

AutoCAD
®
 VBA to .NET Migration: The Easy Way

Using COM Interop
Augusto Gonçalves – Autodesk

CP308-4 Are you a VBA developer who needs to upgrade your code to .NET? It’s a lot easier than

you think using .NET COM Interop. Learn how quickly and easily you can convert your VBA projects to
VB.NET, using the same ActiveX® Object Model you’re familiar with from VBA.

About the Speaker:
Augusto Gonçalves is a DevTech engineer from Autodesk, based in São Paulo, Brazil. With five years of
previous experience before joining Autodesk, he has started supporting developers on AutoCAD

®
 and

Civil 3D
®
-based technologies, especially in Latin America. Augusto holds a Master's in Computer

Science and B.S. in Civil Engineering.
augusto.goncalves@autodesk.com

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

2

Introduction

In my role as an API consultant I have had opportunities to help ADN partners migrate their VBA projects
to VB.NET. Although the migration can be challenging, once you see what needs to be done the task will
not appear so difficult. This document is intended to be a supplement to the power point slide and
examples used during the session and will be a resource after the class. There are six main topics:

 Focus on basic concepts (why you will want to migrate, language comparison and the IDE).

 Hello world project.(Step by step)

 The migration process step-by-step.

 How use a helper macro to export VBA projects.

 Required corrections to work with events and forms.

 Trouble shooting tips

Note: The suggestions for migration that will be presented in this session should not deter you from

learning VB.NET and the AutoCAD .NET API. The intent is to help you reuse, as much as possible, the
programming logic already implemented in your ActiveX code being used in VBA.

Why migrate to VB.NET?

VBA is no longer being developed. Microsoft has announced the “Discontinuation of the VBA Licensing
Program” (see http://msdn.microsoft.com/en-us/isv/bb190538.aspx) on July 2007. One major effect of this
decision is that there is not a 64 bits version of VBA, and the AutoCAD 64 bits VBA in AutoCAD is
provided through a 32 bits engine through a lot of data conversions.

Also as of AutoCAD 2010 it is also necessary to download and install a file to enable VBA. (It is
reasonable to expect that VBA will not be included with the default AutoCAD install ever again). Now is
the time to start thinking about migrating your VBA to VB.NET. The tools and ideas presented in this class
will help you quickly get up to speed on this process.

One benefit of migrating your VBA code is that once your ActiveX code is working in VB.NET, you gain
access too many others APIs, including WinForms, ADO.NET and, the AutoCAD.NET API. VB.NET is a
true object-oriented language; which means that some unintuitive and inconsistent features like
GoSub/Return and DefInt have been removed from the language.

Note: If your application uses Microsoft based features, such as OLE Container Controls, Dynamic Data

Exchange or DAO, take a look at the “Things to Consider Before Upgrading” in the MSDN library at this
location: (http://msdn.microsoft.com/en-us/library/ywsayxak.aspx).

http://msdn.microsoft.com/en-us/isv/bb190538.aspx
http://msdn.microsoft.com/en-us/library/ywsayxak.aspx

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

3

The AutoCAD ActiveX API

It is important to understand that VBA uses the AutoCAD ActiveX API, and the decision to discontinue
VBA from Microsoft is only related to the VBA IDE and does not mean that the AutoCAD ActiveX API is
going away. AutoCAD will continue to have this API and you can use the objects, methods and properties
from other environments such as VB.NET.

This means that from .NET it is possible use the same object model you are comfortable using from VBA.
This is possible because .NET can consume ActiveX objects as easily as pure .NET objects through
Interop functionality.

VBA / VB.NET comparison

From VBA you can only use ActiveX APIs. From VB.NET you can use the ActiveX API and the
AutoCAD.NET API, including new .NET framework features. In fact, after your VBA code is migrated it will
be called and run like a “pure” .NET project.

To run a VBA procedure you use the VBARUN command. AutoCAD .NET procedures are run like built-in
commands. A .NET built project, (a .NET assembly) is loaded using the NETLOAD command. The dll can
also be demand loaded (using registry keys). VB.NET code needs to be compiled with a separate
compiler. (such as Visual Studio) Also embedding .NET assemblies in DWG file is not supported.

Visual Studio: .NET default IDE

According to Microsoft, “the Visual Studio development system is a comprehensive su ite of tools
designed to help software developers create innovative, next-generation applications. It’s the perfect work
environment for application developers”. There are different versions of this IDE, each one for each type
of development environment and you can choose the one that best fit your needs.

Fortunately there is a free version called Express Edition. This version allows you to write and compile
VB.NET project with almost all IDE resources available as the full version. It is important to remember that
all versions of Visual Studio, including Express Edition, require permissions to install it on your machine.
For more information and how to download, please visit the following link
http://www.microsoft.com/express/vb/

Note: Although .NET applications can run on both 32 bits and 64 bits platforms, the free version of Visual

Studio do not allow you to compile for 64 bits. Visit the following link for more information:
http://msdn.microsoft.com/library/we1f72fb.aspx

Adding References for ActiveX

Like VB6, in VB.NET we need to add reference to both AutoCAD XXXX Type Library and
AutoCAD/Object Common XX.X Type Library, where XXXX and XX.X stands for the version number.
Projects created using the VBAIDE automatically add a reference to AutoCAD Type Library, which
indirectly add reference to Object Common Type Library, so you do not have to do this manually.

A VB.NET project requires that we explicitly add a reference to the required assemblies. On a project
created on Visual Studio, we can use three alternatives to add those references:

http://www.microsoft.com/express/vb/
http://msdn.microsoft.com/library/we1f72fb.aspx

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

4

1. COM objects: this is the same as you would use in a VBA project.
2. TLB files: this is what the option number one actually does, but here you can manually browse

and then add reference to acax18enu.tlb and axdb18enu.tlb, both located at [Program Files

folder]\Common Files\Autodesk Shared folder (assuming default folder).

3. DLL files: here you can browse for the DLL version of AutoCAD COM Objects, which allows much
more control over which version you are planning to support. These DLLs came with the
ObjectARX SDK, which can be freely download from http://www.objectarx.com or, if you have
ADN Subscription, you can download multiple versions of it from http://adn.autodesk.com. Once
you have this SDK, browse for the following assemblies, Autodesk.AutoCAD.Interop.dll and
Autodesk.AutoCAD.Interop.Common.dll, on [ObjectARX folder]\inc-win32 or \inc-x64, to

compile for 32 bits and 64 bits versions of AutoCAD.

For example: suppose you have installed on your machine both AutoCAD 2008 and 2009. On this
scenario, you can use COM objects or browse TLB files. If you plan to support both versions, it’s
recommended that you develop your application using 2008 references, but when you reference using
options 1 and 2, your project will use the newer version, in this case 2009. To explicit ly use the 2008
references, you should add references as described at option 3, using ObjectARX 2008.

It is recommended that you compile your project with references to the oldest version you plan to support.
For example: Let’s say your application needs to work on AutoCAD 2008, 2009 and 2010. In this case,
compile the code one time using the 2008 references for AutoCAD 2008 and 2009 and compile again
using 2010 references for AutoCAD 2010. As result, you application will have two version, one for
2008/2009 and another to 2010. The “Unable to cast COM object” exception can be thrown in this case,
see “Quick troubleshooting” section for more information.

Note: If you are planning to support 32 bits and 64 bits platforms, you must compile you project using the

specific versions of the references. A project compiled with 32 bits version of references will not work on
64 bits because AutoCAD COM object have difference GUID on each platform.

“Hello World” in VB.NET with COM Interop

The following is a step by step example that creates a simple project using the ActiveX API.

1. Start Microsoft Visual Basic Express Edition. Check if the application starts with (Administrator)
on the title bar. If not, you may require changing your Windows Credentials to have this privilege.
This is not mandatory, just recommended, see more info at MSDN (http://msdn.microsoft.com/en-
us/library/ms165100.aspx).

http://www.objectarx.com/
http://adn.autodesk.com/
http://msdn.microsoft.com/en-us/library/ms165100.aspx
http://msdn.microsoft.com/en-us/library/ms165100.aspx

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

5

2. Go to menu File, and then select New Project. Here you can select two kinds of projects:
Windows Forms Application or Class Library. The first type will produce a stand alone .exe file
that allows your application to automate AutoCAD. The second type will produce a .dll file that
you can load inside AutoCAD and register new commands.

As we are focusing on VBA migration used inside AutoCAD, let’s choose Class Library as project
type like in the image below (this will allow us to load the dll). Type the desired name, in this case
HelloWorld, and finally press “Ok” button. Visual Studio will then create a new project.

Tip: the image below also shows two others interesting types of projects to extend or automate

Autodesk products, AutoCAD Managed Project Application and Autodesk Inventor Addin, which
are template projects for AutoCAD.NET API (also called AutoCAD Managed API) and Inventor
COM API respectively. We can develop for both using the same IDE and language. Very cool,
isn’t it? You may need to install these additional wizards separately and the AutoCAD Managed
works for pure .NET project and will not be used in this handout.

3. Now, at the Solution Explorer window, right click on HelloWorld project and then select Add

Reference. It is also possible go to project properties, select the “References” tab and click on
“Add” and select “Reference”.

Tip: If this window does not appear on your VS IDE, go to menu View, and select Solution
Explorer, or simply press Ctrl+Alt+L.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

6

Following the recommendation described at section “Adding References for ActiveX on VB.NET”,
add reference to both assemblies available at ObjectARX folder, like the image below.
Additionally, as we will use some AutoCAD.NET features to hook our project inside AutoCAD,
add reference to AcMdg.dll and AcDbMgd.dll in the same folder.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

7

Note: if your code is going to run outside of AutoCAD (external application) do not add a
reference to AcMgd and AcDbMgd assemblies. Please refer to this section - “What about
Automation from external application?”

Make sure all AutoCAD related references are set to Copy Local equals false. This is important to
avoid duplicating these references and future debug problems. To set Copy Local to false, right-
click on the project name HelloWorld and go to “Properties”, then select the reference and go to

the “Properties” window and change the Copy Local property. The final result should be like in the
following image.

4. In .NET we need to import the namespace we want to use. This will dramatically reduce the
amount of code we need to type and, as we are migrating from VBA and will allow your code to
look very similar to the way it does in VBA. After importing the namespaces, the code inside
class1.vb will look like the following code:

'import AutoCAD Type Libray namespace

Imports Autodesk.AutoCAD.Interop
'import AutoCAD/Object Common Type Library namespace

Imports Autodesk.AutoCAD.Interop.Common

Public Class Class1

End Class

5. VB.NET assemblies can define AutoCAD commands which will run sub routines. To “mark” a sub
procedure as a command we need to add an attribute that defines the command name, like in the
following code:

Public Class Class1
 <Autodesk.AutoCAD.Runtime.CommandMethod("commandName")> _
 Public Sub subName()

 End Sub
End Class

The commandName is what the user enters on the AutoCAD command prompt to call your
subName routine. The commandName and the subName do not need to be the same.

Tip: Like we did for the COM namespace, you can also use the Imports keyword and import the

Autodesk.AutoCAD.Runtime namespace to reduce the length of the commandMethod attribute
above. <CommandMethod(“commandName”)> _

Note: AutoCAD commands do not return values, if you use a function instead of a sub, your

assembly will throw “Error binding to target method” exception.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

8

6. The AutoCAD.NET API does not have the ThisDrawing variable available in VBA. It does

represent the active document inside AutoCAD, so we can instantiate a variable and then use
the Utility to prompt a message, like in the following code.

Public Class Class1
 <Autodesk.AutoCAD.Runtime.CommandMethod("commandName")> _
 Public Sub subName()
 'create an AcadDocument variable
 Dim ThisDrawing As AcadDocument

 'and get the Active Document
 ThisDrawing = Autodesk.AutoCAD.ApplicationServices. _
 Application.DocumentManager.MdiActiveDocument.AcadDocument

 'let's print "Hello World" on the prompt
 ThisDrawing.Utility.Prompt("Hello World from VB.NET")
 End Sub
End Class

7. Compile you project by selecting menu Build, Build HelloWorld. You should receive a “Build
succeeded” message on left-bottom of Visual Studio status bar.

8. Start AutoCAD, call NETLOAD command. At the “Choose .NET Assembly” dialog select the
HelloWorld.dll file on the output directory, usually at [Project folder]\bin\Release folder. Click
“Open”. Finally type the command name at the prompt. The AutoCAD prompt should look like the
following:

Command: NETLOAD
Command: commandName
Hello World from VB.NET

Improving the ThisDrawing variable

One interesting feature of .NET languages is the ability to encapsulate the get and set methods of a
variable’s property inside a single method, known as property, instead to separated let and get methods.
So why not create a ThisDrawing property to reuse it across our code? This will increase the similarity of
VBA and VB.NET code.

The following code shows a modified version of the HelloWorld step-by-step sample showed earlier.

Notice we make the variable a ReadOnly property as it shouldn’t be changed. This property returnsan
instance of AcadDocument type.

Public Class Class1
 'return the Active Document
 Public ReadOnly Property ThisDrawing() As AcadDocument
 Get
 Return Autodesk.AutoCAD. _
 ApplicationServices.Application. _
 DocumentManager.MdiActiveDocument.AcadDocument
 End Get
 End Property

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

9

 <Autodesk.AutoCAD.Runtime.CommandMethod("commandName")> _
 Public Sub subName()
 'let's print "Hello World" on the prompt
 ThisDrawing.Utility.Prompt("Hello World from VB.NET")
 End Sub
End Class

Note: You may not want to store the value of ThisDrawing as a variable. AutoCAD is a MDI (Multiple

Document Interface) environment and the active document object will change every time the user
changes between drawings. Later in this material we will cover how deal with events and how keep track
of ThisDrawing variable.

Calling VBA code from VB.NET

During your migration process, you may need to run both VBA and VB.NET code side-by-side. It is
possible call VBA routines from VB.NET using the following piece of code.

Public Sub runMacro()

 'create an AcadApplication variable

 Dim acadApp As AcadApplication

 'get the AcadApplication

 acadApp = Autodesk.AutoCAD.ApplicationServices.Application.AcadApplication

 'and run the macro

 acadApp.RunMacro("C:\ProjectFile.dvb!ThisDrawing.MyRoutine")

End Sub

The RunMacro method is well known on VBA, but here it was migrated to .NET. Note that if your project
has the ThisDrawing property or variable, you can simply get the Application property and then call
RunMacro.

Tip: As a .NET project defines a command, you can call them from VBA code using SendCommand.

Enabling Debug on Visual Basic Express

Developing an application without Debug features it is difficult. The Express edition does not enable this
option through UI, but we can manually edit the .vbproj and enable it. If you are editing a working project,
make sure you have a backup of this file and Visual Studio is not running.

For this hello world sample, open the HelloWorld.vbproj file on a text editor, such as Notepad. Note that
you can apply this to other Project files, such as .csproj for C# projects. Find the following piece of XML
code and append the bold marked part, StartAction and StartProgram (with the desired AutoCAD

version).

 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <DefineDebug>true</DefineDebug>
 <DefineTrace>true</DefineTrace>
 <OutputPath>bin\Debug\</OutputPath>
 <DocumentationFile>HelloWorld.xml</DocumentationFile>
 <NoWarn>42016,41999,42017,42018,42019,42032,42036,42020,42021,42022</NoWarn>

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

10

 <StartAction>Program</StartAction>
 <StartProgram>C:\Program Files\AutoCAD 2010\acad.exe</StartProgram>

 </PropertyGroup>

After the above steps, the F5 key or the menu Debug, Start Debugging, should work without problems.
As a friendly reminder, debug features may not work if the application references are set to Copy Local
equals true, please refer to step 3 of the previously “Simple Hello World” section.

What about Automation from external application?

First, if your application Automates AutoCAD from an external application, also known as out-of-process,
you cannot add reference to AcMgd and AcDbMgd assemblies. In fact, this is not necessary as this kind
of application cannot define a command, but you can become tempted to use in-process features on an
out-of-process application.

Tip: In case you want to automate AutoCAD using in-process .NET features, there is an interesting blog

post about how create new COM interfaces using .NET and access them at the following link
(http://through-the-interface.typepad.com/through_the_interface/2009/05/interfacing-an-external-com-
application-with-a-net-module-in-process-to-autocad.html).

Now, if your external application automates AutoCAD, then it is probably a VB6 project, not a VBA
project. If so, in the following sections of this material we will cover some migration steps, and you may
want to skip the export from VBA to VB6 step.

Step-by-step migration

In the following section we will cover the basic steps required to migrate your VBA to the new VB.NET.
These steps are generic, so you may need additional work depending on how your code was designed.
(Links to additional information can be found below”).

After understanding these steps, you will be more confident when using the VBA to VB6 utility and
addressing more complex issues, such as migrating events. Before starting, make sure to create a
Backup Copy of Everything you are planning to migrate.

First step: Prepare you code for migration

As will be discussed further in this text, the biggest part of migration process is performed by Visual Basic
Upgrade Wizard, but there are some “Programming Recommendations” that will dramatically improve the
final result.

Use Early-Binding instead Late-Binding

This is the most important recommendation you should consider, but what is early and late-binding?
Every time you define variables as Object and/or Variant you are using late-biding, which means that your
code will locate the executing method only on run time. To better understand what this is and how it
works, please visit the following link.

Using early binding and late binding in Automation
http://support.microsoft.com/kb/245115

http://through-the-interface.typepad.com/through_the_interface/2009/05/interfacing-an-external-com-application-with-a-net-module-in-process-to-autocad.html
http://through-the-interface.typepad.com/through_the_interface/2009/05/interfacing-an-external-com-application-with-a-net-module-in-process-to-autocad.html
http://support.microsoft.com/kb/245115

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

11

Now, suppose you are using late-binding to declare variables like below. This code will change the
caption of the Label. Note that, during development time, there is no information on the type of myLabel
variable, and only during run time the variable will know its type.

Dim myLabel As Object
Set myLabel = Me.Label1
myLabel.Caption = "SomeText"

Like many others, the caption property name has changed on VB.NET, and as the Wizard does not know
the actual type of myLabel, it cannot migrate the property name properly. If we use early-binding, like
below, the Wizard will migrate the property correctly.

Dim myLabel As Label
Set myLabel = Me.Label1
myLabel.Caption = "SomeText"

The same idea applies to Variant declarations and especially the use of CXxxx functions, such as CInt,
CStr, etc. The following links show information you should consider before start your migration. I would
highly recommend reading the topics from the first link. It can bring good improvements to your final
result.

Preparing Your Visual Basic 6.0 Applications for the Upgrade to Visual Basic .NET
http://msdn.microsoft.com/en-us/library/aa260644.aspx

Preparing a Visual Basic 6.0 Application for Upgrading
http://msdn.microsoft.com/en-us/library/14w905kc.aspx

Convert VBA Code to Visual Basic When Migrating to Visual Studio 2005 Tools for Office
http://msdn.microsoft.com/en-us/library/aa537180(office.11).aspx

Second Step: Export your VBA project to VB6

The Visual Basic Upgrade Wizard migrates VB6 projects to VB.NET, not VBA projects. You will need to
migrate your VBA project to VB6 to use the .NET wizard. Also, the process is manual because we need
to export each item from VBA and import them inside a VB6 project. (A utility to avoid using VB6 is
discussed in a later section)

Suppose a simple VBA project has one Module, one Class and uses the ThisDrawing shortcut like in the
image below. It is possible to use UserForms inside VBA projects, but we will discuss this feature later.
Now for each of these items, we need to select menu File, Export File in order to export them. In this
case, the result will be a set of .bas and .cls files.

http://msdn.microsoft.com/en-us/library/aa260644.aspx
http://msdn.microsoft.com/en-us/library/14w905kc.aspx
http://msdn.microsoft.com/en-us/library/aa537180(office.11).aspx

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

12

Now start Microsoft Visual Basic 6.0 and create a new project by selecting File, New Project, then a new
ActiveX DLL project and click Ok like in the image below. A new blank project will be created and you

don’t need to configure its properties, we will configure it later on VB.NET.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

13

With the new project open on VB6, go to menu Project, and select Add Class for each class exported
from VBA and Add Module for each module. Inside the opening dialog, instead create new, select
Existing tab like in the image below and locate the file.

Finally, save the VB6 project as a .vpb file. If you open this file with Notepad you will note that it is actually
a text file, and it contains references to our .bas and .cls files. This is interesting because text files are
easily editable and this will be the basic idea of the VBA to VB6 converter discussed in a later section.

And now the project is ready for migration, let’s move forward.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

14

Third Step: Use the Visual Basic Upgrade Wizard

We will use the Visual Basic Upgrade Wizard, but there are other tools and you can search on the web.
You can use the default values for the wizard, such as “DLL/Custom Control Library” project type, just
consider change the destination folder if you like.

The upgrade wizard will generate one file for each VB6 item and three extra files:

 AssemblyInfo: according to MSDN, this file “provides properties for getting the information

about the application, such as the version number, description, loaded assemblies”, see more at
(http://msdn.microsoft.com/library/microsoft.visualbasic.applicationservices.assemblyinfo.aspx).

 app.config: is the application configuration file that contains settings specific to the application.

You can find more information at (http://msdn.microsoft.com/en-us/library/ms229689.aspx).

 _UpgradeReport: contains important information about the migration process and, in this case,

as presented in the image below, describe some warnings, which will be discussed further.
Bottom line: you should consider analyze this report before move forward.

http://msdn.microsoft.com/library/microsoft.visualbasic.applicationservices.assemblyinfo.aspx
http://msdn.microsoft.com/en-us/library/ms229689.aspx

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

15

First we will look at the code for Module1. We leave a VBA late binded object “c” on purpose, to
demonstrate the resultant code. Note that VB.NET did not know the type and makes type an Object. (And
shows warnings whenever it is used), The upgrade is running “blind”, and does not know if the c object
really contains a ShowMessage method.

This rest was migrated without relevant problems and therefore the result in the code below is pretty
similar to the original, except for some syntax changes. (Such as the removal of the Set keyword and the
use of parenthesis (…) for method calls.

Module Module1

 Public Sub StartHere()

 Dim c As Object

 c = New Class1

 'UPGRADE_WARNING: Couldn't resolve default property of object

'c.ShowMessage.

 c.ShowMessage("Module working")

 End Sub

End Module

The upgrade wizard made some changes to the Initialize and Terminate methods. (now called New and
Finalize). The Upgrade Wizard renamed those old methods appending the _Renamed suffix, and then
calls them from the New and Finalize methods.

Advanced tip: As .NET use a Garbage Collector mechanism, the exact time when the Finalize executes

is undefined. Resources are not guaranteed to be released at any specific time.

Every .NET objects derives, implicitly or explicitly, from System.Object, that’s why Class1 should call

MyBase.New and MyBase.Finalize. According to MSDN library, the Object class “supports all classes in
the .NET Framework class hierarchy and provides low-level services to derived classes. This is the
ultimate base class of all classes in the .NET Framework.” (http://msdn.microsoft.com/en-
us/library/system.object.aspx).

Tip: There will be several UPGRADE_NOTE comments all over the resultant code, which can help

understanding what the upgrade wizard has done. These comments also include links to more
information on MSDN website, but they were removed from this text for brevity.

Friend Class Class1

 'UPGRADE_NOTE: Class_Initialize was upgraded to Class_Initialize_Renamed.

 Private Sub Class_Initialize_Renamed()

 MsgBox("Class Initializing")

 End Sub

 Public Sub New()

 MyBase.New()

 Class_Initialize_Renamed()

 End Sub

 'UPGRADE_NOTE: Class_Terminate was upgraded to Class_Terminate_Renamed.

 Private Sub Class_Terminate_Renamed()

 MsgBox("Class Terminating")

 End Sub

 Protected Overrides Sub Finalize()

 Class_Terminate_Renamed()

 MyBase.Finalize()

 End Sub

 'UPGRADE_NOTE: str was upgraded to str_Renamed.

http://msdn.microsoft.com/en-us/library/system.object.aspx
http://msdn.microsoft.com/en-us/library/system.object.aspx

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

16

 Public Sub ShowMessage(ByRef str_Renamed As String)

 MsgBox(str_Renamed)

 End Sub

End Class

The VBA ThisDrawing object only exists inside VBA, therefore the Upgrade Wizard does not understand
and shows an UPGRADE_WARNING comment in the code. This warning also appears at the
_UpgradeReport file shown before.

Trying to solve this problem, the wizard creates to unnecessary lines which were strikeout in the following
piece of code. We can safely cleanup these two lines. After remove them, you will get a compiler error
which requires some adjustments.

<System.Runtime.InteropServices.ProgId("ThisDrawing_NET.ThisDrawing")> Public

Class ThisDrawing

 'UPGRADE_NOTE: ThisDrawing was upgraded to ThisDrawing_Renamed.

 Public Sub MyRoutine()

 Dim ThisDrawing_Renamed As Object

 'UPGRADE_WARNING: Couldn't resolve default property of object

'ThisDrawing.Utility.

 ThisDrawing.Utility.Prompt("MyRoutine working")

 End Sub

End Class

Note: while the UPGRADE_NOTE contains interesting information, the UPGRADE_WARNING contains

very important information that usually cause compiler errors and you should carefully review all of them.
You can use the upgrade report to locate them.

Fourth Step: Adjusting the result

The required corrections were presented in “Hello World” section. First add reference to the two Interop
.dll files, AutoCAD.Autodesk.Interop and AutoCAD.Autodesk.Interop.Common. Next, add reference
to AcMgd and AcDbMdg to enable AutoCAD.NET support.

Tip: While adding reference to AutoCAD.NET assemblies, Visual Basic may prompt a “requires a later

version of .NET framework” message. If so, please refer to the “AutoCAD.NET assemblies (AcDbMgd or
AcMdg) requires a later version of the .NET Framework” topic at “Quick troubleshooting” section.

Add the two Imports lines and the ThisVariable property. Finally, append the CommandMethod attribute
in order to mark the MyRoutine method as a custom command. The result should look like the following
(upgrade comments were removed for brevity).

'Import these namespaces

Imports Autodesk.AutoCAD.Interop

Imports Autodesk.AutoCAD.Interop.Common

'Add the ThisDrawing property

Public Class ThisDrawing

 Public ReadOnly Property ThisDrawing() As AcadDocument

 Get

 Return Autodesk.AutoCAD. _

 ApplicationServices.Application. _

 DocumentManager.MdiActiveDocument.AcadDocument

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

17

 End Get

 End Property

 'Add this attribute to mark this sub routine as a command

 <Autodesk.AutoCAD.Runtime.CommandMethod("myRoutine")> _

 Public Sub MyRoutine()

 ThisDrawing.Utility.Prompt("MyRoutine working")

 End Sub

End Class

As it is also possible run the VBA Module1.StartHere using VBARUN, it is also required to append
CommandMethod attribute to this method. Additionally, the module is upgraded without the Public
keyword, therefore its commands are not properly recognized by AutoCAD. We should set it as public if
we want to run it as command.

Public Module Module1

 <Autodesk.AutoCAD.Runtime.CommandMethod("StartHere")> _

 Public Sub StartHere()

 <<The rest of the code have not changed>>

The VBA to VB6 Converter: A “magic” helper tool

The VBA → VB6 Converter is a macro that exports VBA projects to VB6 format and make them ready

for Visual Basic Upgrade Wizard without using VB6 IDE. It takes advantage of the fact that these project
files are actually text files and can be edited by external tools. This is handy as export each VBA file and
then import into a new VB6 project automatically, which save us from manually perform the “Second
Step” section.

Additionally, the biggest benefit of this tool is converting User Form into VB6 forms. This allows the
upgrade wizard to migrate them to new (and similar) VB.NET forms and controls, known as WinForms.
The converter works for a limited number of supported controls, which are one of the mostly used. Here is
the list of supported controls:

 MSForms.Label

 MSForms.TextBox

 MSForms.CheckBox

 MSForms.OptionButton

 MSForms.CommandButton

 MSForms.ToggleButton

 MSForms.Image

 MSForms.ListBox

 MSForms.ComboBox

 MSForms.ScrollBar

 MSForms.Frame

Note: The converter does not work for the MSForms controls TabStrip, Multipage, SpinButton, or any

other external control. You may need to manually migrate them.

To use the converter, first VBALOAD the project you want to migrate, then VBALOAD the
VBA_to_VB6_Converter.dvd file. VBARUN the StartVBConversion routine, as shown in the following

image, which will start the migration dialog.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

18

The converter form has 3 areas, one for each step, see image below:

 First select the project you want to convert, which should be VBALOADed before run the
converter macro. Also note that this list also contains the ExportToVB6 project, which is the
converter macro itself.

 The second allows us to change some settings:
o Whether include or not UserForms in the migration process, e.g. in case you have many

unsupported controls you may do not want to try convert them using this tool.
o Include a place holder marking controls that the macro was not able to convert.
o Add reference to ObjectDBX type library in case you use objects of this reference.

After configure all settings above according to your project, click on “Convert VBA project to
VB6” button. The resultant project will always placed at [VBA project folder]\VB6Conv folder.

 After use the upgrade wizard, the third area helps us configure the VB.NET project settings. To
use it, first close the VB.NET project, then click at the post-process button and select the .vbproj
file of the upgraded project. It will make the following changes:

o Set the target .NET Framework to 3.5, which avoid a warning message described at
“Quick troubleshooting” section.

o Enable debug and F5 shortcut on express edition (as shown on “Enabling Debug on
Visual Basic Express” section)

o Add reference to required managed assemblies located at ObjectARX SDK folder. This
will require the correct location of the SDK, so change the location textbox field if
required.

Note that this post processing does not add reference to Interop assemblies, and if your VBA
project use them, then will be referenced at your VB.NET project. You can edit those references
later and, for example, change the Interop versions. Please refer to section “Adding References
for ActiveX on VB.NET” for more information.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

19

Working with Events

Handling events on VB.NET is quite similar to VB6 and VBA. When a variable is declared as WithEvents,

it means that a method can handle its events, but now the method that receives the event should post-
fixed by the Handles keyword. In general, the upgrade wizard should work well for variables that handle

events, mostly because the syntax is similar, but do not migrate ThisDrawing events.

The ThisDrawing variable has a special characteristic inside VBA - it automatically changes its context
according to the current document. Basically, the runtime environment automatically updates the variable
and prepares its events for the new document. Let’s see a quick example: suppose the following VBA
code inside ThisDrawing module. It will run for every document without problem.

Private Sub AcadDocument_BeginCommand(ByVal CommandName As String)
 ThisDrawing.Utility.Prompt "(Begin command " & CommandName & “)”
End Sub
Private Sub AcadDocument_EndCommand(ByVal CommandName As String)
 ThisDrawing.Utility.Prompt "(End command " & CommandName & “)”
End Sub

After exporting it using the VBA to VB6 converter, upgrading using Visual Basic Upgrade Wizard and
perform the “ThisDrawing cleanup” , the above VBA code becomes the following VB.NET code. To work
with events properly we need more than a simple ThisDrawing property, so we cannot use the property
we have been using in the previous examples.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

20

Public Class ThisDrawing

 'UPGRADE_NOTE: ThisDrawing was upgraded to ThisDrawing_Renamed.

 Private Sub AcadDocument_BeginCommand(ByVal CommandName As String)

 'UPGRADE_WARNING: Couldn't resolve default property of object

 'ThisDrawing.Utility.

 ThisDrawing.Utility.Prompt("(Begin command " & CommandName & ")")

 End Sub

 'UPGRADE_NOTE: ThisDrawing was upgraded to ThisDrawing_Renamed.

 Private Sub AcadDocument_EndCommand(ByVal CommandName As String)

 'UPGRADE_WARNING: Couldn't resolve default property of object

 'ThisDrawing.Utility.

 ThisDrawing.Utility.Prompt("(End command " & CommandName & ")")

 End Sub

End Class

To adjust the above code will require a few steps. Check the following steps at the code below.

1. Import the required namespaces for interop. As showed earlier, this will make the VB.NET code
more similar and reduce manual changes. Additionally, to reduce the amount of code typing in
this particular case, also import the ApplicationServices namespace.

2. As the ThisDrawing variable represents the active document, create the variable as
AcadDocument type and set its value using the .NET object Application. Previously I have
recommended to not store it as a variable, but using the read-only property instead. Here, to use
events like VBA code, we need declare it using the WithEvents keyword, which cannot be

applied to properties. This is why we will use a variable.

3. The active document variable should change every time the user switches between documents.
To listen to these changes, we can get access to the collection of documents using the .NET
object DocumentCollection and its value from the .NET Application object.

4. Using the above DocumentCollection object, create an event handler for DocumentActivated.

Inside this event, just update the value of the ThisDrawing variable.

5. The upgrade wizard does not recognize the ThisDrawing variable, so it does not append the
Handles keyword after events, so append it manually.

'<< Step 1 >>

'Import these namespaces

Imports Autodesk.AutoCAD.Interop

Imports Autodesk.AutoCAD.Interop.Common

'Another namespace – recommended here

Imports Autodesk.AutoCAD.ApplicationServices

Public Class ThisDrawing

 '<< Step 2 >>

 'Declare a ThisDrawing variable WithEvents

 Private WithEvents ThisDrawing As AcadDocument = _

 Application.DocumentManager.MdiActiveDocument.AcadDocument

 '<< Step 3 >>

 'We also need to keep track of the active document, so let's

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

21

 'get the DocumentManager, which control all opened documents

 Private WithEvents Docs As DocumentCollection = _

 Application.DocumentManager

 '<< Step 4 >>

 'every time the active document change, store it at thisDrawing

 Private Sub Docs_DocumentActivated(ByVal sender As Object, _

 ByVal e As DocumentCollectionEventArgs) _

 Handles Docs.DocumentActivated

 ThisDrawing = e.Document.AcadDocument

 End Sub

 '<< Step 5 >>

 'Append the Handles keyword for the migrated code

 Private Sub AcadDocument_BeginCommand(ByVal CommandName As String) _

 Handles ThisDrawing.BeginCommand

 ThisDrawing.Utility.Prompt("(Begin command " & CommandName & ")")

 End Sub

 Private Sub AcadDocument_EndCommand(ByVal CommandName As String) _

 Handles ThisDrawing.EndCommand

 ThisDrawing.Utility.Prompt("(End command " & CommandName & ")")

 End Sub

End Class

Advanced tip: the above code has a special requirement – it should start handling events for begin and

end of commands when it is loaded, like its VBA equivalent, but this may not happen. Why? Because the
ThisDrawing variable must be initialized, which in this case will not happen until the class is instantiated. If
the class contains a command, then it will initialize when your user runs the command by the first time,
but if it doesn’t? On a .NET assembly, the class that implements the IExtensionApplication interface will
run when it the assembly loads. You can either implement it at the above class or create another class
that initializes all other objects you need. The following code snippet shows the class signature with the
interface implementation. You must declare the Initialize and Terminate, but for this demonstration they
do not require additional coding.

Public Class ThisDrawing

 Implements Autodesk.AutoCAD.Runtime.IExtensionApplication

 'Required when implementing the IExtensionApplication interface

 Public Sub Initialize() Implements _

 Autodesk.AutoCAD.Runtime.IExtensionApplication.Initialize

 End Sub

 Public Sub Terminate() Implements _

 Autodesk.AutoCAD.Runtime.IExtensionApplication.Terminate

 End Sub

 '...

 'the rest of the code . . .

 '...

Migration of UserForms

The VBA to VB6 converter works pretty smooth for projects with UserForms, but there are some
additional information you may need. Suppose a simple user form with a textbox field and a button, when

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

22

the form initialize it fills the textbox with an initial value and when the user clicks on the button, the textbox
text is printed and cleaned. The following image and code show it. For brevity there is no caller code.

Private Sub CommandButton1_Click()
 Call showTextboxText(TextBox1)
 TextBox1.Text = ""
End Sub
Private Sub showTextboxText(tbox As TextBox)
 MsgBox tbox.Text
End Sub
Private Sub UserForm_Initialize()
 TextBox1.Text = "The initial value"
End Sub

After running the VBA to VB6 converter and running the Visual Basic Upgrade Wizard, the .NET
WinForm looks very similar to the original, but we need to make some correction to the form events.

Visual Basic has a special way to handle events for forms and controls. To use it, select the form or the

control you want, then at the Properties window click at the event icon () to list all possible events, use
mouse double click on Load, like in the following image. A new method to handle the event will be

created at the code.

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

23

In the code you can either call the old initialize method or copy and paste the original code inside the new
method. The result will look like the following. Note that the Handles keyword was added to the button

click event. For the specific case of the form, as the event is declared inside the base class, so use the
MyBase keyword.

Friend Class UserForm1

 Inherits System.Windows.Forms.Form

 Private Sub CommandButton1_Click(ByVal eventSender As System.Object, _

 ByVal eventArgs As System.EventArgs) _

 Handles CommandButton1.Click

 Call showTextboxText(TextBox1)

 TextBox1.Text = ""

 End Sub

 Private Sub showTextboxText(ByRef tbox As System.Windows.Forms.TextBox)

 MsgBox(tbox.Text)

 End Sub

 'This initialize will not work, we need to create this event again

 Private Sub UserForm_Initialize()

 TextBox1.Text = "The initial value"

 End Sub

 'Here is the new Load event that replaces the Initialize

 Private Sub UserForm1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 'call the old initialize (or copy/paste the code here)

 UserForm_Initialize()

 End Sub

End Class

Tip: To ensure your new VB.NET project is handling events properly, you may want to check if all of them
are implementing the Handles keyword.

Quick troubleshooting

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

24

AutoCAD.NET assemblies (AcDbMgd or AcMdg) requires a later version of the .NET Framework

After run the Upgrade Wizard, while adding reference to AutoCAD.NET assemblies, you may receive the
following message box. This warning is shows because, even the wizard running on Visual 2008 for .NET
framework, the migrated project is created for .NET framework 2.0, but AutoCAD uses the newer 3.5. You
can simply select “Yes”.

At the Solution Explorer, use mouse right click on project name, then go to Project properties. Like in the
following image, select Compile tab, click on Advanced Compile Options… and change the “Target
framework” to “.NET Framework 3.0”, then select OK. Visual Basic will prompt you to save, close and
reopen the project.

Unable to cast COM object exception

The exception presented at the image below is very usual when using AutoCAD COM objects from .NET.
AutoCAD keep compatibility in cycles, so if your code was compiles using major version R17

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

25

(2007/2008/2009) of COM and you try running it on R18 (2010), it will throw this exception. A similar
exception will occur if you try run a code compiled with 32 bits COM on 64 bits AutoCAD, or vice-versa.

To solve this exception, compile your project with appropriate version of COM references, for each major
version and platform.

Project cannot be started directly

When you go to menu Debug, Start debugging or press F5, you receive an error message like in the
image below. AutoCAD .NET add-ins must output a Class Library (i.e. a .dll file) and it cannot start by
itself, you need an .exe file, in this case the acad.exe.

On Visual Studio full you can set an external program to run your application, but the Express Edition do
not allow this configuration. Additionally, this limitation prevents us to debug our project. Fortunately, it is
possible to directly edit the .vbproj file and enable debugging. Please refer to “Enabling Debug on Visual
Basic Express” section or use the post-processing of the VBA to V6 converter tool.

For more information about the required changes, please visit the following blog post: http://through-the-
interface.typepad.com/through_the_interface/2006/07/debugging_using.html

Conclusion

http://through-the-interface.typepad.com/through_the_interface/2006/07/debugging_using.html
http://through-the-interface.typepad.com/through_the_interface/2006/07/debugging_using.html

AutoCAD® VBA to .NET Migration: The Easy Way Using COM Interop

26

Thank you for attending this session on migration VBA to VB.NET using COM Interop. I hope you found
the class enjoyable and valuable. In this handout I have presented information that will be very helpful
when migrating your code.

You have seen a simple “Hello World” sample that demonstrates what is necessary to create a VB.NET
assembly using COM Interop. We covered the basic migration process, using a step-by-step approach,
including the VBA to VB6 converter which also provides a great improvement when dealing with
UserForms. Finally we discussed how to handle events in the special case of the ThisDrawing variable.

This text has many “tips” and “important” information strategically located where make more sense. Also,
when you start migrating your code, you may encounter one of the common issues listed at the
troubleshooting section. For more information, consider visiting the links listed in the next section.

I am glad you are considering migrating your VBA code to this new great technology. Good luck and
success on your work.

Further Reading

Through the Interface blog - http://through-the-interface.typepad.com

AutoCAD.NET Developer’s Guide - http://www.autodesk.com/autocad-net-developers-guide

ADN DevTV: AutoCAD VBA to .NET Migration Basics -
http://download.autodesk.com/media/adn/VBA_Migration/DevTV_Recording.zip

Discussion Groups - http://discussion.autodesk.com/forums/category.jspa?categoryID=8

The IDE Visual Basic Express - http://www.microsoft.com/express/vb

Information about the Autodesk Developer Network – http://www.autodesk.com/joinadn

http://through-the-interface.typepad.com/
http://www.autodesk.com/autocad-net-developers-guide
http://download.autodesk.com/media/adn/VBA_Migration/DevTV_Recording.zip
http://discussion.autodesk.com/forums/category.jspa?categoryID=8
http://www.microsoft.com/express/vb
http://www.autodesk.com/joinadn

