Programming in MotionBuilder || Focusing on Python
Autodesk MotionBuilder 2013

Autodesk Developer Network
May 2012
Module 7: Animation

W E< O @ K PO BDY

AUTODESK
MOTIONBUILDER (&

Programming in MotionBuilder | Focusing on Python

Contents
O A\ 1144 F= U0 T AN [0 Yo [T 3
4% R =Y/ o A 11 = L4 5
KeYING VISIDIITY ..ot e e e e e e e e e aann s 6
You’re not able to read the right values even though you have updated them 8
A o O 1 | Y TP 9
2 T 112 1= TR 9
System time relating to actual SyStem tiMe..........ccoovivviiiiiiiii e, 9
GetMilliSeconds () and SetMilliSeconds (long pMilliSeconds)...........cccceeeeevvviieiiinnnnn. 10
GetSecondDouble () and SetSecondDoubleoovviiiiiiiiiii s 11
GetTimeString () and SetTimeStriNg () ..ocvvvvreiiiee e 11
7.4 Player Control (aka Transport Control)...........ccooovviiiiiiii e, 11
A T 11 = P 12
Creating a Key RedUCING FIlterc.cooiiiiiie e 12
Accessing Filter Properties for MotionBuilder Filterscccoooiiiiiiiiiiiiiiieeeeeeees 13
Creating an Custom OR SDK Filterccooooiiiiieeeeeee 15

2|Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

Programming in MotionBuilder || Focusing on Python

Autodesk Developer Network
Module 7: Animation

Agenda

Animation Nodes

Keying Animation

FCurve

Time

Player Control (aka Transport Control)
Filters

7.0 Animation Nodes

An animation node is the node of a Box in MotionBuilder. It represents a channel
through which data flows (in vector or number format) in either direction. An animation
node is a connector that represents a flow of data between two elements. Boxes,
models, and devices are all Boxes. This functionality is also in constraints that deal with
connecting boxes together.

They are data ports or plugs from which devices, models, constraints, and operators
read and write to and from the data. Use animation nodes both in the real-time
computation of data and for recording and filtering.

In particular, they are used in the following contexts:

« Animation nodes access a model’s position, orientation, and scaling data.

e Input devices stream data into output animation nodes, and output devices read
input animation nodes.

e Model constraints modify a model’s position, rotation, and scaling data though a
model’s animation node (FBModel::AnimationNode).

o Filters modify data by accessing recorded or keyframed animation stored in
FCurves found in animation nodes.

Animation nodes contain animation/keyframe data. Generally, they are structures which

can serve as senders or receivers data flowing within entities like models, relations
constraint boxes, devices, constraints, or filters.

3|Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

Animation nodes are organized in a hierarchy. Certain nodes won't directly contain
animation data. Use the Nodes list to access sub-nodes.

For example, an FBModel will have a root animation node. Among the elements in the
root node's Nodes list is Lcl Translation. Lcl Translation has 3 subnodes (in its Nodes
list): X, Y, and Z, which will have the animation data.

pyfbsdk *

ICube = FBFindModelByLabelName("Cube")
IFBPropertyAnimatable = ICube.Translation
"Property Name: ", IFBPropertyAnimatable.Name

IAnimationNode = IFBPropertyAnimatable.GetAnimationNode()
"Animation Node Name: ", lAnimationNode.Name

Note: Starting MB2012, the translation, rotation and scale of a model object is not
animated by default, so if you didn’t manually set your translation to be animated,
“IFBPropertyAnimatable.GetAnimationNode()” will return “None”, the above code will not
work correctly.

IListAnimationNodes = IAnimationNode.Nodes
IListAnimationNode in IListAnimationNodes:
IListAnimationNode.Name,

The above approach is a long way to access animation node, here is the short version
using a helper function ‘FindAnimationNode”

pyfbsdk *
FindAnimationNode(pParent, pName):
IResult = None
INode in pParent.Nodes:
INode.Name == pName:
IResult = INode
IResult
ICube = FBFindModelByLabelName("Cube")
ICubeLocalRot = FindAnimationNode(ICube.AnimationNode, ‘Lcl Translation")
ICubeLocalRotX = FindAnimationNode(ICubeLocalRot, 'X')
ICubeLocalRotY = FindAnimationNode(ICubeLocalRot, 'Y")
ICubelLocalRotZ = FindAnimationNode(ICubeLocalRot, 'Z")

"SubValues: ", ICubeLocalRotX.Name

4| Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

7.1 Keying Animation

Keying becomes to be a bit of a complex thing to discuss in MotionBuilder because
there are numerous different object/properties you want to key and there are also
several ways to do it.

You can add keys directly to animation node (KeyAdd() or KeyCandidate() of
FBAnimationNode) or through the FCurve (KeyAdd() or Keyinsert() of FBFCurve). The
respective classes have a KeyRemove() function for removing keys.

e Key () : FBPropertyAnimatable , FBPlayerControl , FBEventinput
o FBPropertyAnimatable.Key()takes the candidate and transforms it into
a key.
o From the FBPlayerControl everything is keys, not control of what
properties are keyed
o KeyAdd () : FBAnimationNode , FBFCurve
o Keying on a specific property or the FCurve of that property, more
precise
e KeyCandidate () : FBAnimationNode
e KeyCount: FBAnimationNode
e Keylnsert () : FBFCurve
o One use is for gap keys
e KeyRemove () : FBFCurve , FBAnimationNode
e Keys: FBFCurve

What is the difference between SetCandidate/KeyCandidate vs. KeyAdd?

SetCandidate: Just sets up keyable positions of the object, so that when you key it, it's
ready if you want to key them, for example when you move a sphere in the Ul it creates
all these candidate keys behind the scenes so then when you key it will have done all
the computation behind the scene, adds this at the current time.

pyfbsdk *

ICube = FBFindModelByLabelName("Cube")
IAnimationNode = ICube.Translation.GetAnimationNode()
IAnimationNode:
IListAnimationNodes = IAnimationNode.Nodes
IListAnimationNodes:
IListAnimationNodes[0].SetCandidate(10.0)

5|Autodesk Developer Network

mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_property_animatable.html#864f3bdec0a6b38a9582783f3dcc16bb
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_player_control.html#864f3bdec0a6b38a9582783f3dcc16bb
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_event_input.html#b1a1b7c75688c60a7772cba7d7aa08c1
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_animation_node.html#9b8d5736fb79efcc8c5519ce4729bab6
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_f_curve.html#04db97d51db5a07936977b092f2e027a
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_animation_node.html#ba5894329b71e2ac245538d46ceff803
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_animation_node.html#319489a4cd2b5aa7863de6c5e534cb7b
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_f_curve.html#64eefca375f14b740b9105618b4a5635
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_f_curve.html#c1d0f34a9c8cb30efbc3f44580374c93
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_animation_node.html#1c2a08b8d6f3b9aa18b5c3b452e345d2
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_f_curve.html#d7a88891841c9a24b3f9902e2c3ee0ff

Programming in MotionBuilder | Focusing on Python

Currently there is a bug with MotionBuilder 2013 python interface that SetCandidate
doesn’t work correctly.

KeyCandidate: Key’s the candidate keys you set up with SetCandidate at the current
time.

pyfbsdk *

ICube = FBFindModelByName("'Cube")
IAnimationNode = ICube.Translation.GetAnimationNode()
IAnimationNode:
IListAnimationNodes = |AnimationNode.Nodes
IListAnimationNodes:
IListAnimationNodes[0].SetCandidate(10.0)

IListAnimationNodes[0]. KeyCandidate()
KeyAdd: Adds a key to the animation node at current time
Keying Visibility

This is so show you an example that there are lots of ways to do things, some
are better than others, for example this first example, is not a recommended
solution as it

pyfbsdk *

#Find Model
ICube=FBFindModelByLabelName("Cube")
ICube.Visibility.IsAnimated():
ICube.Visibility.SetAnimated(True)

ICube.Visibility.IsFocused():
ICube.Visibility.SetFocus(True)

#Key 1

FBPlayerControl().Goto(FBTime(0,0,0,0))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(True)
FBSystem().Scene.Evaluate()

#Key 2
FBPlayerControl().Goto(FBTime(0,0,0,10))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(True)
FBSystem().Scene.Evaluate()

6|Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

#Key 3
FBPlayerControl().Goto(FBTime(0,0,0,11))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(False)
FBSystem().Scene.Evaluate()

#Key 4
FBPlayerControl().Goto(FBTime(0,0,0,20))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(False)
FBSystem().Scene.Evaluate()

#Key 5
FBPlayerControl().Goto(FBTime(0,0,0,21))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(True)
FBSystem().Scene.Evaluate()

#Key 6
FBPlayerControl().Goto(FBTime(0,0,0,30))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(True)
FBSystem().Scene.Evaluate()

#Key 7
FBPlayerControl().Goto(FBTime(0,0,0,31))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(False)
FBSystem().Scene.Evaluate()

#Key 8
FBPlayerControl().Goto(FBTime(0,0,0,40))
lanimnode = ICube.Visibility.GetAnimationNode ()
lanimnode.KeyAdd(False)
FBSystem().Scene.Evaluate()

Opposed to this example which does the same thing but is more optimized, and
you do not use the Evaluate function:

pyfbsdk *

#Find Model
ICube=FBFindModelByLabelName("Cube")
ICube.Visibility.IsAnimated():
ICube.Visibility. SetAnimated(True)

ICube.Visibility.IsFocused():
ICube.Visibility.SetFocus(True)

7|Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

?(t:Kuege.lVisibility.GetAnimationNode ().KeyAdd(FBTime(3,3,3,0),True)

EKuege.ZVisibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,10),True)
ﬁ:Kuege.SVisibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,11),False)
fé:Kuege%Visibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,20),False)
EKuege.SVisibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,21),True)
?(t:Kuege?Visibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,30),True)
ﬁ:Kuege?Visibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,31),False)
fé:Kuege?Visibility.GetAnimationNode ().KeyAdd(FBTime(0,0,0,40),False)

You’re not able to read the right values even though you have
updated them

A lot time you update values and you try and read them back but you are not
getting the correct values

pyfbsdk *
ICube = FBFindModelByLabelName('Cube")

ICube.Translation = FBVector3d(10,10,10)
Itrans = ICube.Translation
"Cube Translation: %f,%f,%f" % (Itrans[0], Itrans[1], ltrans[2])

ITime = FBTime(0,0,0,0)

ICube.Translation.SetAnimated(True)

IAnimationNode = ICube.Translation.GetAnimationNode()

IPositionV = FBVector3d(
IAnimationNode.Nodes[0].FCurve.Evaluate(ITime),
IAnimationNode.Nodes[1].FCurve.Evaluate(ITime),
IAnimationNode.Nodes[2].FCurve.Evaluate(ITime))

"current translation is %f,%f,%f" % (IPositionV[0], IPositionV[1],
IPositionV[2])

8| Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

7.2 FCurve

Nodes may have an FCurve (FBFCurve) associated with them. FCurves let you have
more control over you animation to modify the animation by adjusting its individual key
frames and their interpolation, extrapolation, and tangents.

This example shows you how to work with animation and manipulate it to get the data
you need:

pyfbsdk *

IModel = FBFindModelByLabelName('Cube’)
[Anim in IModel.AnimationNode.Nodes:
IAnim.Name == "Lcl Translation":
IAnim.Name

IAnimComp in IAnim.Nodes:
IMsg = IAnimComp.Name
ICurve = IAnimComp.FCurve

ICurve:
INumKeys = len(ICurve.Keys)
IMsg += " has an FCurve with "+str(INumKeys)+' keys'

IMsg +="has no FCurve'
"+ IMsg

7.3 Time

This class is used very frequently, however can be very misleading, because you think
that it would be just as easy as reading the time on a clock, however due to all the
different formats of time, this class tends not be as straight forward as users expect.

System time relating to actual system time

It's a bit challenging to discover the actual time of day it is, because you need to
use the class FBReferenceTime, which isn’t documented and not self
explanatory, here is how one would get the actual time of day it is from the
system time in FBSystem.

pyfbsdk *

#First you get the system time
sysTime = FBSystem().SystemTime;

9|Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

#Second you get the Reference time using the system time which gives you the
actual //system time Index '0' for the FBReferenceTime is the System Time.
IReference = FBReferenceTime()

IRefTime = IReference.GetTime(0, sysTime);

#1 have chose to display in milliseconds...
print IRefTime.GetMilliSeconds()

My real life example:
So at 11:57 it prints out 86221242 which is correct if you do the math.

Break down:
11:57 = 57 minutes + (11 * 60) + (12 * 60) = 1437 minutes * 60 = 86220 seconds
* 1000 = 86220000 milliseconds

86221242 = ~86220000 milliseconds

Note: they're not exactly the same because | am only calculating visual from my
computer clock and its lowest value is minutes.

GetMilliSeconds () and SetMilliSeconds (long pMilliSeconds)

Want to work with time in a milli second format:
from pyfbsdk import *

Get a timestamp before the sleep.
ITsl = FBSystem().SystemTime

Do sleep for a few milliseconds.
ISleepTimeMS = 1234
FBSleep(ISleepTimeMS)

Get a second timestamp after the sleep.
ITs2 = FBSystem().SystemTime

Now display the actual sleep time.
FBMessageBox("Actual sleep time",
"Sleep time requested: %.3f seconds\nActual sleep time : %.3f
seconds" %((ISleepTimeMS / 1000.0),
((ITs2.GetMilliSeconds() - ITs1.GetMilliSeconds()) / 1000.0)),
"OK",
None,
None)

10| Autodesk Developer Network

mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_time.html#e31603422aac8f6ac47658cb7f9e72ad
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_time.html#a329f781e8ed64c1746d367cac73ddc3
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classlong.html

Programming in MotionBuilder | Focusing on Python

KLonglong is an _int64, so it's impossible to set and retrieve anything else than a
whole number from the GetMilliseconds() and SetMilliseconds() functions.

You should use FBTime::GetSecondDouble () and FBTime::SetSecondDouble ()
function to achieve this level of precision.

GetSecondDouble () and SetSecondDouble

Want to work with time in a double format:
pyfbsdk *

(FBSystem().LocalTime.GetSecondDouble())

GetTimeString () and SetTimeString ()

Want to work with time in a string format:
pyfbsdk *
ISystem = FBSystem().Scene
#Start and End Frame
"StartFrame: " +
(ISystem.Takes[0].LocalTimeSpan.GetStart().GetTimeString())

"EndFrame: " +
(ISystem.Takes[0].LocalTimeSpan.GetStop().GetTimeString())

7.4 Player Control (aka Transport Control)

This class serves as the interface to the transport controls.

This is typically used to change the time so that the value of a property at that time can
be obtained. Before obtaining the value, you must call FBScene::Evaluate() so the
values are up-to-date.

From this class you can set anything that you would set in the Transport Control to
effect the animation of your scene. As well as step through your scene frame by frame.

Example

pyfbsdk *

11 |Autodesk Developer Network

mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_time.html#79388c0e36fd5a07aaebb408ecfde0b7
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_time.html#2527159b90e3f00f825711f42b0baacc
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_time.html#07be71f8723b4ae4c35cede654617640
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Python%20Scripting%20Help/MotionBuilder_PythonScripting_Help_Ref_Guide.chm::/classpyfbsdk_1_1_f_b_time.html#07be71f8723b4ae4c35cede654617640

Programming in MotionBuilder | Focusing on Python

IModel = FBFindModelByLabelName('Cube’)
IControl = FBPlayerControl()

#Lets start at frame 1.
IStart = FBTime(0, 0, 0, 1)
IControl.Goto(IStart)

i in range(1, 10):

FBSystem().Scene.Evaluate()

[Trans = FBVector3d()

Get global translation.

IModel.GetVector(ITrans, FBModelTransformationType.kModelTranslation, True)
"%d: (%f, %f, %f)" % (i, ITrans[0], ITrans[1], ITrans[2])

IControl.StepForward()

7.5 Filters

A filter is used to adjust or modify animation keyframes on a function curve.

When working with Filters there two main classes you need to take in to account
FBFilterManager and FBFilter. FBFilterManager manages all the filters created in
FBFilter.

The existing set of filters can be extended by deriving new filters from the FBFilter class.
These filters can be applied either in the user interface or within the scope of another
plug-in. Filters are objects which can be applied on an FCurve, or the animation node
associated with an animated object property, to modify shape and number of keys.
Filters can be created from the GUI, using the Filters tool, or programmatically with an
instance of a FBFilterManager.

Instances of FBFilter should be created with the help of the class FBFilterManager. Only
internal application code should call the FBFilter's class constructor.

FBFilteManager class provides list of all available filter types and a factory method in
order to create an instance of the desired filter type. This manager will list both built-in
and plug-in filters. Filter type names are not localized, and are the same as presented in
the GUIL.

Creating a Key Reducing Filter
pyfbsdk *

IModel = FBFindModelByLabelName('Cube")

IFilterManager = FBFilterManager()
IFilter = IFilterManager.CreateFilter("key Reducing")

12| Autodesk Developer Network

mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Open%20Reality%20SDK%20Help/MotionBuilder_OR_SDK_Help_Ref_Guide.chm::/class_f_b_filter.html
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Open%20Reality%20SDK%20Help/MotionBuilder_OR_SDK_Help_Ref_Guide.chm::/class_f_b_filter_manager.html
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Open%20Reality%20SDK%20Help/MotionBuilder_OR_SDK_Help_Ref_Guide.chm::/class_f_b_filter.html
mk:@MSITStore:C:/Autodesk/__AUTODESK%20PRODUCTS/MotionBuilder/MotionBuilder%20Open%20Reality%20SDK%20Help/MotionBuilder_OR_SDK_Help_Ref_Guide.chm::/class_f_b_filter_manager.html

Programming in MotionBuilder | Focusing on Python

IFilter.PropertyList.Find ('Start').Data = FBTime(0,0,0,0)
IFilter.PropertyList.Find ('Stop').Data = FBTime(0,0,0,120)

IFilter.PropertyList.Find("Precision”).Data = 10.0
IFilter.PropertyList.Find("Precision").Data

IFilter.Apply(IModel. Translation.GetAnimationNode(), 1)
Accessing Filter Properties for MotionBuilder Filters

The filter properties can be found in the object's PropertyList data member. They will
use the same name, and be of the same type, as what can be seen in the GUI.

Previously, Start\Stop Public Attribute was not defined and Attribute
“‘ResampleFrameRate” of Reinterpolate didn’t work. For example, calling
IFilter.PropertyList.Find ('Key Sync').Data = True did not set the Key Sync property to
true.

The following filter properties now work correctly: Start\Stop (common)
IFilter.PropertyList.Find ('Start').Data = FBTime(0, 0, 0, 1)
IFilter.PropertyList.Find ('Stop').Data = FBTime(O, 0, 0, 10)

Butterworth
IFilter.PropertyList.Find ('Cut-off Frequency(Hz)').Data = 7.0
IFilter.PropertyList.Find ('Key On Frame') = True

Constant Key Reducer
IFilter.PropertyList.Find ('Keep At Least One Keyframe').Data = False

Key Reducing
IFilter.PropertyList.Find ('Key Sync').Data = True

KeysOnFrame
IFilter.PropertyList.Find ('Frame Rate').Data = 120.00

Reinterpolate
IFilter.PropertyList.Find ('Resample’).Data = True
IFilter.PropertyList.Find ('Resample Frame Rate').Data = 120.0

Resample

IFilter.PropertyList.Find ('Frame Rate').Data = True
IFilter.PropertyList.Find ('Keys On Frame').Data = True
IFilter.PropertyList.Find ('With interpolation’).Data = True
Smooth

IFilter.PropertyList.Find ('Width').Data = 4

13| Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

IFilter.PropertyList.Find ('Sample Count').Data = 8.00
IFilter.PropertyList.Find ('Use Quaternions').Data = True

SmoothTranslation

IFilter.PropertyList.Find ('Width').Data = 8
IFilter.PropertyList.Find ('Factor').Data = 1.50
IFilter.PropertyList.Find ('Sample Count').Data = 8.00

Transformation

IFilter.PropertyList.Find ('Translation').Data = (0.00, 0.00, 0.00)
IFilter.PropertyList.Find ('Rotation').Data = (0.00, 0.00, 0.00)
IFilter.PropertyList.Find ('Scaling').Data = (0.00, 0.00, 0.00)

UnrollRotation

IFilter.PropertyList.Find ('Quality’).Data = 0.25
IFilter.PropertyList.Find ('Path').Data = True

14| Autodesk Developer Network

Programming in MotionBuilder | Focusing on Python

Creating an Custom OR SDK Filter

The following sample code shows how to use Python to create an instance of the
orfilter_template filter and set one of its properties. For the sample code to work, the
plug-in must have been compiled and copied in the plug-in folder prior to the application
startup.

from pyfbsdk import *

Create a filter of a known type. In this case the sample filter
provided with the samples: orfilter_template.

IFilterManager = FBFilterManager()

IFilter = IFilterManager.CreateFilter('OR - Filter Template");

Set one of the filter property:
IPropDouble = IFilter.PropertyList.Find('Test Double");
if IPropDouble: IPropDouble.Data = 2.0

Now we can apply the filter on an FCurve.

And when we are done, destroy it.
IFilter.FBDelete()

15| Autodesk Developer Network

