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Today’s Agenda 

• The ‘What’ and ‘Why’ of Constraints? 

• Different Constraints Types 

• Working with Constraints 

• Triggering Scripts in Constraints 

• Assignment 
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The ‘What’ and ‘Why’ of 

Constraints? 
• Real World Constraints 

 gravity constrains us to the ground 

 Dog is constrained by the length of his 
leash. 

 An eyeball following and object 

• You can simulate these limits in the 3D 
animation world 

• Constraints are tools used to create 
relationships between objects  

• Within the connections, complex 
relationships are formed 
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Simple Constraints 

• 3 Points  

• Aim  

• Chain IK  

• Mapping  

• Multi-Referential  

• Parent/Child  

• Path  

• Position  

• Range  

• Rigid Body  

• Rotation  

• Scale  
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Complex Constraints 

• Relation 

 Macro Boxes (not covered here) 

• Expression (not covered here) 

• Custom OR SDK 

(not covered here) 
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Creating  Simple Constraints 

•  Create instance of FBConstraintManger 

• Adding a Constraint to the scene: 

– TypeCreateConstraint() is used to create 

constraint 



© 2012  Autodesk  

Click to edit Master title 
style 

Click to edit Master title 
style 

8 

Finding Constraints 

• Use FBScene from FBSystem; this 

returns a list of FBConstraint 

  
from pyfbsdk import* 

  

lConstraints = FBSystem().Scene.Constraints 

  

for lCon in lConstraints: 

    print lCon.Name 
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Deleting Constraints 

• Use FBScene from FBSystem; this 

returns a list of FBConstraint 

  
from pyfbsdk import* 

  

lConstraints = FBSystem().Scene.Constraints 

  

for lCon in lConstraints: 

    if lCon.Name == 'Aim': 

        lCon.FBDelete() 
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The ‘FBConstraint’ Class 

• This is the base class for constraints 

 

• This class handles properties 

common to all constraints.  
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Constraint Properties 

• Some of the properties are directly 

exposed in the class FBConstraint 

• Some of the properties you need to 

look for using PropertyList.Find 

 

• You cannot access the ‘Zero’ 

button/functionality in Python it is 

not exposed at this point. 
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Reference Groups 

• Reference Groups are the categories 
where objects involved in a constraint 
can be found 

 

• There are several functions for 
managing reference groups in the class 
FBConstraint 

 

• A reference group is identified by its 
index or name, it can have more than 
one object. 
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Reference Groups 

• ReferenceGroupGetCount() returns the total number of reference 
groups, in the above screen shot the reference group count is 3. 

  

• ReferenceGroupGetName() returns the name of a group given an 
index, in the above screen shot the reference group names are 
Constrained Object, Aim At Object and World Up Object. 

  

• ReferenceAdd() adds an object to the group represented by the 
given index. ReferenceRemove() removes the object from the 
specified group, in the above screen shot, Constrained Object is 
set to MyCam. 

  

• ReferenceGet() obtains an object at the given index in the 
specified group index, in the above screen shot this would return 
the object MyCam. 

  

• You can also create new groups with ReferenceGroupAdd(), where 
the group name and its maximum object count are specified. 
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What is a Relation? 

• A constraint you create using a 
graphical interface like connect-the-
dots. 

• Relations constraints come with 
mathematical operators that you can 
use as building blocks to create very 
specific actions for your models. 
These building blocks are called 
Operators. 

• FBConstraintRelation class 
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Working with Relation 

 

• Finding existing ‘Relation’ constraint 

in Python 

• Creating ‘Relation’ constraint 
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Components that make up a 

Relation Constraint 
• The objects used to create a 

Relations constraint can be broken 

down into four types: 

 

1. Senders 

2. Operators 

3. Receivers 

4. Connections  
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Senders 

• A Sender can be an input device or a 

model.  

• Senders are used to transmit data to 

operations and Receivers.  

• Senders only send data. 

 Sender =relConst.SetAsSource(cube) 
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Operators 

• An Operator is an object that 

performs mathematical operations, 

comparisons, or conversions.  

• It is placed between a Sender and a 

Receiver.  

• Operators receive and send data. 

lBox=lCon.CreateFunctionBox('Number','

Add (a + b)') 
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Receivers 

• A Receiver can be a model or an 

output device.  

• Receivers receive data transmitted 

from Operators and Senders. 

• Receivers only receive data. 
Receiver = relConst.ConstrainObject(cube) 
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Connections 

• This is the data that is being passed 

around from senders, operators and 

receivers. 
lCubeOut = FindAnimationNode( 

lBoxSenderCube.AnimationNodeOutGet(), 'Rotation' ) 

lCamIn = FindAnimationNode( 

lBoxReceiverCam.AnimationNodeInGet(),'Translation' ) 

if lCubeOut and lCamIn: 

    FBConnect( lCubeOut, lCamIn ) 
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Triggering Scripts in 

Constraints 
1. Drag and drop script into Viewer, choose ‘Add to scene’ (not programmable) 

2. Add a script device to the scene: 

  

 from pyfbsdk import * 

  

 lScript= FBCreateObject ("Boxes/Devices", "Script", "myScript")  

 lSystem = FBSystem()  

 lSystem.Scene.Devices.append(lScript) 

  

3.    Create a relation constraint: 

  

 relConst = FBConstraintRelation('MyConst') 

  

4.  Add the device to the Relation Constraint as a Receiver. 

  

 Receiver = relConst.ConstrainObject(lScript) 
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Assignment 

A.  Accessing the Relation Constraint 
• Find all the constraints in the scene,  find out 

relation constraint. 

 

B.  Determining the types of objects 
• Finding the objects in the Relation Constraint, and 

determining if they are a sender, operator, or a 
receiver. 

 

C.  Determining the connections 
• Finding out what is Animation Node is connected 

to what Animation Node between the objects and 
operators. 
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La Fin! 


