This command creates a checkBox that controls a light’s exclusive non-exclusive status. An exclusive light is one that is not hooked up to the default-light-list, thus it does not illuminate all objects be default. However an exclusive light can be linked to an object.
Long name (short name) | Argument Types | Properties | |
---|---|---|---|
annotation (ann) | unicode | ||
|
|||
backgroundColor (bgc) | float, float, float | ||
The background color of the control. The arguments correspond to the red, green, and blue color components. Each component ranges in value from 0.0 to 1.0.When setting backgroundColor, the background is automatically enabled, unless enableBackground is also specified with a false value. |
|||
defineTemplate (dt) | unicode | ||
Puts a command in a mode where any other flags and args are parsed and added to the command template specified in the argument. They will be used as default arguments in any subsequent invocations of the command when templateName is set as the current template. |
|||
docTag (dtg) | unicode | ||
|
|||
dragCallback (dgc) | script | ||
Adds a callback that is called when the middle mouse button is pressed. The MEL version of the callback is of the form: global proc string[] callbackName(string $dragControl, int $x, int $y, int $mods) The proc returns a string array that is transferred to the drop site. By convention the first string in the array describes the user settable message type. Controls that are application defined drag sources may ignore the callback. $mods allows testing for the key modifiers CTL and SHIFT. Possible values are 0 == No modifiers, 1 == SHIFT, 2 == CTL, 3 == CTL + SHIFT. In Python, it is similar, but there are two ways to specify the callback. The recommended way is to pass a Python function object as the argument. In that case, the Python callback should have the form: def callbackName( dragControl, x, y, modifiers ): The values of these arguments are the same as those for the MEL version above. The other way to specify the callback in Python is to specify a string to be executed. In that case, the string will have the values substituted into it via the standard Python format operator. The format values are passed in a dictionary with the keys “dragControl”, “x”, “y”, “modifiers”. The “dragControl” value is a string and the other values are integers (eg the callback string could be “print ‘%(dragControl)s %(x)d %(y)d %(modifiers)d’”) |
|||
dropCallback (dpc) | script | ||
Adds a callback that is called when a drag and drop operation is released above the drop site. The MEL version of the callback is of the form: global proc callbackName(string $dragControl, string $dropControl, string $msgs[], int $x, int $y, int $type) The proc receives a string array that is transferred from the drag source. The first string in the msgs array describes the user defined message type. Controls that are application defined drop sites may ignore the callback. $type can have values of 1 == Move, 2 == Copy, 3 == Link. In Python, it is similar, but there are two ways to specify the callback. The recommended way is to pass a Python function object as the argument. In that case, the Python callback should have the form: def pythonDropTest( dragControl, dropControl, messages, x, y, dragType ): The values of these arguments are the same as those for the MEL version above. The other way to specify the callback in Python is to specify a string to be executed. In that case, the string will have the values substituted into it via the standard Python format operator. The format values are passed in a dictionary with the keys “dragControl”, “dropControl”, “messages”, “x”, “y”, “type”. The “dragControl” value is a string and the other values are integers (eg the callback string could be “print ‘%(dragControl)s %(dropControl)s %(messages)r %(x)d %(y)d %(type)d’”) |
|||
enable (en) | bool | ||
The enable state of the control. By default, this flag is set to true and the control is enabled. Specify false and the control will appear dimmed or greyed-out indicating it is disabled. |
|||
enableBackground (ebg) | bool | ||
|
|||
exists (ex) | bool | ||
|
|||
fullPathName (fpn) | unicode | ||
|
|||
height (h) | int | ||
|
|||
isObscured (io) | bool | ||
Return whether the control can actually be seen by the user. The control will be obscured if its state is invisible, if it is blocked (entirely or partially) by some other control, if it or a parent layout is unmanaged, or if the control’s window is invisible or iconified. |
|||
label (l) | unicode | ||
light (lt) | PyNode | ||
The light that is to be made exclusive/non-exclusive.Flag can appear in Create mode of commandFlag can have multiple arguments, passed either as a tuple or a list. |
|||
manage (m) | bool | ||
|
|||
noBackground (nbg) | bool | ||
Clear/reset the control’s background. Passing true means the background should not be drawn at all, false means the background should be drawn. The state of this flag is inherited by children of this control. |
|||
numberOfPopupMenus (npm) | bool | ||
|
|||
parent (p) | unicode | ||
|
|||
popupMenuArray (pma) | bool | ||
|
|||
preventOverride (po) | bool | ||
|
|||
useTemplate (ut) | unicode | ||
|
|||
visible (vis) | bool | ||
The visible state of the control. A control is created visible by default. Note that a control’s actual appearance is also dependent on the visible state of its parent layout(s). |
|||
visibleChangeCommand (vcc) | script | ||
|
|||
width (w) | int | ||
|
Derived from mel command maya.cmds.exclusiveLightCheckBox
Example:
import pymel.core as pm
# Create a spot light
myLight = pm.spotLight(coneAngle=45)
myWindow = pm.window()
pm.columnLayout('cl')
# Result: ui.ColumnLayout('window1|cl') #
pm.exclusiveLightCheckBox(width=200, label='Exclusive', light=myLight)
# Result: u'window1|cl|exclusiveLightCheckBox1' #
pm.showWindow(myWindow)