103000
ikSystem : 102000
disabling : 100000
hik : 7000
reference : 6000
deformer : 5000
transformFlattening : 3000
pruneRoots : 1000
SimpleEvaluator : 40

API Reference

This secƟon provides more detail on different MPxCustomEvaluator API methods.

Claiming clusters

During EG parƟƟoning, each evaluator gets to claim evaluaƟon nodes, using the:

bool MPxCustomEvaluator::markIfSupported(const MEvaluationNode* node)

method. You can safely cause evaluaƟon in this call, but doing so increases parƟƟoning and
evaluaƟon Ɵme. The developer can decide whether evaluaƟon is required (call .inputValue /
.inputArrayValue), or whether the previously-evaluated datablock values can be re-used (call
.outputValue / .outputArrayValue). If mulƟple evaluators mark a specific node, which evaluator is
assigned a node at run-Ɵme is determined by priority. For example, if you have two evaluators, A and
B, mark node C of interest, if evaluator A has priority 100, and evaluator B has priority 10, during graph
parƟƟoning, evaluator A will get the opportunity to grab node C before evaluator B. Evaluators should
not try to grab a node already grabbed by a higher-priority evaluator.

Scheduling

To determine if an evaluator can evaluate clusters in Parallel, use:

MCustomEvaluatorClusterNode::SchedulingType schedulingType(
// a disjoint set of nodes on a custom evaluator layer
const MCustomEvaluatorClusterNode * cluster

)

where:

2018 27

Using Parallel Maya API Extensions

SchedulingType Details

kParallel any number of nodes of the same type can run in parallel
kSerial all nodes of this type should be chained and executed sequenƟally
kGloballySerial only one node of this type can be run at a Ɵme
kUntrusted nothing else can execute with this node since we cannot predict what will

happen

During EG scheduling:

bool MPxCustomEvaluator::clusterInitialize(
const MCustomEvaluatorClusterNode* cluster // evaluation cluster node

)

can be used to perform the required cluster preparaƟon. The pointer to the cluster remains valid unƟl
graph invalidaƟon, such as when the scene topology changes.

Before the cluster is deleted,

void MPxCustomEvaluator::clusterTerminate(
const MCustomEvaluatorClusterNode* cluster // the cluster to terminate

)

is called to allow needed cleanup, for example, releasing evaluator-specific resources. It is up to the
custom evaluator to decide if it wants to clear its internal representaƟon.

ExecuƟon

There are 3 main methods used during execuƟon.

Prior to graph execuƟon, the EM calls:

void MPxCustomEvaluator::preEvaluate(
const MEvaluationGraph* graph // the graph about to be evaluated

)

during execuƟon, the EM calls:

void MPxCustomEvaluator::clusterEvaluate(
const MCustomEvaluatorClusterNode* cluster // the cluster to be evaluated

)

2018 28

Using Parallel Maya API Extensions

Youwill only receive clusters that belong to this evaluator. This call always happens aŌer clusterInitialize
and never aŌer clusterTerminate. Finally,

void MPxCustomEvaluator::postEvaluate(
const MEvaluationGraph* graph // the graph that was evaluated

)

is called just aŌer a graph evaluaƟon is finished.

SimpleEvaluator API Example

Now that we have reviewed relevant API methods, the following is an example that limits evaluaƟon by
caching previous results. simpleEvaluator assumes the existence of scene nodes that tag controller
nodes with animaƟon and works as follows:

In clusterInitialize, we build a list of translaƟon and rotaƟon aƩribute plugs.

// Build a list of plugs by scanning the scene for controller nodes.
// This gets called during scheduling.
bool simpleEvaluator::clusterInitialize(const MCustomEvaluatorClusterNode* cluster)
{

if (fControllerPlugs.length() == 0)
buildPlugListWithControllerTag();

return true;
}

// Scan the scene for any controller nodes, populating the plug list.
// Called during the scheduling phase
void simpleEvaluator::buildPlugListWithControllerTag()
{

MStatus stat;
MItDependencyNodes dgIter(MFn::kControllerTag, &stat);
if (stat != MS::kSuccess)

return;

const char* values[] = {
"translateX",
"translateY",
"translateZ",
"rotateX",
"rotateY",
"rotateZ"

2018 29

Using Parallel Maya API Extensions

};

for (; !dgIter.isDone(); dgIter.next())
{

MFnDependencyNode controllerTagNode(dgIter.thisNode(), &stat);
if (stat != MS::kSuccess)

continue;

MPlug currControllerTagPlug =
controllerTagNode.findPlug("controllerObject", &stat);

if (stat != MS::kSuccess)
continue;

// found controller tag node, now get its source controller
MPlugArray source;
bool retval = currControllerTagPlug.connectedTo(

source,
true /* asDst */,
false /* asSrc */,
&stat)

if ((retval == false) || (stat != MS::kSuccess))
continue;

// there should only be one source with the controller tag node
// as destination
MObject controllerNode = source[0].node(&stat);
if (stat != MS::kSuccess)

continue;

MFnDependencyNode currControllerNode(controllerNode, &stat);
if (stat != MS::kSuccess)

continue;

for (unsigned int j = 0; j < 6; j++)
{

MPlug currPlug = currControllerNode.findPlug(values[j], &stat);
if (stat == MS::kSuccess)

fControllerPlugs.append(currPlug);
else

std::cerr
<< "NO PLUG: "
<< currControllerNode.name().asChar()

2018 30

Using Parallel Maya API Extensions

<< "."
<< values[j]
<< std::endl;

}
}

}

Later, during preEvaluate, which is called per-frame, a hash value is calculated based on the plug values
of the current frame.

void simpleEvaluator::preEvaluate(const MEvaluationGraph* graph)
{

buildHashValue();
}

void simpleEvaluator::buildHashValue()
{

unsigned int length = fControllerPlugs.length();
MStatus stat = MS::kSuccess;

for (unsigned int i = 0; i < length; i++)
{

float value = 0;
stat = fControllerPlugs[i].getValue(value);

if (stat == MS::kSuccess)
{

boost::hash_combine(fCurrentHashValue, value);
}
else
{

std::cerr
<< "NO VALUE: "
<< fControllerPlugs[i].name().asChar()
<< std::endl;

}
}

}

This value is compared with the previous frame’s hash in clusterEvaluate. If the hash is different, the
evaluaƟon proceeds, otherwise we do nothing.

2018 31

Using Parallel Maya API Extensions

void simpleEvaluator::clusterEvaluate(const MCustomEvaluatorClusterNode* cluster)
{

if (fOldHashValue != fCurrentHashValue)
cluster->evaluate();

}

To make sure the hash value is up-to-date, the hash value is stored in postEvaluate.

void simpleEvaluator::postEvaluate(const MEvaluationGraph* graph)
{

fOldHashValue = fCurrentHashValue;
fCurrentHashValue = 0;

}

Finally, when the graph topology becomes invalid, we call clusterTerminate to clear the cached list of
plugs.

void simpleEvaluator::clusterTerminate(const MCustomEvaluatorClusterNode* cluster)
{

if (fControllerPlugs.length() > 0)
fControllerPlugs.clear();

}

Since simpleEvaluator claims control over the enƟre graph, markIfSupported returns true for all
nodes. AddiƟonally, nothing special is done to alter the cluster’s scheduling behavior.

bool simpleEvaluator::markIfSupported(const MEvaluationNode* node)
{

return true;
}

MCustomEvaluatorClusterNode::SchedulingType
simpleEvaluator::schedulingType(const MCustomEvaluatorClusterNode* cluster)
{

return cluster->schedulingType();
}

See the provided simpleEvaluator devkit example for more details and complete source code.

2018 32

http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=__cpp_ref_simple_evaluator_2simple_evaluator_8cpp_example_html

Using Parallel Maya Profiling Your Scene

Profiling Plug-ins

To visualize how long custom plug-ins are taking in the new profiling tools (see Profiling Your Scene) you
will need to instrument your code. Maya provides C++, Python, andMel interface for you to do this. Refer
to the Profiling using MEL or Python or the API technical docs for more details.

Profiling Your Scene

In the past, it could be challenging to understand where Maya was spending Ɵme. To remove the guess
work out of performance diagnosis, Maya includes a new integrated profiler that lets you see exactly how
long different tasks are taking.

You can open the Profiler by selecƟng:

• Windows > General Editors > Profiler from the Maya menu
• Persp/Graph Layout from the Quick Layout buƩons and choosing Panel Layout > Profiler.

Once the Profiler window is visible:

1. Load your scene and start playback
2. Click Start in the Profiler to record informaƟon in the pre-allocated record buffer.
3. Wait unƟl the record buffer becomes full or click Stop in the Profiler to stop recording. The Profiler

shows a graph demonstraƟng the processing Ɵme for your animaƟon.
4. Try recording the scene in DG, Serial, Parallel, and GPU Overridemodes.

Tip. By default the profiler allocates a 20MB buffer to store results. The record buffer can be
expanded via the UI or using the profiler -b value; command, where value is the desired size
in MB. This may be needed for more complex scenes.

The Profiler includes informaƟon for all instrumented code, including playback, manipulaƟon, authoring
tasks, and UI/Qt events. When profiling your scene, make sure to capture several frames of data to ensure
gathered results are representaƟve of scene boƩlenecks.

The Profiler supports several views depending on the task youwish to perform. The default CategoryView,
shown below, classifies events by type (e.g., dirty, VP1, VP2, EvaluaƟon, etc). The Thread and CPU views
show how funcƟon chains are subdivided amongst available compute resources. Currently the Profiler
does not support visualizaƟon of GPU-based acƟvity.

2018 33

http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=GUID-3723226B-8A46-41A4-9FB4-AF5B55DF72A2
http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=GUID-3423BE20-0F03-422D-A05A-A1757C7B0A70

Using Parallel Maya Profiling Your Scene

Now that you have a general sense of what the Profiler tool does, let’s discuss key phases involved in
compuƟng results for your scene and how these are displayed. By understanding why scenes are slow,
you can target scene opƟmizaƟons.

Every ƟmeMaya updates a frame, it must compute and draw the elements in your scene. Hence, compu-
taƟon can be split into one of two main categories:

1) EvaluaƟon (i.e., doing the math that determines the most up-to-date values for scene elements)
2) Rendering (i.e., doing the work that draws your scene in the viewport).

When the main boƩleneck in your scene is evaluaƟon, we say the scene is evaluaƟon-bound. When the
main boƩleneck in your scene is rendering, we say the scene is render-bound.

EvaluaƟon-Bound Performance

There are several different problems that may lead to evaluaƟon-bound performance.

Lock ContenƟon. When many threads try to access a shared resource you may experience Lock Con-
tenƟon, due to lock management overhead. One clue that this may be happening is that evaluaƟon takes
roughly the same duraƟon regardless of which evaluaƟonmode you use. This occurs since threads cannot
proceed unƟl other threads are finished using the shared resource.

2018 34

Using Parallel Maya Profiling Your Scene

Here the Profiler shows many separate idenƟcal tasks that start at nearly the same Ɵme on different
threads, each finishing at different Ɵmes. This type of profile offers a clue that there might be some
shared resource that many threads need to access simultaneously.

Below is another image showing a similar problem.

In this case, since several threads were execuƟng Python code, they all had to wait for the Global Inter-
preter Lock (GIL) to become available. BoƩlenecks and performance loses caused by contenƟon issues
may be more noƟceable when there is a high concurrency level, such as when your computer has many
cores.

If you encounter contenƟon issues, try to fix the code in quesƟon. For the above example, changing node
scheduling converted the above profile to the following one, providing a nice performance gain. For this

2018 35

Using Parallel Maya Profiling Your Scene

reason, Python plug-ins are scheduled as Globally Serial by default. As a result, they will be scheduled
one aŌer the other and will not block mulƟple threads waiƟng for the GIL to become available.

Clusters. As menƟoned earlier, if the EG contains node-level circular dependencies, those nodes will be
grouped into a cluster which represents a single unit of work to be scheduled serially. Although mulƟple
clustersmay be evaluated at the same Ɵme, large clusters limit the amount of work that can be performed
simultaneously. Clusters can be idenƟfied in the Profiler as bars with the opaqueTaskEvaluaƟon label,
shown below.

2018 36

Using Parallel Maya Profiling Your Scene

If your scene contains clusters, analyze your rig’s structure to understand why circulariƟes exist. Ideally,
you should strive to remove coupling between parts of your rig, so rig secƟons (e.g., head, body, etc.) can
be evaluated independently.

Tip. When troubleshooƟng scene performance issues, you can temporarily disable costly nodes
using the per-node frozen aƩribute. This removes specific nodes from the EG. Although the result
you see will change, it is a simple way to check that you have found the boƩleneck for your scene.

Render-Bound Performance

The following is an illustraƟon of a sample result from the Maya Profiler, zoomed to a single frame mea-
sured from a large scene with many animated meshes. Because of the number of objects, different ma-
terials, and the amount of geometry, this scene is very costly to render.

The aƩached profile has four main areas:

• EvaluaƟon (A)

2018 37

Using Parallel Maya Profiling Your Scene

• GPUOverridePostEval (B)
• Vp2BuildRenderLists (C)
• Vp2Draw3dBeautyPass (D)

In this scene, a substanƟal number of meshes are being evaluated with GPU Override and some profiler
blocks appear differently from what they would otherwise.

EvaluaƟon. Area A depicts the Ɵme spent compuƟng the state of the Maya scene. In this case, the
scene is moderately well-parallelized. The blocks in shades of orange and green represent the soŌware
evaluaƟon of DG nodes. The blocks in yellow are the tasks that iniƟate mesh evaluaƟon via GPU Override.
Mesh evaluaƟon on the GPU starts with these yellow blocks and conƟnues concurrently with the other
work on the CPU.

An example of a parallel boƩleneck in the scene evaluaƟon appears in the gap in the center of the evalua-
Ɵon secƟon. The large group of GPU Override blocks on the right depend on a single porƟon of the scene
and must wait unƟl that is complete.

Area A2 (above area A), depicts blue task blocks that show the work that VP2 does in parallel to the scene
evaluaƟon. In this scene, most of the mesh work is handled by GPU Override so it is mostly empty. When
evaluaƟng soŌware meshes, this secƟon shows the preparaƟon of geometry buffers for rendering.

GPUOverridePostEval. Area B is where GPU Override finalizes some of its work. The amount of Ɵme
spent in this block varies with different GPU and driver combinaƟons. At some point there will be a wait
for the GPU to complete its evaluaƟon if it is heavily loaded. This Ɵme may appear here or it may show
as addiƟonal Ɵme spent in the Vp2BuildRenderLists secƟon.

Vp2BuildRenderList. Area C. Once the scene has been evaluated, VP2 builds the list of objects to render.
Time in this secƟon is typically proporƟonal to the number of objects in the scene.

Vp2PrepareToUpdate. Area C2, very small in this profile. VP2 maintains an internal copy of the world
and uses it to determine what to draw in the viewport. When it is Ɵme to render the scene, we must
ensure that the objects in the VP2 database have beenmodified to reflect changes in theMaya scene. For
example, objects may have become visible or hidden, their posiƟon or their topology may have changed,
and so on. This is done by VP2 Vp2PrepareToUpdate.

Vp2PrepareToUpdate is slow when there are shape topology, material, or object visibility changes. In this
example, Vp2PrepareToUpdate is almost invisible since the scene objects require liƩle extra processing.

Vp2ParallelEvaluaƟonTask is another profiler block that can appear in this area. If Ɵme is spent here, then
some object evaluaƟon has been deferred from the main evaluaƟon secƟon of the EvaluaƟon Manager
(area A) to be evaluated later. EvaluaƟon in this secƟon uses tradiƟonal DG evaluaƟon.

Common cases for which Vp2BuildRenderLists or Vp2PrepareToUpdate can be slow during Parallel Evalu-
aƟon are:

• Large numbers of rendered objects (as in this example)
• Mesh topology changes

2018 38

Using Parallel Maya TroubleshooƟng Your Scene

• Object types, such as image planes, requiring legacy evaluaƟon before rendering
• 3rd party plug-ins that trigger API callbacks

Vp2Draw3dBeautyPass. Area D. Once all data has been prepared, it is Ɵme to render the scene. This is
where the actual OpenGL or DirectX rendering occurs. This area is broken into subsecƟons depending on
viewport effects such as depth peeling, transparency mode, and screen space anƟ-aliasing.

Vp2Draw3dBeautyPass can be slow if your scene:

• Has Many Objects to Render (as in this example).
• Uses Transparency. Large numbers of transparent objects can be costly since the default trans-

parency algorithmmakes scene consolidaƟon less effecƟve. For very large numbers of transparent
objects, seƫng Transparency Algorithm (in the vp2 seƫngs) to Depth Peeling instead of Object
SorƟng may be faster. Switching to untextured mode can also bypass this cost

• Uses Many Materials. In VP2, objects are sorted by material prior to rendering, so having many
disƟnct materials makes this Ɵme-consuming.

• Uses Viewport Effects. Many effects such as SSAO (Screen Space Ambient Occlusion), Depth of
Field, MoƟon Blur, Shadow Maps, or Depth Peeling require addiƟonal processing.

Other ConsideraƟons. Although the key phases described above apply to all scenes, your scenemay have
different performance characterisƟcs.

For staƟc scenes with limited animaƟon, or for non-deforming animated objects, consolidaƟon is used
to improve performance. ConsolidaƟon groups objects that share the same material. This reduces Ɵme
spent in both Vp2BuildRenderLists and Vp2Draw3dBeatyPass, since there are fewer objects to render.

Saving and Restoring Profiles

Profile data can be saved at any Ɵme for later analysis using the Edit -> Save Recording... or
Edit -> Save Recording of Selected Events... menu items in the Profiler window. Everything
is saved as plain string data (see the appendix describing the profiler file format for a descripƟon of how
it is stored) so that you can load profile data from any scene using the Edit -> Load Recording...
menu item without loading the scene that was profiled.

TroubleshooƟng Your Scene

Analysis Mode

The purpose of Analysis Mode is to perform more rigorous inspecƟon of your scene to catch evaluaƟon
errors. Since Analysis Mode introduces overhead to your scene, only use this during debugging acƟviƟes;

2018 39

Using Parallel Maya TroubleshooƟng Your Scene

animators should not enable Analysis Mode during their day-to-day work. Note that Analysis Mode is not
thread-safe, so it is limited to Serial; you cannot use analysis mode while in Parallel evaluaƟon.

The key funcƟon of Analysis Mode is to:

• Search for errors at each playback frame. This is different than Safe Mode, which only tries to
idenƟfy problems at the start of parallel execuƟon.

• Monitor read-access to node aƩributes. This ensures that nodes have a correct dependency struc-
ture in the EG.

• Return diagnosƟcs to beƩer understandwhich nodes influence evaluaƟon. This is currently limited
to reporƟng one desƟnaƟon node at a Ɵme.

Tip. To acƟvate Analysis Mode, use the dbtrace -k evalMgrGraphValid;MEL command.

Once acƟve, error detecƟon occurs aŌer each evaluaƟon. Missing dependencies are saved to a file
in your machine’s temporary folder (e.g., %TEMP%_MayaEvaluationGraphValidation.txt on
Windows). The temporary directory on your plaƞorm can be determined using the internalVar
-utd;MEL command.

To disable Analysis Mode, type: dbtrace -k evalMgrGraphValid -off;

Let’s assume that your scene contains the following three nodes. Because of the dependencies, the eval-
uaƟon manager must compute the state of nodes B and C prior to calculaƟng the state of A.

Now let’s assume Analysis Mode returns the following report:

Detected missing dependencies on frame 56
{

A.output <-x- B
A.output <-x- C [cluster]

2018 40

Using Parallel Maya TroubleshooƟng Your Scene

}
Detected missing dependencies on frame 57
{

A.output <-x- B
A.output <-x- C [cluster]

}

The <-x- symbol indicates the direcƟon of the missing dependency. The [cluster] term indicates that
the node is inside of a cycle cluster, which means that any nodes from the cycles could be responsible for
aƩribute access outside of evaluaƟon order

In the above example, B accesses the output aƩribute of A,which is incorrect. These types of dependency
do not appear in the EvaluaƟon Graph and could cause a crash when running an evaluaƟon in Parallel
mode.

There are mulƟple reasons that missing dependencies occur, and how you handle them depends on the
cause of the problem. If Analysis Mode discovers errors in your scene from bad dependencies due to:

• A user plug-in. Revisit your strategy for managing dirty propagaƟon in your node. Make sure that
any aƩempts to use “clever” dirty propagaƟon dirty the same aƩributes every Ɵme. Avoid using
different noƟficaƟon messages to trigger pulling on aƩributes for computaƟon.

• A built-in node. You should communicate this informaƟon to us. This may highlight an error that
we are unaware of. To help us best diagnose the causes of this bug, we would appreciate if you can
provide us with the scene that caused the problem.

Graph ExecuƟon Order

There are two primary methods of displaying the graph execuƟon order.

The simplest is to use the ‘compute’ trace object to acquire a recording of the computaƟon order. This
can only be used in Serial mode, as explained earlier. The goal of compute trace is to compare DG and
EM evaluaƟon results and discover any evaluaƟon differences related to a different ordering or missing
execuƟon between these two modes.

Keep in mind that there will be many differences between runs since the EM executes the graph from
the roots forward, whereas the DG uses values from the leaves. For example in the simple graph shown
earlier, the EM guarantees that B and C will be evaluated before A, but provides no informaƟon about
the relaƟve ordering of B and C. However in the DG, A pulls on the inputs from B and C in a consistent
order dictated by the implementaƟon of node A. The EM could show either ”B, C, A” or ”C, B, A” as their
evaluaƟon order and although both might be valid, the user must decide if they are equivalent or not.
This ordering of informaƟon can be even more useful when debugging issues in cycle computaƟon since
in both modes a pull evaluaƟon occurs, which will make the ordering more consistent.

2018 41

Using Parallel Maya Appendices

The EvaluaƟon Toolkit

A set of debugging tools used to be shipped as a special shelf in Maya Bonus Tools, but they are now built-
in within Maya. The EvaluaƟon Toolkit provides features to query and analyze your scene and to acƟvate
/ deacƟvate various modes. See the accompanying EvaluaƟon Toolkit documentaƟon for a complete list
of all helper features.

Known LimitaƟons

This secƟon lists known limitaƟons for the new evaluaƟon system.

• VP2 MoƟon Blur will disable Parallel evaluaƟon. For MoƟon Blur to work, the scene must be
evaluated at different points in Ɵme. Currently the EM does not support this.

• Scenes using FBIK will revert to Serial. For several years now, Autodesk has been deprecaƟng FBIK.
We recommend using HIK for full-body retargeƟng/solving.

• dbtrace will not work in Parallel mode. As stated in the Analysis Mode secƟon, the dbtrace com-
mand only works in Serial evaluaƟon. Having traces enabled in Parallel mode will likely causeMaya
to crash.

• The DG Profiler crashes in ParallelMode. Unless you are in DG evaluaƟonmode, youwill be unable
to use the legacy DG profiler. Time permiƫng, we expect to move features of the DG profiler into
the new thread-safe integrated profiler.

• Batch rendering scenes with XGen may produce incorrect results.
• EvaluaƟon manager in both Serial and Parallel mode changes the way aƩributes are cached. This

is done to allow safe parallel evaluaƟon and prevent re-computaƟon of the same data by mulƟple
threads. This means that some scenes may evaluate differently if mulƟple computaƟons of the
same aƩribute occur in one evaluaƟon cycle. With the EvaluaƟon Manager, the first value will be
cached.

• VP2 Direct update does not work with polySoŌEdge nodes.

Appendices

Profiler File Format

The profiler stores its recording data in human-readable strings. The format is versioned so that older
format files can sƟll be read into newer versions of Maya (though not necessarily vice-versa).

This is a descripƟon of the version 1 format, present in versions of Maya up to and including 2018.

First, a content example:

2018 42

http://help.autodesk.com/view/MAYAUL/2018/ENU/?guid=GUID-E22B253D-914B-4056-93F5-755702A6C998

Using Parallel Maya Appendices

1 #File Version, # of events, # of CPUs
2 2\t12345\t8
3 Main\tDirty
4 #Comment mapping---------
5* @27 = MainMayaEvaluation
6 #End comment mapping---------
7 #Event time, Comment, Extra comment, Category id, Duration, \

Thread Duration, Thread id, Cpu id, Color id
8* 1234567\t@12\t@0\t2\t12345\t11123\t36\t1\t14
9 #Begin Event Tag Mapping---------
10 #Event ID, Event Tag
11* 123\tTaggy McTagface
12 #End Event Tag Mapping---------
13 #Begin Event Tag Color Mapping---------
14 #Tag Label, Tag Color
15* Taggy\tMcTagface\t200\t200\t13
16 #End Event Tag Color Mapping---------
EOF

The following table describes the file format structure by referring to the previous content:

Line(s) DescripƟon

1 A header line with general file informaƟon names
2 A tab-separated line containing the header informaƟon
3 A tab-separated line containing the list of categories used by the events (category ID is

the index of the category in the list)
4 A header indicaƟng the start of comment mapping (a mapping from an ID to the string it

represents)
5* Zero or more lines lines mapping a number onto a string in the form @LINE = STRING.

The IDs do not correspond to anything outside of the file.
6 A footer indicaƟng the end of comment mapping

2018 43

Using Parallel Maya Appendices

Line(s) DescripƟon

7 A header indicaƟng the start of event informaƟon. The names are the Ɵtles of the event
columns.

• Event Ɵme is the absolute Ɵme, in Ɵcks, the event started
• DuraƟon is the total amount of Ɵme, in Ɵcks, for the enƟre event
• Thread duraƟon is the total amount of Ɵme, in Ɵcks, the event took inside the

thread
• Comment and Extra comment use an ID from the comment mapping above
• Category id is the index of the event’s category from the list at line 3
• Cpu id and Thread id are the ones in which the event took place. Actual values are

arbitrary; only meant to disƟnguish unique CPUs and Threads
• Color id is an index into the color mapping internal to the app (colors at the Ɵme of

creaƟon are not stored in the file).

8* Zero or more tab-separated lines mapping to all of the events that were stored in the file
9 A header indicaƟng the start of the event tag maps
10 A Ɵtle line showing what values are in the event tag map columns
11* Zero or more tab-separated lines aƩaching an event tag, defined through the profiler tool,

to a specific event ID. The event ID will correspond to the ID given to it in the comment
mapping secƟon.

12 A footer indicaƟng the end of the event tag maps
13 A header indicaƟng the start of the event tag color maps
14 A Ɵtle line showing what values are in the event tag color map columns
15* Zero or more tab-separated lines mapping a tag label defined above to an R,G,B color
16 A header indicaƟng the end of the event tag color maps
EOF

Sample version 2 file on 4 CPUs containing a single event of type “ETName”, descripƟon “ETDescripƟon”,
in category “ETCategory” with descripƟon “Category descripƟon”, using color 7, of duraƟon 100 Ɵcks,
starƟng at Ɵck 999, on a single thread with ID 22, tagged with “TagMe” which has color red (255 0 0)

#File Version, # of events, # of CPUs
2 1 4
ETCategory
Category description
#Comment mapping---------
@0 = ETName
#End comment mapping---------
999 @0 @0 1 100 100 22 1 7

2018 44

Using Parallel Maya Appendices

#Begin comment description mapping---------
@1 = ETDescription
#End comment description mapping---------
#Begin Event Tag Mapping---------
#Event ID, Event Tag
1 TagMe
#End Event Tag Mapping---------
#Begin Event Tag Color Mapping---------
#Tag Label, Tag Color
TagMe 255 0 0
#End Event Tag Color Mapping---------

Debugging Commands

Several commands can be used to help display informaƟon about your scene to help in debugging or
opƟmizaƟons. This is a summary of some of the more common ones, and represents only the available
runƟme informaƟon. Consult the command documentaƟon inMaya’s online technical documentaƟon for
more informaƟon about each command.

dbcount

Maintains embedded code locaƟon counters for higher-level debugging of scene operaƟon. Generally,
this uses specialized code that is only available in custom builds.

Synopsis: dbcount [flags]
Flags:

-e -enabled on|off
-f -file String
-k -keyword String
-l -list
-md -maxdepth UnsignedInt
-q -quick
-r -reset
-s -spreadsheet

Command Type: Command

dbmessage

Monitors messaging that adds and removes DAG and DG nodes.

2018 45

http://help.autodesk.com/cloudhelp/2018/ENU/Maya-Tech-Docs/CommandsPython/index.html

Using Parallel Maya Appendices

Synopsis: dbmessage [flags]
Flags:

-f -file String
-l -list
-m -monitor on|off
-t -type String

Command Type: Command

dbtrace

Turns on condiƟonal code, typically to print out status informaƟon or to take different code paths when
enabled.

To find available trace objects use dbtrace –q to list currently-enabled traces, and dbtrace –q –off to list
currently-disabled traces.

See below for informaƟon on specific keywords.

Note: Work is currently in progress to make these trace objects more flexible. It is a current design con-
straint that someƟmes they are visible in a release, even though they only funcƟon internally, and some
cannot be used when using Parallel evaluaƟon.

Synopsis: dbtrace [flags]
Flags:

-q -query
-f -filter String
-i –info
-k -keyword String (multi-use)

(Query Arg Optional)
-m -mark
-o -output String

-off -
-t -title String
-tm -timed on|off
-v -verbose

Command Type: Command

2018 46

Using Parallel Maya Appendices

Keyword DescripƟon Contents (Default Output File)

cipEM Shows what Customer
Improvement Program
data is being collected.

Generic usage informaƟon. No longer being
used (n/a)

cmdTracking Enables the tracking of
counts of commands. Use
the dbpeek ‘cmdTracking’
operaƟon to view the
results.

No output, but enables tracking of the counts
for all commands being executed. (For
example, you can turn it on during file load to
get a count of the number of createNode
calls, including those in referenced files, a
task that is difficult to do manually) (n/a)

compute High level trace of the
compute path

Nested output showing compute methods
being called. Typically in EMmode you should
see nesƟng only in cycles. DG mode will show
the full set of nodes triggered by a single
evaluaƟon request (_Trace_Compute.txt)

dbCache Data block manipulaƟon Details of the creaƟon and manipulaƟon of
datablock informaƟon
(_Trace_DataBlockCache.txt)

deformerEvaluator StaƟsƟcs for the deformer
evaluator setup

Shows staƟsƟcs on what the deformer
evaluator was able to ingest, once enabled
(cerr)

evalMgrGraphCreaƟon Internal use only (n/a)

evalMgrGraphSched Internal use only (n/a)
evalMgrGraphValid EvaluaƟon manager

execuƟon graph validaƟon
errors and warnings

Nodes that were evaluated while in EMS
mode using the pull (DG) model. This
indicates missing dependencies in the
evaluaƟon graph, possibly caused by custom
dirty propagaƟon
(_MayaEvaluaƟonGraphValidaƟon.txt)

evalMgrSched Internal use only (n/a)
idleBuild OperaƟon of the idle build

mechanism for the
evaluaƟon graph

When the idle build is acƟve, this appears
when the idle build is triggered and executed
(_Trac_EGBuild.txt)

nodeTracking Enables tracking of counts
of created nodes. Use the
dbpeek ‘nodeTracking’
operaƟon to view results.

(n/a)

peekData Shows progress of the
dbpeek -op data operaƟon

Dumps data collected by the dbpeek
operaƟon, and how (_Trace_DbPeekData.txt)

2018 47

Using Parallel Maya Appendices

Keyword DescripƟon Contents (Default Output File)

peekMesh Shows progress of the
dbpeek -op data operaƟon

Dumps data collected by the dbpeek
operaƟon, and with what flags
(_Trace_DbPeekMesh.txt)

dgdebug

Historical debugging command; not robust or documented. Deprecated: Use the newer dbpeek com-
mand.

No help is provided for this command.

dgdirty

Forces dirty/clean states onto specified plugs and everything downstream from them. Meant to be a
safety net for restoring proper states to your scene when something has gone wrong.

You should not need to use this command, but it will conƟnue to exist as a “reset buƩon”, just in case.

Synopsis: dgdirty [flags] [String...]
Flags:

-q -query
-a -allPlugs
-c -clean
-i -implicit
-l -list String
-p -propagation
-st -showTiming
-v -verbose

Command Type: Command

dgeval

Forces the node to compute certain plugs. Like dgdirty, this command is meant to be a safety net if
computaƟon has not occurred in the proper order. Similar in funcƟon to the getAƩr command, but since
it returns no results, it can handle all aƩribute types, not only those supported by getAƩr.

Synopsis: dgeval [flags] String...

2018 48

Using Parallel Maya Appendices

Flags:
-src -
-v -verbose

Command Type: Command

dgInfo

Dumps informaƟon about the current state of the graph. Be aware that when plug dirty states are re-
ported, they represent the connecƟon associated with the plug. In fan-out or in-out connecƟons there
will be more than one dirty state associated with the connecƟon aƩached to the plug. This means it is
legal to see A->B as dirty but B->A as clean if A has mulƟple connecƟons. Being Deprecated: Use the
newer dbpeek command.

Synopsis: dgInfo [flags] [String...]
Flags:
-all -allNodes
-c -connections
-d -dirty on|off
-n -nodes
-nd -nonDeletable
-nt -type String
-of -outputFile String
-p -propagation on|off
-s -short

-sub -subgraph
-sz -size

Command Type: Command

dgmodified

Checks on the reason a file requests saving when no changes have been made.

Synopsis: dgmodified

No Flags.

2018 49

Using Parallel Maya Appendices

dbpeek

This command is called out intenƟonally, as it combines mulƟple operaƟons into a single command by
use of various operaƟons.

It runs one of several operaƟons that provide a view into the data internals in the scene. This is the most
useful and flexible of the debugging commands, and new variaƟons of it are oŌen being introduced. Use
dbpeek -q -op to show a list of currently available operaƟons and dbpeek -op X -q to show detailed help
for operaƟon X.

See below for informaƟon on specific keywords.

Note: The syntax of the argument flag allows for both keyword argument=’key’ and keyword/value argu-
ment=’key=value’ forms.

Synopsis: dbpeek [flags] [String...]
Flags:

-q -query
-a -argument String (multi-use) (Query Arg Mandatory)

-all -allObjects
-c -count UnsignedInt
-eg -evaluationGraph
-of -outputFile String
-op -operation String (Query Arg Optional)

Command Type: Command

dbpeek -op aƩributes

Analyzes node or node-type aƩributes and dumps informaƟon about them based on what the selected
operaƟon type.

Various arguments to the operaƟon change the content of the output. The essence remains the same;
the aƩributes belong to the node or node type.

Argument Meaning

detail Adds all internal details from aƩributes being dumped, otherwise dumps only the
names and structure. The details are output as object members of the aƩribute,
including the children.

nodeType Dumps all aƩributes belonging to the selected node(s) types. If nothing is selected,
it dumps the aƩributes for all available node types. This includes all node types up
the hierarchy to the base node class.

noDynamic Skips dynamic aƩributes in all output.
noExtension Skips extension aƩributes in all output.

2018 50

Using Parallel Maya Appendices

Argument Meaning

noStaƟc Skips staƟc aƩributes in all output.
onlyPlugins Restricts any output to nodes and node types that originate from a plug-in.
type=affects Dumps aƩribute structure and affects relaƟonships in the graphical .dot format.
type=detail Dumps aƩribute informaƟon in .json format. This is the default if no type is

specified.
type=validate Validates flags and structure for consistency and validity.

If no nodes are selected, then this command prints the list of all aƩributes on all nodes. For example, if
you had a node type called reversePoint with a vector input and a vector output.

type=detail would output this JSON data:

{
"nodes" :
{
"reversePoint" :
{

"staticAttributes" : [
{ "pointInput" : [

"pointInputX",
"pointInputY",
"pointInputZ",

]
},
{ "pointOutput" :
[
"pointOutputX",
"pointOutputY",
"pointOutputZ",

]
}

],
"extensionAttributes" : []

}
}

}

type=affects would output this DOT data:

digraph G

2018 51

Using Parallel Maya Appendices

{
compound=true;
subgraph cluster_NODENAME
{

label="Node NODENAME, Type NODETYPE";
color=".7 .0 .0";
ia [label="ia/inputAttribute",style="rounded",shape=ellipse];
oa [label="oa/outputAttribute",style="rounded",shape=rectangle];
ia -> oa;

}
}

and type=validate would output this JSON validaƟon summary:

{
"Attribute Validation" :
{
"NODENAME" :
{

"staticAttributes" :
[
{
"Both input and output attributes in compound" :
[
{ "root" : "rootAttribute",
"inputs" : ["inputChild"],
"outputs" : ["outputChild"],

}
]

}
]

}
}

}

dbpeek -op cmdTracking

By default, when no detail argument is present it shows a list of all commands run since the last reset as
well as a count of how many of each type were executed.

Outputs in command/count pair form, one per line, with a tab character separaƟng them.

2018 52

Using Parallel Maya Appendices

Argument Meaning

reset Set all of the command tracking staƟsƟcs to zero

dbpeek -op connecƟons

By default, when no type argument is present, shows a list of all connecƟons in the DG.

Argument Meaning

summary Reduces the output to show only the connecƟon counts on the nodes. It separates
by single and mulƟ but no further informaƟon is added. Useful for geƫng basic
usage informaƟon.

verbose Shows extra informaƟon about every connecƟon, including dirty/propagaƟon
states, plug ownership, and type connecƟvity of the connecƟon. ConnecƟons can
be single or mulƟ, and be connected either to each other or to plugs.

dbpeek -op data

Dumps the current contents of a node’s plug data in a standard format. By default the output is in CSV
format consisƟng of 5 columns: NODE PLUG DATA_TYPE CLEAN_STATE DATA_AS_TEXT

Example for a simple integer aƩribute with a dirty value of 5: MyNode MyPlug Int32 0 5

Argument Meaning

eval Evaluates plugs first to guarantee that they are clean. Note: Some plugs are always
dirty so there may sƟll be plugs that show a dirty value.

full Includes plugs with default values in the output.
json Uses JSON format for the output. The general form is { "NODE" : { "PLUG" : {

"TYPE", "CLEAN", "VALUE" } } }. For example, a simple numeric aƩribute
with a dirty value of 5 { "MyNode" : { "MyPlug", "0", "5" } }

matrix Includes all plugs with a “matrix” data type in the output. This does not include
generic data that may have a matrix value at runƟme, only aƩributes that are
exclusively matrix types.

number Includes all plugs with any numerical data type in the output. This does not include
any generic data that may have numerical value at runƟme, only aƩributes that are
exclusively numeric types. It includes all types of numeric values, including linear,
angular, Ɵme, and unitless values.

state Includes the current dirty state of the data in the output.
Ɵme=TIME Rather than evaluaƟng at the normal context, evaluates at a context using the given

Ɵme. This is somewhat equivalent to getAƩr -t TIME.

2018 53

Using Parallel Maya Appendices

Argument Meaning

vector Includes all plugs with a “vector” data type in the output. Does not include generic
data that may have a vector value at runƟme, only aƩributes that are exclusively
double[3] types.

dbpeek -op context

Analyzes context evaluaƟon to detect various errors violaƟng the design.

Argument Meaning

isolaƟonType=animatedAƩributes Filters errors, reporƟng only those involving animated
aƩributes

isolaƟonType=animatedNodes Filters errors, reporƟng only those involving animated nodes
isolaƟonType=staƟcAndAnimated Reports all errors
test=isolaƟon During evaluaƟon, detects when evaluaƟon context is violated

causing data to be read or wriƩen into a state that belongs to
some other evaluaƟon context

test=correctness Evaluates the scene in the background, comparing evaluaƟon
data stored for background and main context; compares
traversing evaluaƟon graph visiƟng nodes only if all upstream
nodes generate equivalent data in both the background and
the main context

Ɵme=TIME Takes a string value indicaƟng the frame Ɵme at which
evaluaƟon should be performed.

verbose Adds extra informaƟon to output report. Each test will have its
own verbose data. IsolaƟon: Adds callstack informaƟon to the
report for each detected error. Correctness: Adds aƩributes
which compare failed to compare (due to missing logic)

Sample output for isolaƟon tests:

{
"context isolation": {

"frame": 5.0,
"type": "animatedNodes",
"verbose": true,
"errors": [

{
"node": "ikHandle1",

2018 54

Using Parallel Maya Appendices

"type": "ikHandle",
"attribute": "ikFkManipulation",
"call stack": [

"METHOD Line NUMBER",
"METHOD Line NUMBER",
"METHOD Line NUMBER"

]
},
{

"node": "shape",
"type": "mesh",
"attribute": "displaySmoothMesh",
"call stack": [

"METHOD Line NUMBER",
"METHOD Line NUMBER",
"METHOD Line NUMBER"

]
}

],
"time out": true

}
}

Sample output for correctness tests:

{
"context correctness": {

"frame": 14.0,
"verbose": true,
"errors": [

{
"node": "IKSpineCurveShape",
"type": "nurbsCurve",
"attributes": [

"worldSpace"
]

}
],
"failed to compare": [

"input",
"clusterXforms",
"clusterTransforms",

2018 55

Using Parallel Maya Appendices

"target",
"mySpecialAttribute"

],
"time out": true

}
}

dbpeek -op edits

Shows a list of all nodes for which tracking is currently enabled. The “track” flag is mandatory.

Argument Meaning

track Shows a list of all nodes for which tracking is currently enabled.

dbpeek -op evalMgr

Outputs the current state of all of the custom evaluators used by the EvaluaƟon Manager.

Argument Meaning

custom Outputs the custom evaluators registered with the evaluaƟon manager.
global Adds output that is independent of scene contents, for example, node types

enabled for the custom evaluators.
local Adds output that is specific to the scene contents, for example, nodes supported by

a custom evaluator.

dbpeek -op graph

Gets a list of nodes or connecƟons from either the dependency graph or the underlying evaluaƟon graph.

Argument Meaning

connecƟons Dumps the list of all connecƟons in the chosen graph. The sorƟng order is
alphabeƟcal by desƟnaƟon plug name.

dot Dumps the graph informaƟon in .dot format for parsing and display by an external
applicaƟon such as graphViz.

evaluaƟonGraph Gets the structure informaƟon from the evaluaƟon graph, otherwise uses the raw
dependency graph. The dbpeek command flag “evaluaƟonGraph” does the same
thing.

graph Dumps the graph state and contents, not including what is dumped by any of the
other flags.

2018 56

Using Parallel Maya Appendices

Argument Meaning

nodes Dumps the list of all nodes in the chosen type of graph, in alphabeƟcal order by
full node name.

plugs For the evaluaƟon graph opƟon, dumps the list of all plugs in its dirty plug list in
the evaluaƟon nodes. For the DG opƟon, dumps the list of plugs currently in the
plug trees.

scheduling Dumps the scheduling type used for all nodes in the type of graph in the form
NODE = SCHEDULING_TYPE. If a node type is specified, the default scheduling type
for nodes of that specific node type is returned in the same format.

verbose When dumping the scheduling graph in .dot format, adds all of the names of the
nodes to the clusters. Otherwise, it is only a count of nodes in each cluster

dbpeek -op mesh

Dumps the current contents of themesh to a standard format. There are two types of formaƫng and two
levels of detail to present.

Argument Meaning

eval Evaluates mesh plugs first to guarantee they are clean. Otherwise the values
currently present in the mesh shape are used as-is.

json Dumps data in JSON format instead of CSV.
verbose Puts full values for all of the data in the output. Otherwise, only a number count of

each type is returned. See the flag descripƟons for more informaƟon on which data
can be requested and what is returned for each type.

vertex Includes vertex posiƟon or vertex count in the output. The short return is a count
of verƟces in the mesh. The verbose values are a list of vertex number and the
{X,Y,Z} posiƟons of the vertex, with W factored in, if appropriate.

For the default level of detail, the default CSV format output will look like this:

NODE_NAME,DATA_TYPE,DATA_COUNT

For example, a cube containing 32 verƟces would have these lines:

Node,DataType,Count
pCubeShape1,outMesh,32

The JSON equivalent format would look like this:

2018 57

Using Parallel Maya Appendices

{
"pCubeShape1" : {

"outMesh" : "32"
}

}

If the full detail is requested, then the (abbreviated) output for CSV format will look like this:

Node,Plug,Clean,Value
pCubeShape1,outMesh[0],1,0.0 0.0 0.0
pCubeShape1,outMesh[1],1,0.0 0.5 0.0
...
pCubeShape1,outMesh[32],1,1.0 1.0 1.0

and like this for JSON format:

{
"pCubeShape1" : {

"outMesh" : {
"clean" : 1,
"0" : { ["0.0", "0.0", "0.0"] },
"1" : { ["0.0", "0.5", "0.0"] }
...

"32": { ["1.0", "1.0", "1.0"] }
}

}

}

dbpeek -op metadata

Shows node metadata. The default operaƟon shows a list of all nodes containing metadata.

Argument Meaning

summary Shows a single line per node, with metadata indicaƟng how many channels,
streams, and values are present in the metadata.

verbose Shows a detailed list of all metadata on nodes, including a dump in the debug
serializaƟon format for each of the metadata streams.

2018 58

Using Parallel Maya Appendices

dbpeek -op node

Show select debugging informaƟon on DG nodes. See also the “plug” and “connecƟon” operaƟons for
display of informaƟon specific to those facets of a node. If no arguments are used then the ones marked
as [default] will all be enabled, for convenience.

Argument Meaning

datablock [default] Shows the values in the datablock(s)
datablockMemory Shows raw datablock memory. This is independent of the other other datablock

flags.
dynamicAƩr Shows dynamic aƩributes.
evaluaƟonGraph [default] Includes evaluaƟon graph informaƟon on the node

extensionAƩr Shows the extension aƩributes
node [default] Shows informaƟon specific to individual node types, such internal

caches, flags, or special relaƟonships it maintains. All other data shown is
common to all node types

plug [default] Shows the nodes plug informaƟon
skipClean Does not include datablock values that are clean
skipDirty [default] Does not include the datablock values that are dirty
skipMulƟ Does not include the datablock values that are mulƟ (array) aƩributes
staƟcAƩr Shows the staƟc aƩributes
verbose Shows much more detail where available. This will include things such as flags set

on objects, full detail on heavy data, and any extra detail specific to a node type,
such as caches.

dbpeek -op nodes

By default, when no detail argument is present, shows a list of all currently registered node types.

Argument Meaning

binary Also includes the IFF tag used to idenƟfy each node type in the “.mb” file format

dbpeek -op nodeTracking

By default, when no argument is present, shows a list of all nodes created since the last reset along with
a count of how many of each type were created. Output is in the form of nodeType/count pairs, one per
line, with a tab character separaƟng them.

2018 59

Using Parallel Maya Revisions

Argument Meaning

reset Erases all of the node tracking staƟsƟcs.

dbpeek -op plugs

Shows informaƟon about all of the plugs in a scene. By default, when no argument is present, shows
staƟc plug footprint. A lot of this is only displayed in specially-instrumented builds, and generally only of
use internally.

Argument Meaning

details Includes the full plug/node name informaƟon in the output. Otherwise only the
total and summary counts are dumped.

group=stat Groups all output by staƟsƟc name
group=node Groups all output by node name
mode=footprint Reports size informaƟon for currently-exisƟng networked plugs.

mode=usage Reports dynamic code path staƟsƟcs, if they have been enabled in the current
build

mode=reset When used in conjuncƟon with “usage”, resets the staƟsƟcs back to zero.
mode=state Gets unevaluated state informaƟon for boolean plugs. Only available on

specially-built cuts.
nodeType=TYPE Restricts the operaƟon to the node types specified in the argument. This includes

inherited types, for example if the value is “transform”, then the operaƟon also
applies to “joint” nodes, as the node type “joint” inherits from the node type
“transform”. See the node type documentaƟon or the nodeType command for
complete informaƟon on which node types inherit from each other.

stat=STAT If this argument has no STAT, then sorts by the name of the staƟsƟc. If this
argument does have a STAT, for example, “stat=addToNet”, then only reports that
staƟsƟc. Only available on specially-built cuts.

Revisions

2018

• Created an Appendices secƟon.

– Added a secƟon that describes the Profiler File Format.
– Moved Debugging Commands secƟon to the Appendices.

2018 60

Using Parallel Maya Revisions

• Updated the Custom Evaluators secƟon to describe the new evaluators.

– New evaluators:

* curveManager
* hik

– Added informaƟon on isolate-select and expressions to the Invisibility Evaluator
– Added new deformer types supported in GPU override:

* deltaMush
* laƫce
* nonLinear
* tension

2017

• Added secƟon on graph invalidaƟon.
• Added informaƟon about different ways to query scheduling informaƟon (see Thread Safety).
• Updated the Custom Evaluators secƟon to describe the new evaluators.

– New evaluators:

* invisibility
* frozen
* ƟmeEditorCurveEvaluator

– dynamics evaluator support for Parallel evaluaƟon of scenes with dynamics is now enabled
by default.

• Added Custom Evaluator API secƟon.
• Added EvaluaƟon Toolkit secƟon.
• Added Debugging Commands secƟon.
• Miscellaneous typo fixes and small correcƟons.

2016 Extension 2

• Added Ɵp about the controller command.
• Updated Other Evaluators subsecƟon in the Custom Evaluators secƟon to describe the new evalu-

ators.

– New evaluators:

* transformFlaƩening
* reference

– deformer evaluator is now enabled by default.

2018 61

http://help.autodesk.com/cloudhelp/2016/ENU/Maya-Tech-Docs/Commands/controller.html

Using Parallel Maya Revisions

– dynamics evaluator has a new behavior, disabled by default, to support Parallel evaluaƟon of
scenes with dynamics.

• Updated Evaluator Conflicts subsecƟon in the Custom Evaluators secƟon.
• Updated Python plug-ins scheduling to Globally Serial.
• Updated Render-Bound Performance subsecƟon in the Profiling Your Scene secƟon.
• Added new images for graph examples.
• Miscellaneous typo fixes and small correcƟons.

2016

• IniƟal version of the document.

2018 62

	Overview
	Key Concepts
	Supported Evaluation Modes
	First Make it Right Then Make it Fast
	Evaluation Graph Correctness
	Thread Safety
	Safe Mode

	Evaluation Graph Invalidation
	Custom Evaluators
	GPU Override
	Dynamics Evaluator
	Reference Evaluator
	Invisibility Evaluator
	Frozen Evaluator
	The Frozen Attribute
	Operation
	Setting Options
	Limitations

	Other Evaluators
	Evaluator Conflicts

	API Extensions
	Parallel Evaluation
	Custom GPU Deformers
	Custom Evaluator API
	The Basics
	API Reference
	SimpleEvaluator API Example

	Profiling Plug-ins

	Profiling Your Scene
	Evaluation-Bound Performance
	Render-Bound Performance
	Saving and Restoring Profiles

	Troubleshooting Your Scene
	Analysis Mode
	Graph Execution Order
	The Evaluation Toolkit

	Known Limitations
	Appendices
	Profiler File Format
	Debugging Commands
	dbcount
	dbmessage
	dbtrace
	dgdebug
	dgdirty
	dgeval
	dgInfo
	dgmodified
	dbpeek
	dbpeek -op attributes
	dbpeek -op cmdTracking
	dbpeek -op connections
	dbpeek -op data
	dbpeek -op context
	dbpeek -op edits
	dbpeek -op evalMgr
	dbpeek -op graph
	dbpeek -op mesh
	dbpeek -op metadata
	dbpeek -op node
	dbpeek -op nodes
	dbpeek -op nodeTracking
	dbpeek -op plugs

	Revisions
	2018
	2017
	2016 Extension 2
	2016

