

Insert Class Title as per Title Page
		AutoCAD® .NET: Using .NET with your LISP Applications
Introduction:
In my role as a support engineer for ADN (Autodesk Developer Network) I often provide suggestions to developers who are customizing with AutoLISP. It is great when a solution using AutoLISP code or the ActiveX API can be found. In some cases it turns out that there is not any way to arrive at a solution using AutoLISP alone. When this happens I am very thankful that the AutoCAD .NET API has capability that makes interoperating with AutoLISP easy.
.NET is also very useful for communication with “other worlds” such as databases and web services. It is possible to create this functionality in .NET and use the data with AutoLISP. If you have existing AutoLISP code that already does what you need but needs an enhancement to its capability then implementing a solution using the .NET API is probably the answer. You could also consider using ObjectARX if you have C++ skills. However the .NET API has some advantages and ease of use is one of them.
In this session I will try to help you quickly get up to speed on the AutoCAD .NET API with a focus on interoperating with AutoLISP.
This document has several sections. In the first section I discuss code examples that show how interaction between AutoLISP and AutoCAD .NET is accomplished. Next there are a couple of topics that will be useful to know when getting started with the .NET API with AutoLISP. The last section is a set of instructions that step you through creating a .NET form and using this form with the AutoLISP tutorial that ships with AutoCAD.
Section 1 – Discussion on .NET code for AutoLISP
Learning goal 1 - LispFunction attribute
One of the first things you learn when you start using the AutoCAD .NET API is the CommandMethod attribute. This attribute enables a .NET function to be run when the command (defined by the attribute) is entered on the AutoCAD command line. Here is an example of the CommandMethod attribute:
<CommandMethod("test")> _
Public Shared Sub Test()
End Sub

Similarly the LispFunction attribute is one of the first things to understand when learning to use the .NET API with AutoLISP.
An attribute is provided by .NET to create meta-data that describes, or annotates, specific elements of code. Syntactically, attributes are applied using the [AttributeName([Parameters])] notation, where AttributeName is the name of the attribute, and Parameters is a listing of parameters required by the Attribute's constructor.
The LispFunction attribute takes a string that defines the function name. The function that follows the LispFunction attribute will be the .NET function that will be called when the LispFunction is run in AutoLISP. Below are a couple of LispFunction examples for C# and VB.NET. In these examples the LISP function name is “myNETFunction”. When the (myNETFunction) is run from AutoLISP the .NET function “myFunction” will be run.
C#
[LispFunction("myNETFunction")]
static public ResultBuffer myFunction(ResultBuffer theArgs)

VB.NET
<LispFunction("myNETFunction")> _
Public Function myFunction(ByVal theArgs As ResultBuffer) As ResultBuffer

Learning goal 2 – ResultBuffer, TypedValues, LispDataType
Notice that in the previous examples a ResultBuffer object is passed into the function and is returned by the function.
[bookmark: WSfacf1429558a55de8821c21057fbebc2b-4469]The ResultBuffer in the AutoCAD .NET API wraps the ObjectARX resbuf struct. The following C++ code shows the result-buffer structure. A resbuf is defined in conjunction with a union, ads_u_val, that accommodates the various AutoCAD and ObjectARX data types:
union ads_u_val {
 ads_real rreal;
 ads_real rpoint[3];
 short rint; // Must be declared short, not int.
 char *rstring;
 long rlname[2];
 long rlong;
 struct ads_binary rbinary;
};
struct resbuf {
 struct resbuf *rbnext; // Linked list pointer
 short restype;
 union ads_u_val resval;
};

The following figure shows the schematic form of a result-buffer list:
[image:]
From this you can see that the ResultBuffer is a linked list that contains data of different types.
The ResultBuffer is used to pass data to an AutoLISP function from a .NET function and from a .NET function to an AutoLISP function. Other types can be passed back to an AutoLISP function as well. However the ResultBuffer makes this process organized and can contain different types so I would suggest using one in most cases. (I have not seen a case where using a ResultBuffer was not able to be used)
Public Function myFunction(ByVal theArgs As ResultBuffer) As ResultBuffer

A ResultBuffer contains TypedValues. A TypedValue contains the data type and the data value. (called a data pair) When you create a new ResultBuffer you can pass in TypedValues to the constructor. Here is an example where a ResultBuffer is created. The type is a double and the data is 3.14.
Dim rb As ResultBuffer
rb = New ResultBuffer(New TypedValue(CInt(LispDataType.Double),3.14))

The LispDataType object will allow you to easily set the type. Here are the available type codes for the LispDataType. (LispDataType Properties)
	_atom
	Nil
	DottedPair
	ListEnd

	ListBegin
	Point3d
	Orientation
	ObjectId

	Angle
	Point2d
	None
	SelectionSet

	Void
	Int32
	Int16
	Double

	Text
	
	
	

Here is a screen shot of the Intellisense that pops up for the LispDataType:
[image:]
In the example below “changeArgs” will get the arguments from the ResultBuffer that is passed into the function. It then creates a new ResultBuffer using a TypedValue and LispDataType to set the types to doubles. It returns the new ResultBuffer with the updated values to the calling AutoLISP function.
To test this function you would run the NETLOAD command and load the .NET dll that has the LispFunction defined. You would then enter something like the following on the command line: “(changeArgs 10.1 20.1 30.1)” Here is an excerpt from the command line that shows the result. Notice the returned values were added together.
Command: (changeArgs 10.1 20.1 30.1)
Updated arguments in .NET function
(30.2 50.2 60.3)

The comments in this function will help to explain. Notice that the name of the function dNetLispDemo02a is the .NET function that does the work. The function you call from AutoLISP is called “changeArgs”. They can have the same name but it is not required. The Editor object allows you to print text on the AutoCAD command line. Notice that an Array is used to process the arguments. (The ResultBuffer AsArray property gets an array)

<LispFunction("changeArgs")> _
Public Function dNetLispDemo02a(ByVal myLispArgs As ResultBuffer) As ResultBuffer
 ' Shows how to get arguments passed into a lisp function
 ' change them and send arguments back
 Dim ed As Editor
 ed = Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDocument.Editor

 'Ensure there are arguments passed in
 If myLispArgs Is Nothing Then
 ed.WriteMessage("No arguments" & vbLf)
 Return myLispArgs
 Else

 Dim myArgsArray As Array
 myArgsArray = myLispArgs.AsArray
 'Ensure there are at least 3 arguments
 If myArgsArray.Length > 2 Then

 Dim myArg1, myArg2, myArg3 As Double

 'Get the arguments that were passed in
 Dim myTypeVal As TypedValue
 myTypeVal = myArgsArray.GetValue(0)
 myArg1 = myTypeVal.Value
 ' does the same thing as the previous two lines gets Arguments 2 and 3
 myArg2 = CType(myArgsArray.GetValue(1), TypedValue).Value
 myArg3 = CType(myArgsArray.GetValue(2), TypedValue).Value

 ' Add the arguments to make a change
 myArg1 = myArg1 + myArg2
 myArg2 = myArg2 + myArg3
 myArg3 = myArg3 + myArg1

 ' Package data to send back to calling lisp function
 Dim rbfResult As ResultBuffer
 rbfResult = New ResultBuffer(_
 New TypedValue(CInt(LispDataType.Double), myArg1), _
 New TypedValue(CInt(LispDataType.Double), myArg2), _
 New TypedValue(CInt(LispDataType.Double), myArg3))

 ed.WriteMessage("Updated arguments in .NET function" & vbLf)

 Return rbfResult
 Else
 ed.WriteMessage("Not enough arguments" & vbLf)
 Return myLispArgs
 End If
 End If

 Return myLispArgs

 End Function
The following AutoLISP function demonstrates using the .NET example above. Run the AutoLISP function testchangeArgs and pass in a double. “(testchangeArgs 20.0)” The returned value will be changed. The original and updated value will be displayed on the command line.
(defun testchangeArgs (dToChange / myDoubles d1 str str2)
 (setq myDoubles(changeArgs 20 dToChange 30)); send the arguments to .NET
 (Setq d1(nth 1 myDoubles));get the second argument returned
 (setq str(strcat ".NET changed " (rtos dToChange)))
 (setq str2(strcat " to " (rtos d1)))
 (princ (strcat str str2))	
 (princ)
)

Here is the result after running this function:
Command: (testchangeargs 20)
Updated arguments in .NET function
.NET changed 20.0000 to 50.0000

Summary
Now you have the basics for using the AutoCAD .NET API with AutoLISP. In your .NET code you create AutoLISP callable functions using the LispFunction attribute. In the .NET function you use the .NET API to do some work. Arguments are passed in using ResultBuffers. You then pass back any data to the calling AutoLISP function using a ResultBuffer as well. The ResultBuffer can contain different types such as ints, doubles, ObjectIds, SelectionSets, lists, etc. Using these .NET functions from AutoLISP will not be different from using other AutoLISP functions.
The rest of this document has a few other topics that will be helpful as you get started using the AutoCAD .NET with AutoLISP. The last section is a step by step set of instructions that will show how to use a .NET form to gather input from the user and use this input in the calling AutoLISP function.
Additional Resources
Here are a few links with additional resources for AutoCAD .NET:
AutoCAD Developer Center - download training labs
http://www.autodesk.com/developautocad

AutoCAD .NET Training (classroom)
http://www.autodesk.com/apitraining

Breakpoint error when running VLIDE
If you debug the .NET project and the following error occurs when you run the Visual LISP editor (VLIDE). "acad.exe has triggered a breakpoint" change a registry setting for MDA - Managed Debugging Assistants.
The value for this key needs to be 0. You can use a tool like regedit and set the string key "MDA" to 0. The key is the following:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework
If you do not find the MDA string key, create one and set its value to 0. You can also create and use a .reg file (maybe name it MDADisable.reg) and set its contents as follows:
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework]
"MDA"="0"

Using Platform Invoke in AutoCAD .NET
It is possible to run ObjectARX functions that are not wrapped by the AutoCAD .NET assemblies. There are three functions that are especially useful for interoperating with AutoLISP. These are acedInvoke, acedPutSym and acedGetSym. acedInvoke will allow you to run an AutoLISP function from your .NET function. acedPutSym and acedGetSym will allow you to get and change the values of AutoLISP variables.
Here is an example that adds these ObjectARX functions to VB.NET project. Notice that the .NET System.Runtime.InteropServices enables the DllImport attribute.
Imports System.Runtime.InteropServices 'for DllImport()

' Use P/Invoke for acedGetSym
<DllImport("acad.exe", CharSet:=CharSet.Unicode, CallingConvention:=CallingConvention.Cdecl, EntryPoint:="acedGetSym")> _
 Shared Function acedGetSym(ByVal args As String, <Out()> ByRef result As IntPtr) As Integer
 End Function

' Use P/Invoke for acedPutSym
<DllImport("acad.exe", CharSet:=CharSet.Unicode, CallingConvention:=CallingConvention.Cdecl, EntryPoint:="acedPutSym")> _
 Shared Function acedPutSym(ByVal args As String, ByVal result As IntPtr) As Integer
 End Function

'use P/Invoke for acedInvoke
<DllImport("acad.exe", CallingConvention:=CallingConvention.Cdecl, EntryPoint:="acedInvoke")> _
 Private Shared Function acedInvoke(ByVal args As IntPtr, ByRef result As IntPtr) As Integer
 End Function
The following example creates a LISP callable function (testInvoke). When this function is called it will invoke another LISP function (c:myFunction). Notice how a ResultBuffer is used to define the function that will be invoked and to contain the arguments. The first TypedValue is text and is the name of the function that will be called. (it needs to be a c: defined function). The rest of the arguments are put into a list. One of the arguments passed to c:myFunction was passed into (testInvoke). Notice that the Unmanaged property of the ResultBuffer is used for the first parameter.
<LispFunction("testInvoke")> _
 Public Function TestAcedInvoke(ByVal myLispArgs As ResultBuffer) As ResultBuffer
 Dim ed As Editor = Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDocument.Editor
 If myLispArgs Is Nothing Then
 ' Write a message on the AutoCAD command line
 ed.WriteMessage("No Arguments passed in" & vbLf)
 Return myLispArgs
 Else

 Dim myArray As Array = myLispArgs.AsArray
 Dim myTypedVal As TypedValue = myArray(0)

 Dim resBuf As New Autodesk.AutoCAD.DatabaseServices.ResultBuffer()
 resBuf.Add(New TypedValue(LispDataType.Text, "c:myFunction")) 'name of the function
 resBuf.Add(New TypedValue(LispDataType.ListBegin, -1)) '" begin a list
 resBuf.Add(New TypedValue(LispDataType.Text, "Some TEXT added in VB function")) 'a double parameter
 resBuf.Add(New TypedValue(LispDataType.Text, myTypedVal.Value)) ' value passed in
 resBuf.Add(New TypedValue(LispDataType.Double, 20.2)) 'a double parameter
 resBuf.Add(New TypedValue(LispDataType.ListEnd, -1)) 'end of the list

 Dim intPtrResBuf As IntPtr = IntPtr.Zero

 Dim intStat As Integer = acedInvoke(resBuf.UnmanagedObject, intPtrResBuf)
 resBuf.Dispose()

 If intStat <> CInt(Autodesk.AutoCAD.EditorInput.PromptStatus.OK) Then
 Throw (New System.Exception("Something wrong"))
 Return myLispArgs
 End If
 End If

 Dim rbfResult As ResultBuffer = New ResultBuffer(New TypedValue(LispDataType.Text, "called c:myFunction"))
 Return rbfResult
 End Function

Exercise - Using a .NET Form with the AutoLISP Garden Path Tutorial
In this exercise, we will use the LispFunction attribute to create a .NET function that will display a form. We will use this form instead of using a DCL dialog. This form will allow the user to make settings that will be returned to the AutoLISP function.
We start this exercise with the assumption that a .NET project for AutoCAD has been created. (If you need some help doing this see the note in the introduction for additional available AutoCAD .NET training)
1) Create a .NET form.
First we need to add a new form to the project. Select the Project Menu and use Add Windows Form. On the Add New Item dialog enter GardenPath.vb for the name. When you are finished adding the controls, the form the will look something like this:
[image:]

Display the Visual Studio ToolBox (Cntrl+Alt+X) and add two Group boxes to the form.
[image:]
Using the properties Window, (Alt+Enter) change the Text property for the Group boxes:
 <First, Group box>
Text = <Outline Polyline Type>
<Second, Group box>
Text = <Tile Creation Method>

[image:]

Add two radio buttons inside of the “Outline Polyline Type” Group box. Change the properties of the radio buttons.
<First, Radio button>
Name = <rb_LightWeight>
Text = <&LightWeight>

<Second, Radio button>
Name = <rb_Oldstyle>
Text = <&Old-style>

Add three radio buttons inside of the “Tile Creation Method” Group box. Change the properties of the three radio buttons:
<First, Radio button>
Name = <rb_ActiveX>
Text = <&ActiveX Automation>

<Second, Radio button>
Name = <rb_Entmake>
Text = <&Entmake>

<Third, Radio button>
Name = <rb_Command>
Text = <&Command>

Add two labels below the “Tile Creation Method” Group box. Change the Text properties:
<First, Label>
Text = <Radius of tile>

<Second, Label>
Text = <Spacing Between Tiles>

Add two TextBoxes to the right of the labels. Change the properties of the TextBoxes:
<First Textbox>
Name = <tb_RadiusOfTile>
Text = <3.0>

<Second Textbox>
Name = <tb_SpacingBetweenTiles>
Text = <0.5>

Add two buttons for OK and Cancel.
<First button>
Name = <bt_OK>
Text = <OK>

<Second button>
Name = <bt_Cancel>
Text = <Cancel>

Double click on the OK button to bring up the code window for the form. In the
 bt_OK_Click event handler add Me.Close()
Private Sub bt_OK_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles bt_OK.Click
 Me.Close()
End Sub
Add Me.Close() to the event handler for the button bt_Cancel as well.
Private Sub bt_Cancel(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles bt_OK.Click
 Me.Close()
End Sub
2) Create a function using the LispFunction attribute.
Add a LispFunction named VBNetFunction to Class1.vb. Use dNetGpath as the LispFunction name. This function will display the form created in step 1. This function will return the users selections on the form to the GardenPath Lisp routine.
<LispFunction("dNetGpath")> _
Public Function VBNetFunction(ByVal myLispArgs As ResultBuffer) As ResultBuffer
End Function
First show the GardenPath dialog by adding code to the VBNETFunction that instantiates a new GardenPath form and shows it:
Dim gPathFrm As New GardenPath
Application.ShowModalDialog(gPathFrm)

We can return a list to the calling AutoLISP function using a ResultBuffer. Next declare a ResultBuffer by adding the following code:
Dim rbfResult As ResultBuffer
Our function needs to return different values depending on how the user interacts with our GardenPath form. First we need to know if the User clicked OK or Cancel. Add a global Boolean variable named bOK to the GardenPath class.
Public bOK As Boolean = False
In the bt_OK_Click event handler make this variable true.
bOK = True
We need to test the bOK variable in our vbNetFunction. If this variable is true the user clicked OK and we need to get the values from the GardenPath form. Once we have these vaules we can return them to the calling AutoLISP function. If the user clicked Cancel we need to return nil. Add an if statement to the vbNetFunction testing bOK:
If gPathFrm.bOk = True Then
Inside the bOK “if” statement add code that will get the values from the form. Other nested if statements can be used to get the values from the radio buttons by querying the Checked property.
' Get the radius of tile to use
Dim dRadOfTile As Double
dRadOfTile = gPathFrm.tb_RadiusOfTile.Text

' Get the spacing of tiles to use
Dim dSpaceOfTiles As Double
dSpaceOfTiles = gPathFrm.tb_SpacingBetweenTiles.Text

' Get the creation type
Dim strCreationType As String
If gPathFrm.rb_ActiveX.Checked Then
 strCreationType = "ActiveX"
ElseIf gPathFrm.rb_Entmake.Checked Then
 strCreationType = "Entmake"
Else
 strCreationType = "Command"
End If

Dim strPlineType As String
If gPathFrm.rb_Lightweight.Checked Then
 strPlineType = "Light"
Else
 strPlineType = "Heavy"
End If
Now that we have the input selected by the user we can populate the ResultBuffer. We use a TypedValue to package up the data we want to send back to the AutoLISP function. The TypedValue accepts two parameters. One is the type and the other is the data.
Add the following code to the end of the “If bOK = True” statement:
'Dim rbfResult As ResultBuffer
rbfResult = New ResultBuffer(New TypedValue(CInt(LispDataType.Double), dRadOfTile), _
New TypedValue(CInt(LispDataType.Douple), dSpaceOfTiles), _
New TypedValue(CInt(LispDataType.Text), strCreationType), _
New TypedValue(CInt(LispDataType.Text), strPlineType))
Return rbfResult
End If
This will return a list to the AutoLISP function. Similar to this:
(3.0 0.5 “ActiveX” “Light”)
Now we need to handle the case where the user cancels the GardenPath form instead of hitting OK. After the End If statement add the following code:
 rbfResult = New ResultBuffer(New TypedValue(CInt(5019)))
 Return rbfResult
End Function
Here is the complete code for the dNetGpath function:
 <LispFunction("dNetGpath")> _
 Public Function VBNetFunction(ByVal myLispArgs As ResultBuffer) As ResultBuffer
 Dim gPathFrm As New GardenPath
 gPathFrm.ShowDialog()
 Dim rbfResult As ResultBuffer
 If gPathFrm.bOk = True Then
 ' Get the radius of tile to use
 Dim dRadOfTile As Double
 dRadOfTile = gPathFrm.tb_RadiusOfTile.Text

 ' Bet the spacing of tiles to use
 Dim dSpaceOfTiles As Double
 dSpaceOfTiles = gPathFrm.tb_SpacingBetweenTiles.Text

 ' Get the creation type
 Dim strCreationType As String
 If gPathFrm.rb_ActiveX.Checked Then
 strCreationType = "ActiveX"
 ElseIf gPathFrm.rb_Entmake.Checked Then
 strCreationType = "Entmake"
 Else
 strCreationType = "Command"
 End If

 Dim strPlineType As String
 If gPathFrm.rb_Lightweight.Checked Then
 strPlineType = "Light"
 Else
 strPlineType = "Heavy"
 End If

 'Dim rbfResult As ResultBuffer
 rbfResult = New ResultBuffer(_
 New TypedValue(CInt(5001), dRadOfTile), _
 New TypedValue(CInt(5001), dSpaceOfTiles), _
 New TypedValue(CInt(5005), strCreationType), _
 New TypedValue(CInt(5005), strPlineType))
 Return rbfResult
 End If

 rbfResult = New ResultBuffer(New TypedValue(CInt(5019)))
 Return rbfResult
 End Function
3) Modify the LISP tutorial to call the LispFunction created in Step 2.
Run AutoCAD and open the Visual LISP editor. (VLIDE) On the Projects menu select “Open Project”, navigate to the VisualLISP tutorial directory Lesson 7 and open the gpath7.prj. The Visual Lisp Tutorial can be found in this directory if the option to install it was included during the AutoCAD install: C:\Program Files\AutoCAD 2009\Tutorial\VisualLISP
 After the project files are opened SaveAs GPMAIN.lsp file. Name the new file GPMAIN_NET.lsp. We will edit this file to call our .NET LispFunction.
Change the function name from Gpath to GpathN. Update the variable list to include a variable that we will be using. (valuesFromdNet)
(defun C:GPathN (/gp_PathData gp_dialogResults PolylineName p_PathData tileList PolylineList valuesFromdNet)

Now we need to change the function so that it will call the dNetGpath function instead of gp:getDialogInput. Comment out these lines of code after setq gp_dialogResults.
;(gp:getDialogInput
;		 (cdr (assoc 40 gp_PathData))
;) ;_ end

The logical flow of the function is updated with a couple of new progn statements. Add a progn statement after (if (setq gp_PathData (gp:getPointInput))
 (if (setq gp_PathData (gp:getPointInput))
 (progn ; Update for .NET LAB

Now we need to call the LispFunction. Add the call to dNetGpath and set the return value to the valuesFromdNet variable. Also add an if statement to check to see if the user hit Cancel. (valuesFromdNet will be nil) Add a progn statement before the existing “if setq gp_dialogResults”.
; Call our .NET function 		
 (setq valuesFromdNet (dNetGpath))	 ; Update for .NET LAB
 (if (/= nil (nth 0 valuesFromdNet)); Update for .NET LAB
	(progn				 ; Update for .NET LAB
 	(if (setq gp_dialogResults

We need to populate gp_dialogResults with the values from the valuesFromdNet variable. Use the list function and cons to construct the correct values for gp_dialogResults. (This replaces the code we commented out above)
 (if (setq gp_dialogResults
		 ; Get the data returned from our .NET function
			 (list
				 (cons 42 (nth 0 valuesFromdNet))
				 (cons 43 (nth 1 valuesFromdNet))
				 (cons 3 (nth 2 valuesFromdNet))
				 (cons 4 (nth 3 valuesFromdNet))
				 (cdr (assoc 40 gp_PathData))
)

Now add the closing parentheses for the two progn statements and the one if statement. Near the end of the function find the code for the vlr-editor-reactor. Add the last three closing parenthesis as seen in this code snippet. If you have trouble with the placement of the parenthesis use “Edit>Parenthesis Matching”. (Ctrl+[and Ctrl+])
) ;_ end of vlr-editor-reactor
)
)

)	; progn after if (setq gp_dialogResults
); if (setq gp_dialogResults	
) ;_ progn after if (/= nil valuesFromdNet - Update for .NET LAB

Finally move the “Function cancelled” princ statement inside of the (if (/= nil (nth 0 valuesFromdNet)) statement. Notice the comment also needs to be changed. The closing parenthesis is no longer for the progn.
	(princ "\nFunction cancelled.")
	
) ;_ end of progn
 ;(princ "\nFunction cancelled.")

Here is the complete lisp function:
(defun C:GPathN (/ gp_PathData gp_dialogResults
		PolylineName gp_PathData tileList PolylineList valuesFromdNet Result
)
 (setvar "OSMODE" 0)
 ;; Ask the user for input: first for path location and
 ;; direction, then for path parameters. Continue only if you have
 ;; valid input. Store the data in gp_PathData
 (if (setq gp_PathData (gp:getPointInput))
 (progn ; Update for .NET LAB	
 ; Call our .NET function 		
 (setq valuesFromdNet (dNetGpath))	 ; Update for .NET
 (if (/= nil (nth 0 valuesFromdNet)); Update for .NET
	(progn	 ; Update for .NET
	 (if	(setq gp_dialogResults
		; Get the data returned from our .NET function
			 (list
				 (cons 42 (nth 0 valuesFromdNet))
				 (cons 43 (nth 1 valuesFromdNet))
				 (cons 3 (nth 2 valuesFromdNet))
				 (cons 4 (nth 3 valuesFromdNet))
				 (cdr (assoc 40 gp_PathData))
) 		
	
;;;	 (gp:getDialogInput
;;;		 (cdr (assoc 40 gp_PathData))
;;;) ;_ end of gp:getDialogInput
) ;_ end of setq
 (progn

;;;	(princ "\nReceived gp_dialogResults: ") (princ gp_dialogResults)

	;; Now take the results of gp:getPointInput and append this to
	;; the added information supplied by gp:getDialogInput
	(setq gp_PathData (append gp_PathData gp_DialogResults))

	;; At this point, you have all the input from the user.
	;; In lesson 7, the gp:drawOutline function was modified to
	;; return a list of the pointer to the polyline as well as
	;; the list of boundary points (the 12, 13, 14, 15 lists)
	;; Draw the outline, storing the resulting polyline "pointer"
	;; in the variable called PolylineName, and the boundary
	;; points into gp_pathData
	; (trace gp:drawOutline)
	(setq PolylineList (gp:drawOutline gp_PathData)
	 PolylineName (car PolylineList)
	 gp_pathData (append gp_pathData (cadr PolylineList))
) ;_ end of setq

	;; Next, it is time to draw the tiles within the boundary.
	;; The tileList contains a list of the object pointers for
	;; the tiles. By counting up the number of points (using the
	;; length function), we can print out the results of how many
	;; tiles were drawn.
	(princ "\nThe path required ")
	(princ
	 (length
	 (setq tileList
		 (gp:Calculate-and-Draw-Tiles
		 ;; path data list
		 gp_PathData
		 ;; object creation style to use - should be nil
		 ;; when drawing initial path. Subsequent calls
		 ;; from reactor will provide the function to use.
		 nil
) ;_ end of gp:Calculate-and-Draw-Tiles
) ;_ end of setq
) ;_ end of length
) ;_ end of princ
	(princ " tiles.")

	;; Add the list of pointers to the tiles (returned by
	;; gp:Calculate-and-Draw-Tiles) to the gp_PathData variable.
	;; This is stored in the reactor data for the reactor attached
	;; to the boundary polyline. With this data, the polyline
	;; "knows" what tiles (circles) belong to it.
	(setq gp_PathData (append (list (cons 100 tileList))
					; all the tiles
				 gp_PathData
) ;_ end of append
) ;_ end of setq

	;; Before we attach reactor data to an object let's look at
	;; the function vlr-object-reactor.
	;; vlr-object-reactor has the following arguments:
	;;	(vlr-object-reactor owners data callbacks)
	;; The callbacks Argument is a list comprising of
	;; 		owner , Reactor_Object list
	;; 		For further explanation see Help system
	;; For this exercise we will use all arguments
	;; associated with vlr-object-reactor

	;; These reactor functions will excecute only if
	;; the polyline in PolylineName is modified or erased

	(vlr-object-reactor

	 ;; The first argument for vlr-object-reactor is
	 ;; the "Owners List" argument. This is where to
	 ;; place the object to be associated with the
	 ;; reactor. In this case it is the vlaObject
	 ;; stored in PolylineName

	 (list PolylineName)

	 ;; The second argument contains the data for the path

	 gp_PathData

	 ;; The third argument is the list of specific reactor
	 ;; types that we are interested in dealing with

	 '(
	 ;; reactor that is called upon modification of the object
	 (:vlr-modified . gp:outline-changed)
	 ;; reactor that is called upon erasure of the object
	 (:vlr-erased . gp:outline-erased)
)
) ;_ end of vlr-object-reactor

	;; Next, register a command reactor to adjust the polyline
	;; when the changing command is finished.
	(if (not *commandReactor*)
	 (setq	*commandReactor*
		 (VLR-Command-Reactor

		 nil				; No data is associated with the editor reactor
		 ;; call backs
		 '
		 (
		 (:vlr-commandWillStart . gp:command-will-start)
		 (:vlr-commandEnded . gp:command-ended)
)
) ;_ end of vlr-editor-reactor
)
)

	(if (not *DrawingReactor*)
	 (setq *DrawingReactor*
		 (VLR-DWG-Reactor

		 nil				; No data is associated with the editor reactor
		 ;; call backs
		 '
		 (
		 ;; This is extremely important!!!!!!!!!
		 ;; Without this notification, AutoCAD will
		 ;; crash upon exiting.
		 (:vlr-beginClose . gp:clean-all-reactors)
)
) ;_ end of vlr-editor-reactor
)
)

)	; progn after if (setq gp_dialogResults
); if (setq gp_dialogResults	
) ;_ progn after if (/= nil valuesFromdNet - Update for .NET LAB

 	(princ "\nFunction cancelled.")
	
) ;_ end of progn
 ;(princ "\nFunction cancelled.")
) ;_ end of if
 (princ "\nIncomplete information to draw a boundary.")
) ;_ end of if
 (princ)				; exit quietly
) ;_ end of defun

;;; Display a message to let the user know the command name
(princ "\nType GPATHN to draw a garden path.")
(princ)

After following the steps above load the .NET project, GPMAIN_NET.lsp and all of the Garden Path tutorial files. Run the GPATHN command. If all goes well the .NET form will be displayed and used to get input for the garden path.
Possible error when running VLIDE
If you debug the .NET project and the following error occurs when you run the Visual LISP editor (VLIDE). "acad.exe has triggered a breakpoint" change a registry setting for MDA - Managed Debugging Assistants.
The value for this key needs to be 0. You can use a tool like regedit and set the string key "MDA" to 0. The key is the following:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework
If you do not find the MDA string key, create one and set its value to 0. You can also create and use a .reg file (maybe name it MDADisable.reg) and set its contents as follows:
Windows Registry Editor Version 5.00
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework]
"MDA"="0"

Additional Resources
Here are a few links with additional resources for AutoCAD .NET:
AutoCAD Developer Center - download training labs
http://www.autodesk.com/developautocad

AutoCAD .NET Training (classroom)
http://www.autodesk.com/apitraining

Through the Interface blog - Site focuses on .NET
http://blogs.autodesk.com/through-the-interface

Also see the ObjectARX Help file for topics related to AutoCAD .NET

2

2

image3.png

image4.png

image5.png

image1.png

image2.png

