script (MEL) |
Only available in
MEL |
computePolysetVolume
|
In categories: Modeling, Polygons |
Go to: Synopsis. Return value. MEL
examples.
computePolysetVolume
Prints the total volume of all polysets on the pick list. For
accurate results the geometry should be closed, with no holes or
minimal gaps and no interpenetrating surfaces( such as as two
overlapping spheres ). The method uses the divergence theorem:
\int_{vol} Div(f) dV = int_{surf} Dot(f,n) dS To use it to compute
volumes set f=(0,0,z), you then have Volume = \int_{vol} 1 dV =
int_{surf} n_z(u,v) du dv Where n_z is the "z" component of the
normal to the surface at the parameter value (u,v). If you only
have triangles then the formula reads: Volume = sum_{over all
triangles} (z0+z1+z2)/3*n_z*A
None
Variable Name |
Variable Type |
Description |
|
|
None. |
// Create a poly cube and find its volume
polyCube;
// Result: pCube2 polyCube1 //
computePolysetVolume;
// pCube3 faces = 6 //
// TOTAL VOLUME = 1 //