
Programming in MotionBuilder || Focusing on
Python

Autodesk MotionBuilder 2013

Autodesk Developer Network
May 2012

Module 5: Python UI

Programming in MotionBuilder | Focusing on Python

2 | A u t o d e s k D e v e l o p e r N e t w o r k

Contents
6.0 Pre-Built UI Functionality ... 3

The „FBMessageBox‟ Function .. 3

The „FBMessageBoxWithCheck‟ Function ... 5

The „FBMessageBoxGetUserValue‟ Function ... 6

6.1 Keeping the User Informed via the Viewer Progress Bar 8

6.2 Building UI Functionality from Scratch (aka a world of possibilities) 9

6.3 Creating and Registering your Tool ... 9

Creating and Registering your tool .. 10

Setting the Size of your Tool Window .. 10

Setting your Window to Show .. 11

FBGetTools Helper Function ... 11

6.4 Creating UI components, buttons, lists, tabs, etc. ... 12

Creating each element type ... 12

Spreadsheets .. 13

6.5 Attaching and playing your UI Components in your Tool 14

Workflow 1 – The Original Framework ... 14

Workflow 2 – Box Layouts ... 17

Workflow 3 – Grid Layouts ... 20

6.6 Additional Helper Classes ... 21

The „FBTabControl‟ Class .. 21

The „FBButtonGroup‟ Class ... 21

6.7 Available Callback Classes for your UI .. 21

6.8 Tool Manager and startup scripts .. 22

6.9 Other possible UI tool kits and MotionBuilder .. 22

Programming in MotionBuilder | Focusing on Python

3 | A u t o d e s k D e v e l o p e r N e t w o r k

Programming in MotionBuilder || Focusing on Python
Autodesk Developer Network

Module 5: Python UI

Agenda
 Pre-Built UI Functionality

 Keeping the user informed via the Viewer Progress Bar

 Building UI Functionality from Scratch (aka a world of possibilities)

 Creating and Registering your Tool

 Creating UI components, buttons, lists, tabs, etc.

 Attaching and playing your UI Components in your Tool

 Additional Helper Classes

 Available Callback Classes for your UI

 Tool Manager and startup scripts

 Other possible UI tool kits and MotionBuilder

6.0 Pre-Built UI Functionality

Prior to MotionBuilder 2009, there was not any extensive UI functionality available in
Python; however there were a couple pre-built UI components, which allowed for basic
data gathering and sharing. These are still available in MotionBuilder 2013, and are
recommended if you desire their functionality, why re-invent the wheel. These three pre-
pre-build UI components are:

1. Message Box with up to Three Buttons
2. Message Box with up to Three Buttons and a Check Box Option
3. Message Box with up to Three Buttons and allows for user data

All these functions are available from the module pyfbsdk.

The ‘FBMessageBox’ Function

This creates as a message UI with up to three buttons that you can use to
communicate with the user.

Example Image

Programming in MotionBuilder | Focusing on Python

4 | A u t o d e s k D e v e l o p e r N e t w o r k

Figure 1 | FBMessageBox User Interface

Function Definition

Int = FBMessageBox (str pBoxTitle, str pMessage, str pButton1Str, str
pButton2Str=None, str pButton3Str=None, int pDefaultButton=0, bool
pScrolledMessage=False)

Example

from pyfbsdk import *

indexOfButtonSelected = FBMessageBox("Message Box Title", "Text Message
in box", "Button 1", "Button 2", "Button 3", 0, True)
print indexOfButtonSelected

How the index integer works

 Whichever button you select (1, 2, or 3), this value will be returned by the
function call, so if you select “Button 2” the integer 2 will be set to
indexOfButtonSelected in the above example.

 This same explanation applies to the 6th parameter where it asks for the
default index of which button you would like to pre-select, in other words
when you run the script the button that gets selected if a user just hits
enter. This is visually represented by the button having a bold line around
it:

o Button 1 has an index of 1
o Button 2 has an index of 2
o Button 3 has an index of 3
o index of 0 means there is no pre-selected button

Programming in MotionBuilder | Focusing on Python

5 | A u t o d e s k D e v e l o p e r N e t w o r k

Figure 2 | The FBMessageBox Default Button User Interface

FBMessageBox Gotchas

 You can‟t resume work in MotionBuilder until you click one of the buttons
on the Message Box.

 Giving any of the buttons the same name, causes MotionBuilder to freeze.

The ‘FBMessageBoxWithCheck’ Function

This creates as a message UI with up to three buttons and a check box option
that you can use to communicate with the user.

Example Image

Figure 3 | The FBMessageBoxWithCheck User Interface

Function Definition

tuple< int, bool > = FBMessageBoxWithCheck (str pBoxTitle, str
pMessage, str pButton1Str, str pButton2Str, str pButton3Str, str
pCheckBoxStr, bool pCheckBoxValue, int pDefaultButton=0, bool
pScrolledMessage=False)

Example

Programming in MotionBuilder | Focusing on Python

6 | A u t o d e s k D e v e l o p e r N e t w o r k

from pyfbsdk import *

ButtonAndCheckBoxResult = FBMessageBoxWithCheck("Message Box
Title","Text Message in box", "Button 1", "Button 2", "Button 3", "Checkbox Text",
True, 3, True)
print "Index of the Button that was selected-> %s \nThe Checkbox's value-> %s"
% (ButtonAndCheckBoxResult[0],ButtonAndCheckBoxResult[1])

How the index integer works

 The index works the same as FBMessageBox

FBMessageBoxWithCheck Gotchas

 The return value is a tuple containing the index of the button that was
selected and the true or false value of the check box.

 You can‟t resume work in MotionBuilder until you click one of the buttons
on the Message Box.

 Giving any of the buttons the same name, causes MotionBuilder to freeze.

The ‘FBMessageBoxGetUserValue’ Function

This creates as a message UI with up to three buttons that you can use to
communicate status with the user and it allows for user input so that you can add
custom functionality based on their input.

Example Image

Figure 4 | The FBMessageBoxGetUserValue User Interface

Function Definition

tuple< int, str > = FBMessageBoxGetUserValue (str pBoxTitle, str
pMessage, object pValue, FBPopupInputType pValueType, str

Programming in MotionBuilder | Focusing on Python

7 | A u t o d e s k D e v e l o p e r N e t w o r k

pButton1Str, str pButton2Str=None, str pButton3Str=None, int
pDefaultButton=0)

Example

from pyfbsdk import *

value = "Hello World"
ButtonAndUserInputResult = FBMessageBoxGetUserValue("Message Box
Title", "Text Message in box + %s"% value, "Default User Input Value",
FBPopupInputType.kFBPopupString, "Button 1", "Button 2", "Button 3", 1)
print "Index of the Button that was selected-> %s \nThe user value that was
entered-> %s" % (ButtonAndUserInputResult[0],ButtonAndUserInputResult[1])

How the FBPopupInputType works

 Whichever enumeration type you choose from this class will be the data
type of the user input, your options are:
o kFBPopupBool, True or False
o kFBPopupChar, one character
o kFBPopupString, a string
o kFBPopupInt, integer
o kFBPopupFloat, float
o kFBPopupDouble, double
o kFBPopupPassword, string value shown with „*‟

FBMessageBoxGetUserValue Gotchas

 The return value is a tuple containing the index of the button that was
selected and the value containing the user input of data type specified in
the function call.

 You need to make sure you indicate in the functional call the datatype of
the user input you desire, or you will not get the correct value passed
back. For example if you expect a string and you put kFBPopupInt, you
will not get the string you are looking for but rather an integer, which is
incorrect.

 You can‟t resume work in MotionBuilder until you click one of the buttons
on the Message Box.

 Giving any of the buttons the same name, causes MotionBuilder to freeze.

Programming in MotionBuilder | Focusing on Python

8 | A u t o d e s k D e v e l o p e r N e t w o r k

6.1 Keeping the User Informed via the Viewer Progress Bar

Whether you are creating filters, constraints or tools you can keep the user updated of
the status by using the progress bar inside the Viewer, this is controlled by the class
FBProgress. This allows for text to be inserted as well as the percentage completed
ticker bar on timely operations, such as scene load or save.

Figure 5 | The Location in the Viewer of the Progress Bar Output

The available attributes are, caption or text to be displayed for the progress bar, the text
to be displayed on the progress bar and the percentage completed for your operation
that you are implementing this functionality for.

Example

from pyfbsdk import *

Programming in MotionBuilder | Focusing on Python

9 | A u t o d e s k D e v e l o p e r N e t w o r k

lFbp = FBProgress()
lFbp.Caption = "My Progress Bar"
lFbp.Text = " Processing ..."
lCount = 0.0

lFbp.ProgressBegin()lComps = FBSystem().Scene.Components
for lComp in lComps:

print lComp.Name
lCount += 1
lVal = lCount / len(lComps) * 100
FBSleep(20)
lFbp.Percent = int(lVal)

lFbp.ProgressDone()

6.2 Building UI Functionality from Scratch (aka a world of
possibilities)

As of MotionBuilder 2010 we have the ability to customize and create your own Python
UI for all your Python scripts that you are creating. We‟re going to start building the UI
like building a house from the frame to adding all the components after.

All these classes and functions are available from the modules pyfbsdk and
pyfbsdk_additions.

We are going to look at building UI in a 3 stage process:

1. Registering and Creating your Tool
2. Creating UI components, buttons, lists, tabs, etc.
3. Attaching and playing your UI Components in your Tool

 Three Available Workflows

6.3 Creating and Registering your Tool

These classes and functions are available from the modules pyfbsdk_additions, for
additional information; please refer the module located here for additional coding
comments:

C:\Program Files\Autodesk\MotionBuilder

2013\bin\config\Python\pyfbsdk_additions.py

If you are familiar with creating UI‟s in the Open Reality, this is where this step differs in
Python, as we have created helper functions and classes that you must use to make

Programming in MotionBuilder | Focusing on Python

10 | A u t o d e s k D e v e l o p e r N e t w o r k

sure everything gets registered internally with MotionBuilder, so your new tool will work
as you expect it to.

Creating and Registering your tool

To create a tool, use one of the two functions (FBCreateTool()and
CreateUniqueTool()FBCreateUniqueTool()) provided in the pyfbsdk_additions
module. Using these functions ensures that the tools are added to the tool list
and that the Tool Manager knows about them.

Typically when you are developing a tool, you must execute it repeatedly when
testing it. The problem is that each time you execute a script creating a tool; it
adds a new tool to MotionBuilder. The previously-created tool is not replaced.

For example, if your script creates a tool with the function FBCreateTool: tool =
FBCreateTool("tool example"), then each time the script is run new tools are
created, for example, "tool example 1, "tool example 2" and so on.

To address this issue, the function CreateUniqueTool is included in
pyfbsdk_additions. This function checks whether a tool with a similar name
exists, and if so, it destroys that tool. It then creates a new tool with the same
name. This means that each time you re-execute your script during testing; there
is only one tool instantiated.

Tool creation will serve as the hub for all other controls
global t
t = FBCreateUniqueTool("My New Tool")

Once you have finished testing a tool, replace the call to FBCreateUniqueTool
with a call to FBCreateTool, so as not to use the tool destruction functionality.
And if you use the startup scripts directory to create the tool (or if you execute the
script creation tool only once) you won't have multiple tool instantiation.

Tool creation will serve as the hub for all other controls
global t
t = FBCreateTool("My New Tool")

Setting the Size of your Tool Window

To set the width and height of your tool you can use the attributes available on
your newly created tool object.

t.StartSizeX = 300
t.StartSizeY = 143

Programming in MotionBuilder | Focusing on Python

11 | A u t o d e s k D e v e l o p e r N e t w o r k

 Some other read write attributes you can use are:

Int StartSizeX
Int StartSizeY
Int MinSizeX
Int MinSizeY
Int MaxSizeX
Int MaxSizeY
char ToolName

Setting your Window to Show

**Prior to this step we would create all the UI within our Tool, including
implementing any functionality that it requires (however we are explaining this a
little out of order so see steps 2, Creating the Framework of your UI and 3,
Adding components to your UI, buttons, lists, tabs, etc. below for more details.

For your tool to show up, you need to call the ShowTool funciton on your tool
object.

ShowTool(t)

If for convenience reason, a user prefers to drag and drop a script into viewer to
“Show a tool”, there is a good way to do it that will ensure the Tool will be created
only once. SafeToolCreationExample.py in C:\Program
Files\Autodesk\MotionBuilder 2013\bin\config\Scripts\UI demonstrates how to
create a tool that will be only instantiated once even if dragged multiple times in
the Viewer.

FBGetTools Helper Function

There is a function that returns a list of Python tools instantiate in MotionBuilder
that you can use if you would to use this information in some manner:

from pyfbsdk_additions import *

print FBGetTools()

Programming in MotionBuilder | Focusing on Python

12 | A u t o d e s k D e v e l o p e r N e t w o r k

6.4 Creating UI components, buttons, lists, tabs, etc.

Here is the entire UI component that you can create inside of your tool; the base
elements that can be created from FBComponent are the following:

ELEMENT CLASS DESCRIPTION

Arrow Button FBArrowButton Button with an Arrow

Button FBButton Button

List FBList List of items

Container FBContainer Container (similar to list)

Edit FBEdit Text edit box

Edit Number FBEditNumber Number edit box

Edit Color FBEditColor Color edit tool

Edit Vector FBEditVector Vector edit tool

Edit Property FBEditProperty Property Editing

Updated Edit Property FBEditPropertyModern Updated Property Editing

Image FBImage UI Image

Label FBLabel Text label

List FBList A List of Items

Memo FBMemo An editable file

Scroll Box FBScrollBox An area that scrolls

Slider FBSlider Slider

Spreadsheet FBSpread Spreadsheet

Tab Panel FBTabPanel Panel with tabs

Thermometer FBThermometer Graphical tool

Time Code FBTimeCode Time Display

Tree FBTree Hierarchal viewer

Creating each element type

Creating the elements you want in your UI is very straight forward it is just like creating
and FBModelCube and setting the public attributes for it. There are lots and lots of
examples that come with MotionBuilder for creating these data types, so I will not go
over them all.

To create a label in your UI, you create an instance of the FBLabel class, then set all
the public attributes to your liking.

l = FBLabel()
l.Caption = "This is my label"

Programming in MotionBuilder | Focusing on Python

13 | A u t o d e s k D e v e l o p e r N e t w o r k

l.Style = FBTextStyle.kFBTextStyleBold
l.WordWrap = True

To create a button in your UI, you can create an instance of FBButton, and then set all
the public attributes to your liking. You will need to set up an OnClick callback that calls
a function as a parameter that you have defined in your script.

b = FBButton()
b.Caption = "Browse..."
b.Justify = FBTextJustify.kFBTextJustifyCenter
#attach to your layout
b.OnClick.Add(BrowseCallback)

Spreadsheets

The spreadsheets in MotionBuilder are data structures that function as traditional
spreadsheets, but with certain areas of the spreadsheets pre-defined and
configured to contain extra data.

Spread Parts

This is a generic class (FBSpreadPart) that can be used to represent any
element of the spreadsheet. All of the objects in a spreadsheet inherit from
this class, giving any element in the spreadsheet common characteristics.

Header Row

The header row is the top row of the spreadsheet. It can be clicked or
selected, and it can contain titles. The header row does not have all of the
spread cell properties that data cells have.

Column–1

Column-1 is the first column of row titles in the spreadsheet. It has special
aspects that are slightly different in functionality from the other columns in
the spreadsheet.

Data cells

The data cells, depending on the settings for that particular cell, can
contain and display various elements. The CellType property determines
which variable is to be displayed.

Programming in MotionBuilder | Focusing on Python

14 | A u t o d e s k D e v e l o p e r N e t w o r k

In the following example, setting the style causes the spread cell to display
the contents of its double variable.

mSpread.GetCell(0,1).Style = FBCellType.kFBCellStyleDouble;

However, the memory space is not shared between the different values.
This allows a particular cell to contain many different values in the form of
different types of values (integer, double, button states, and so on).

6.5 Attaching and playing your UI Components in your Tool

There are three workflows for creating your UI framework, this first workflow is the same
workflow available in the Open Reality SDK, so if you‟re familiar with creating UI in that
OR SDK, you will likely choose this one. The second and third workflow are new
workflow and are only available in Python, these are new classes located in the
pyfbsdk_additions module file that are wrappers to workflow 1 in essence.

Workflow 1 – The Original Framework

The user interface in MotionBuilder is managed using layout objects (class
FBLayout). Think of layouts like the framework of your window, this is where ever
thing gets attached too.
Layouts are responsible for managing areas of the screen called regions. UI
components such as buttons, viewers, and edit boxes are bound to regions. In
other words, when a UI component is bound to a region, the region defines how
big it is and how it behaves when the layout is resized.

A region is an area in a layout that has been prepared and configured to hold a
user interface element. In order to use a visual component, you need to add a
region to the layout, and then set the control of this region to the visual
component you would like. The following lines of code give a good example of
this series of calls.

t is the tool object we created in step 1:

x = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"")
y = FBAddRegionParam(5,FBAttachType.kFBAttachTop,"")
w = FBAddRegionParam(300,FBAttachType.kFBAttachNone,"")
h = FBAddRegionParam(20,FBAttachType.kFBAttachNone,"")

t.AddRegion("lab","lab", x, y, w, h)
t.SetControl("lab",l)

Programming in MotionBuilder | Focusing on Python

15 | A u t o d e s k D e v e l o p e r N e t w o r k

A region is first defined using the FBLayout::AddRegion() function. Once a region
is defined and the corresponding UI component is created, the component is
bound to its region using the FBLayout::SetControl() function.

Working with FBAddRegionParam

For each element you need to call this 4 times, for x and y spacing of the element
compared to the layout, and for the width and height of the element we are trying
to attach.

For Setting X and Positioning of the Element

For the x and y calls, the first parameter is the pixel spacing away from the
object you are attaching it to, the second is where the starting point is of
the object you are attaching it to and the third is the item you are attaching
it to, if you are attaching it to the main layout, you do not need to specify
anything so you leave empty quotes.

 For Setting Width and Height of the Element

For the width and height, the first parameter is the width or height of the
object, the second is what you you‟re going to attach it to, so we will
always set the enumeration to FBAttachType.kFBAttachNone and the
third parameter is also what were attaching it to, so for these two we will
always keep empty strings there.

 Attaching this region to the main layout

You now need to attach your region that contains your element to the main layout
by using the AddRegion function:

t.AddRegion("but","but", x, y, w, h)

Setting the Control of your Element to your Layout

Then the last thing you need to do is to set the control of your element to your
main layout by using the SetControl function:

t.SetControl("but",b2)

Example

def PopulateLayout(mainLyt):
 #1. Creating the instruction title
 l = FBLabel()
 l.Caption = "Select the shot track definition file to use:"

Programming in MotionBuilder | Focusing on Python

16 | A u t o d e s k D e v e l o p e r N e t w o r k

 l.Style = FBTextStyle.kFBTextStyleBold
 l.WordWrap = True

 x = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"") # Create a label that is left
justify
 y = FBAddRegionParam(5,FBAttachType.kFBAttachTop,"") # ... and at the top of the
layout.
 w = FBAddRegionParam(300,FBAttachType.kFBAttachNone,"") # its width is fixed at
300 pixels
 h = FBAddRegionParam(20,FBAttachType.kFBAttachNone,"") # and its height is fixed
at 15 pixels

 mainLyt.AddRegion("lab","lab", x, y, w, h)
 mainLyt.SetControl("lab",l)

 #2. Creating a temp button for a place holder
 e = FBEdit()
 e.ReadOnly = True
 e.Text = ""

 x2 = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"")
 y2 = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"lab")
 w2 = FBAddRegionParam(220,FBAttachType.kFBAttachNone,"")
 h2 = FBAddRegionParam(20,FBAttachType.kFBAttachNone,"")

 mainLyt.AddRegion("path","path", x2, y2, w2, h2)
 mainLyt.SetControl("path",e)

 #3. Creating a the browse button
 b2 = FBButton()
 b2.Caption = "Browse..."
 b2.Justify = FBTextJustify.kFBTextJustifyCenter

 x3 = FBAddRegionParam(225,FBAttachType.kFBAttachLeft,"path")
 y3 = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"lab")
 w3 = FBAddRegionParam(57,FBAttachType.kFBAttachNone,"")
 h3 = FBAddRegionParam(20,FBAttachType.kFBAttachNone,"")

 mainLyt.AddRegion("but","but", x3, y3, w3, h3)
 mainLyt.SetControl("but",b2)

 #4. Creating the 'create backplate' checkbox
 cb = FBButton()
 cb.Style = FBButtonStyle.kFBCheckbox
 cb.Caption = "Add backplates to each shot"

 x4 = FBAddRegionParam(60, FBAttachType.kFBAttachLeft, "")
 y4 = FBAddRegionParam(5, FBAttachType.kFBAttachBottom, "path")
 w4 = FBAddRegionParam(300,FBAttachType.kFBAttachNone,"")

Programming in MotionBuilder | Focusing on Python

17 | A u t o d e s k D e v e l o p e r N e t w o r k

 h4 = FBAddRegionParam(25,FBAttachType.kFBAttachNone,"")

 mainLyt.AddRegion("backp", "backp",x4,y4,w4,h4)
 mainLyt.SetControl("backp",cb)

 #5. Creating the button the automatically does everything
 b3 = FBButton()
 b3.Caption = "Setup Shots"
 b3.Justify = FBTextJustify.kFBTextJustifyCenter

 x5 = FBAddRegionParam(40,FBAttachType.kFBAttachLeft,"")
 y5 = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"backp")
 w5 = FBAddRegionParam(100,FBAttachType.kFBAttachNone,"")
 h5 = FBAddRegionParam(25,FBAttachType.kFBAttachNone,"")

 mainLyt.AddRegion("shots","shots", x5, y5, w5, h5)
 mainLyt.SetControl("shots",b3)

 x6 = FBAddRegionParam(20,FBAttachType.kFBAttachRight,"shots")
 y6 = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"backp")
 w6 = FBAddRegionParam(100,FBAttachType.kFBAttachNone,"")
 h6 = FBAddRegionParam(25,FBAttachType.kFBAttachNone,"")

Workflow 2 – Box Layouts

All these classes are introduced in MotionBuilder 2009, and are located in the
module pyfbsdk_additions, for more details on specific functions please refer to
the documentation inside of this module located here:

C:\Program Files\Autodesk\MotionBuilder 2013\bin\config\Python

There are three types of of new layouts:

1. Horizontal Box Layout
2. Vertical Box Layout
3. Grid Layout

The ‘FBHBoxLayout’ and the ‘FBVBoxLayout’ Class

There is a new terminology introduced here called Box Layouts, this class
is made to ease the creation of Tool in Python. It manages all the
'FBLayout' region stuff (no need to use FBAddRegionParam if you do not
want.

Programming in MotionBuilder | Focusing on Python

18 | A u t o d e s k D e v e l o p e r N e t w o r k

This class manages a BoxLayout Horizontal. You still need to add this
new box layout to the main tool layout so you will need to use workflow 1
once in this manner:

lyt = FBVBoxLayout()

x = FBAddRegionParam(0,FBAttachType.kFBAttachLeft,"")
y = FBAddRegionParam(0,FBAttachType.kFBAttachTop,"")
w = FBAddRegionParam(50,FBAttachType.kFBAttachNone,"")
h = FBAddRegionParam(0,FBAttachType.kFBAttachBottom,"")

mainLyt.AddRegion("main","main", x, y, w, h)
mainLyt.SetControl("main",lyt);

Once you have done this you can start working with the Box Layout, by
using the function Add. There are 2 kinds of Add: Add with fixed size and
AddRelative which ensure the control Added will occupy a 'percentage' of
the available space after the fixed space has been assigned.

l = FBLabel()
l.Caption = "This is a label!!!!"
l.Style = FBTextStyle.kFBTextStyleBold
l.WordWrap = True
lyt.Add(l, 25)

 As you can see here we have replaced, these six lines:

x2 = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"")
y2 = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"lab")
w2 = FBAddRegionParam(220,FBAttachType.kFBAttachNone,"")
h2 = FBAddRegionParam(20,FBAttachType.kFBAttachNone,"")

mainLyt.AddRegion("path","path", x2, y2, w2, h2)
mainLyt.SetControl("path",e)

 With this one line:

lyt.Add(l, 25)

 One thing to point out is you cannot center an element in a Box Layout.

 Previous Region Example converted to Box Layouts

def PopulateLayout(mainLyt):

Programming in MotionBuilder | Focusing on Python

19 | A u t o d e s k D e v e l o p e r N e t w o r k

 VBox = FBVBoxLayout()

 x = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"") # Create a label
that is left justify
 y = FBAddRegionParam(5,FBAttachType.kFBAttachTop,"") # ... and at the top
of the layout.
 w = FBAddRegionParam(5,FBAttachType.kFBAttachRight,"") # its width is
fixed at 300 pixels
 h = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"") # and its height
is fixed at 15 pixels

 mainLyt.AddRegion("main","main", x, y, w, h)
 mainLyt.SetControl("main",VBox)

 #1. Creating the instruction title
 l = FBLabel()
 l.Caption = "Select the shot track definition file to use:"
 l.Style = FBTextStyle.kFBTextStyleBold
 l.WordWrap = True
 VBox.Add(l,20, space=5, width=300)

 HBox = FBHBoxLayout()
 VBox.Add(HBox, 20)

 #2. Creating a temp button for a place holder
 e = FBEdit()
 e.ReadOnly = True
 e.Text = ""
 HBox.Add(e, 210, height=20)

 #3. Creating a the browse button
 b2 = FBButton()
 b2.Caption = "Browse..."
 b2.Justify = FBTextJustify.kFBTextJustifyCenter

 HBox.Add(b2, 55, space=5, height=20)

 #4. Creating the 'create backplate' checkbox
 cb = FBButton()
 cb.Style = FBButtonStyle.kFBCheckbox
 cb.Caption = "Add backplates to each shot"

 VBox.Add(cb,20, space=5, width=300)

 #5. Creating the button the automatically does everything
 b3 = FBButton()
 b3.Caption = "Setup Shots"
 b3.Justify = FBTextJustify.kFBTextJustifyCenter

Programming in MotionBuilder | Focusing on Python

20 | A u t o d e s k D e v e l o p e r N e t w o r k

 VBox.Add(b3,25, space=5, width=100)

Workflow 3 – Grid Layouts

Gives you more control, however it can be also more complex because it works
off of a grid with columns and rows, so you need to keep track of how wide and
high your elements are in your columns and rows so everything fits nicely.

This is similar to workflow 2, as the calls are simplified like it.

Previous Region Example converted to Grid Layout

def PopulateLayout(mainLyt):

 x = FBAddRegionParam(5,FBAttachType.kFBAttachLeft,"") # Create a label
that is left justify
 y = FBAddRegionParam(5,FBAttachType.kFBAttachTop,"") # ... and at the top
of the layout.
 w = FBAddRegionParam(5,FBAttachType.kFBAttachRight,"") # its width is
fixed at 300 pixels
 h = FBAddRegionParam(5,FBAttachType.kFBAttachBottom,"") # and its height
is fixed at 15 pixels

 mainLyt.AddRegion("main","main", x, y, w, h)
 grid = FBGridLayout()
 mainLyt.SetControl("main", grid)

 #1. Creating the instruction title
 l = FBLabel()
 l.Caption = "Select the shot track definition file to use:"
 l.Style = FBTextStyle.kFBTextStyleBold
 l.WordWrap = True
 grid.Add(l,0,0, height = 40)

 #2. Creating a temp button for a place holder
 e = FBEdit()
 e.ReadOnly = True
 e.Text = ""
 grid.Add(e,1,0, width = 200, height = 20)

 #3. Creating a the browse button
 b2 = FBButton()
 b2.Caption = "Browse..."
 b2.Justify = FBTextJustify.kFBTextJustifyCenter
 grid.Add(b2,1,1, width = 57, height = 20)

Programming in MotionBuilder | Focusing on Python

21 | A u t o d e s k D e v e l o p e r N e t w o r k

 #4. Creating the 'create backplate' checkbox
 cb = FBButton()
 cb.Style = FBButtonStyle.kFBCheckbox
 cb.Caption = "Add backplates to each shot"
 grid.Add(cb,2,0, width = 200, height = 20)

 #5. Creating the button the automatically does everything
 b3 = FBButton()
 b3.Caption = "Setup Shots"
 b3.Justify = FBTextJustify.kFBTextJustifyCenter
 grid.Add(b3,3,0, width = 100, height = 20)

6.6 Additional Helper Classes

The ‘FBTabControl’ Class

A real TabControl that improve the behavior of the FBTabPanel.

This class manage the Tabs and the 'middle region' used to display. It manages
all the region 'swapping' necessary to implement a Tab behavior.

Use Add method to Add a Control to the TabControl. This will create a tab
and ensure that when that tab is clicked the Control is shown.
Use SetContent with a tab index To specify which tab should be displayed.

The ‘FBButtonGroup’ Class

Button group class used to manage multiple radio buttons. This class ensure that
only one radio button is enabled (it does all the ClickState management)

Use the Add method to Add new radio button to the group.
Use AddCallback method to register a UNIQUE callback that will be called when
ANY of the registered radio buttons is clicked.

6.7 Available Callback Classes for your UI

These are the available callbacks for working with UI:

 FBEventActivate()

 FBEventDblClick()

 FBEventDragAndDrop()

Programming in MotionBuilder | Focusing on Python

22 | A u t o d e s k D e v e l o p e r N e t w o r k

 FBEventExpose()

 FBEventInput()

 FBEventMenu()

 FBEventResize()

 FBEventSceneChange()

 FBEventShow()

 FBEventSpread()

 FBEventTakeChange()

 FBEventTransaction()

 FBEventTree()

 FBEventTreeSelect()

6.8 Tool Manager and startup scripts

 When a tool is well-tested enough to be used in production, there are two ways to start
it.

If it needs to be started each time you start MotionBuilder, add the tool creation script to
the Python Startup script folder, located at C:\Program Files\Autodesk\MotionBuilder
2013\bin\config\PythonStartup If the tool is rarely used, start it by dragging it into the
scene. Be sure not to drag it and execute it a second time. Generally, it is not advised to
create a Python tool multiple times. The tool might contain some specific states, and
each time you execute it the tool and its states are deleted and then recreated.

The Tool Manager script is itself a Python tool and is found in the Python script folder. It
uses the function provided by pyfbsdk_additions module to know when a tool is
destroyed or created. You can even write your own Tool Manager. See Tool
Manager.py in the Python script folder for details on how to register your own Tool
Manager.

6.9 Other possible UI tool kits and MotionBuilder

Every once in a while you will get the question, can I use other Python UI tool kits in
MotionBuilder. The short answer is yes, but the long answer is, you may not want to. Let
me elaborate, firstly, Autodesk will not help you integrate them as they are not
supported so you are on your own, secondly they do not sit inside the MotionBuilder
Event loop, so depending on what you want to do this may not matter.

The major issue you will run into is that to view the changes in MotionBuilder that your
interface triggered you have to close the UI. It has to do with not having the UI in the live
update thread (Event thread), there is no interactive update from the UI tool to the

Programming in MotionBuilder | Focusing on Python

23 | A u t o d e s k D e v e l o p e r N e t w o r k

Viewer in MotionBuilder.

For example if you want an interface to animate a character you can trigger all the
actions by hitting the buttons in the UI, but visually you will not see the changes until
you close the new UI and bring the focus back to MotionBuilder. Depending on what
you want to do this could be minor.

Here are a few options, which you can download off the web, Tkinter, wxPython and
pyQT.

