
© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

Autodesk MotionBuilder 2013
Programming in MotionBuilder || Focusing on Python

Naiqi Weng, Developer Consultant

Autodesk Developer Network Module 8

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

Constraints
Module 8

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

3

Today’s Agenda

• The ‘What’ and ‘Why’ of Constraints?

• Different Constraints Types

• Working with Constraints

• Triggering Scripts in Constraints

• Assignment

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

4

The ‘What’ and ‘Why’ of

Constraints?
• Real World Constraints

 gravity constrains us to the ground

 Dog is constrained by the length of his
leash.

 An eyeball following and object

• You can simulate these limits in the 3D
animation world

• Constraints are tools used to create
relationships between objects

• Within the connections, complex
relationships are formed

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

5

Simple Constraints

• 3 Points

• Aim

• Chain IK

• Mapping

• Multi-Referential

• Parent/Child

• Path

• Position

• Range

• Rigid Body

• Rotation

• Scale

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

6

Complex Constraints

• Relation

 Macro Boxes (not covered here)

• Expression (not covered here)

• Custom OR SDK

(not covered here)

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

7

Creating Simple Constraints

• Create instance of FBConstraintManger

• Adding a Constraint to the scene:

– TypeCreateConstraint() is used to create

constraint

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

8

Finding Constraints

• Use FBScene from FBSystem; this

returns a list of FBConstraint

from pyfbsdk import*

lConstraints = FBSystem().Scene.Constraints

for lCon in lConstraints:

 print lCon.Name

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

9

Deleting Constraints

• Use FBScene from FBSystem; this

returns a list of FBConstraint

from pyfbsdk import*

lConstraints = FBSystem().Scene.Constraints

for lCon in lConstraints:

 if lCon.Name == 'Aim':

 lCon.FBDelete()

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

10

The ‘FBConstraint’ Class

• This is the base class for constraints

• This class handles properties

common to all constraints.

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

11

Constraint Properties

• Some of the properties are directly

exposed in the class FBConstraint

• Some of the properties you need to

look for using PropertyList.Find

• You cannot access the ‘Zero’

button/functionality in Python it is

not exposed at this point.

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

12

Reference Groups

• Reference Groups are the categories
where objects involved in a constraint
can be found

• There are several functions for
managing reference groups in the class
FBConstraint

• A reference group is identified by its
index or name, it can have more than
one object.

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

13

Reference Groups

• ReferenceGroupGetCount() returns the total number of reference
groups, in the above screen shot the reference group count is 3.

• ReferenceGroupGetName() returns the name of a group given an
index, in the above screen shot the reference group names are
Constrained Object, Aim At Object and World Up Object.

• ReferenceAdd() adds an object to the group represented by the
given index. ReferenceRemove() removes the object from the
specified group, in the above screen shot, Constrained Object is
set to MyCam.

• ReferenceGet() obtains an object at the given index in the
specified group index, in the above screen shot this would return
the object MyCam.

• You can also create new groups with ReferenceGroupAdd(), where
the group name and its maximum object count are specified.

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

14

What is a Relation?

• A constraint you create using a
graphical interface like connect-the-
dots.

• Relations constraints come with
mathematical operators that you can
use as building blocks to create very
specific actions for your models.
These building blocks are called
Operators.

• FBConstraintRelation class

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

15

Working with Relation

• Finding existing ‘Relation’ constraint

in Python

• Creating ‘Relation’ constraint

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

16

Components that make up a

Relation Constraint
• The objects used to create a

Relations constraint can be broken

down into four types:

1. Senders

2. Operators

3. Receivers

4. Connections

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

17

Senders

• A Sender can be an input device or a

model.

• Senders are used to transmit data to

operations and Receivers.

• Senders only send data.

 Sender =relConst.SetAsSource(cube)

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

18

Operators

• An Operator is an object that

performs mathematical operations,

comparisons, or conversions.

• It is placed between a Sender and a

Receiver.

• Operators receive and send data.

lBox=lCon.CreateFunctionBox('Number','

Add (a + b)')

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

19

Receivers

• A Receiver can be a model or an

output device.

• Receivers receive data transmitted

from Operators and Senders.

• Receivers only receive data.
Receiver = relConst.ConstrainObject(cube)

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

20

Connections

• This is the data that is being passed

around from senders, operators and

receivers.
lCubeOut = FindAnimationNode(

lBoxSenderCube.AnimationNodeOutGet(), 'Rotation')

lCamIn = FindAnimationNode(

lBoxReceiverCam.AnimationNodeInGet(),'Translation')

if lCubeOut and lCamIn:

 FBConnect(lCubeOut, lCamIn)

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

21

Triggering Scripts in

Constraints
1. Drag and drop script into Viewer, choose ‘Add to scene’ (not programmable)

2. Add a script device to the scene:

 from pyfbsdk import *

 lScript= FBCreateObject ("Boxes/Devices", "Script", "myScript")

 lSystem = FBSystem()

 lSystem.Scene.Devices.append(lScript)

3. Create a relation constraint:

 relConst = FBConstraintRelation('MyConst')

4. Add the device to the Relation Constraint as a Receiver.

 Receiver = relConst.ConstrainObject(lScript)

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

22

Assignment

A. Accessing the Relation Constraint
• Find all the constraints in the scene, find out

relation constraint.

B. Determining the types of objects
• Finding the objects in the Relation Constraint, and

determining if they are a sender, operator, or a
receiver.

C. Determining the connections
• Finding out what is Animation Node is connected

to what Animation Node between the objects and
operators.

© 2012 Autodesk

Click to edit Master title
style

Click to edit Master title
style

23

La Fin!

