
AUTODESK®
EFFECTS AND EDITING
2008

Sparks API Reference Guide
®

Autodesk Sparks API Reference Guide

© 2007 Autodesk, Inc. All rights reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be
reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Portions of this software are copyright © 2.1.19 The FreeType Project (www.freetype.org). All rights reserved.

Portions relating to Python version 2.3.3 Copyright © 2001, 2002, 2003 Python Software Foundation; All Rights Reserved.

Portions relating to Python version 2.1.1 Copyright © 2001 Python Software Foundation; All Rights Reserved.

Portions relating to libxalan-c version 1.8.0 are copyright Apache version 2.0 Copyright 2004 The Apache Software Foundation. Licensed under
the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License
at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

THIS PRODUCT IS LICENSED UNDER THE MPEG-4 VISUAL PATENT LICENSE PORTFOLIO LICENSE FOR THE PERSONAL AND
NON-COMMERCIAL USE OF A CONSUMER FOR (i) ENCODING VIDEO IN COMPLIANCE WITH THE MPEG-4 VISUAL STANDARD
("MPEG-4 VIDEO") AND/OR (ii) DECODING MPEG-4 VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL
AND NON-COMMERCIAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDED LICENSED BY MPEG LA TO PROVIDE
MPEG-4 VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION
INCLUDING THAT RELATING TO PROMOTIONAL, INTERNAL USES AND LICENSING MAY BE OBTAINED FROM MPEG LA, LLC.
SEE HTTP://WWW.MPEGLA.COM.

THIS PRODUCT IS LICENSED UNDER THE MPEG-2 PATENT PORTFOLIO LICENSE ANY USE OF THIS PRODUCT OTHER THAN
CONUMSER PERSONAL USE IN ANY MANNER THAT COMPLIES WITH THE MPEG-2 STANDARD FOR ENCODING VIDEO
INFORMATION FOR PACKAGED MEDIA IS EXPRESSLEY PROHIBITED WITHOUT A LICENSE UNDER APPLICABLE PATENTS IN
THE MPEG-2 PATENT PORTFOLIO, WHICH LICENSE IS AVALIABLE FROM MPEG LA, L.L.C., 250 STEELE STREET, SUITE 300,
DENVER, COLORADO 80206.

Portions relating to libffmpeg Copyright © 2003-2006, Fabrice Bellard.

Portions relating to ALSA version 1.0.6 Copyright © 2004 Jaroslav Kysela, Abramo Bagnara, Takashi Iwai, and Frank van de Pol.

Powered by Automatic Duck. © 2006 Automatic Duck, Inc. All rights reserved.

Portions relating to Audiobogus Copyright © 1998-1999, Michael Pruett (michael@68k.org).

Portions relating to xxdiff Copyright © 1999-2004, Martin Blais. All Rights Reserved.

Portions relating to Audiofile 0.2.6, Open Inventor 2.1.5-9, and LibImageDL software are Copyright © 1991, 1999 Free Software Foundation, Inc.

Portions relating to Glew Copyright (c) 1991-9 Silicon Graphics, Inc. All Rights Reserved.

Portions relating to Mesa Copyright ©1999-2007 Brian Paul. All Rights Reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Portions relating to OpenExr 1.2.1 Copyright (c) 2004, Industrial Light & Magic, a division of Lucasfilm Entertainment Company Ltd. Portions
contributed and copyright held by others as indicated. All rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of Industrial Light &
Magic nor the names of any other contributors to this software may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portions relating to Libpopt Copyright ©1998 Red Hat Software. Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the X Consortium shall
not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the X
Consortium.

Portions relating to DIRAC Time Stretch/Pitch Shift technology licensed from The DSP Dimension, http://www.dspdimension.com Developed
and (c) 2005 Stephan M. Bernsee

Portions relating to Berkeley DB software Copyright ©1990-2002, Sleepycat Software. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3.
Redistributions in any form must be accompanied by information on how to obtain complete source code for the DB software and any
accompanying software that uses the DB software. The source code must either be included in the distribution or be available for no more than the
cost of distribution plus a nominal fee, and must be freely redistributable under reasonable conditions. For an executable file, complete source code
means the source code for all modules it contains. It does not include source code for modules or files that typically accompany the major
components of the operating system on which the executable file runs. THIS SOFTWARE IS PROVIDED BY SLEEPYCAT SOFTWARE "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT SHALL
SLEEPYCAT SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portions copyright 1991-2006 Compuware Corporation.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., in the USA and other countries: 3DEC (design/logo), 3December,
3December.com, 3ds Max, ActiveShapes, Actrix, ADI, Alias, Alias (swirl design/logo), AliasStudio, Alias|Wavefront (design/logo), ATC, AUGI,
AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk,
Autodesk Envision, Autodesk Insight, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP,
AutoSnap, AutoSketch, AutoTrack, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Can You Imagine, Character Studio,
Cinestream, Civil 3D, Cleaner, Cleaner Central, ClearScale, Colour Warper, Combustion, Communication Specification, Constructware, Content
Explorer, Create>what's>Next> (design/logo), Dancing Baby (image), DesignCenter, Design Doctor, Designer's Toolkit, DesignKids,
DesignProf, DesignServer, DesignStudio, Design|Studio (design/logo), Design Your World, Design Your World (design/logo), DWF, DWG, DWG
(logo), DWG TrueConvert, DWG TrueView, DXF, EditDV, Education by Design, Extending the Design Team, FBX, Filmbox, FMDesktop,
Freewheel, GDX Driver, Gmax, Heads-up Design, Heidi, HOOPS, HumanIK, i-drop, iMOUT, Incinerator, IntroDV, Inventor, Inventor LT,
Kaydara, Kaydara (design/logo), LocationLogic, Lustre, Maya, Mechanical Desktop, MotionBuilder, ObjectARX, ObjectDBX, Open Reality,
PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream, ProjectPoint, Reactor, RealDWG, Real-time Roto, Render Queue,
Revit, Showcase, SketchBook, StudioTools, Topobase, Toxik, Visual, Visual Bridge, Visual Construction, Visual Drainage, Visual Hydro, Visual
Landscape, Visual Roads, Visual Survey, Visual Syllabus, Visual Toolbox, Visual Tugboat, Visual LISP, Voice Reality, Volo, and Wiretap.

The following are registered trademarks or trademarks of Autodesk Canada Co. in the USA and/or Canada and other countries: Backburner,
Discreet, Fire, Flame, Flint, Frost, Inferno, Multi-Master Editing, River, Smoke, Sparks, Stone, Wire.

Automatic Duck and the duck logo are trademarks of Automatic Duck, Inc. All other brand names, product names or trademarks belong to their
respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS."
AUTODESK, INC., DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Published by:

Autodesk, Inc.

111 Mclnnis Parkway

San Rafael, CA 94903, USA

Title: Autodesk Sparks API Reference Guide

Document Version: 1

Date: September 19, 2007

contents

v

Contents

1 Introduction 1
Summary . 1
About Sparks . 1
Compatibility. 2
System Requirements. 2
Using This Guide . 3
Getting Help. 3

2 Sparks API 5
Summary . 5
About the Sparks API. 5
Sparks Interface Functions . 6
Calling Sequence for Sparks Interface Functions . 12
Memory Buffer Management . 13
Sparks User Interface . 19
Desktop and Component Levels . 21

3 Sparks Utility Library 27
Summary . 27
About Sparks Plug-ins . 27
User Interface Functions . 28
System Functions . 33
Memory Functions . 34
Channel Editor Functions . 36

tentsCon

vi

Environment Functions. 39
Image Access Functions. 40
Image Colour Space Conversion Functions . 40
Image-Processing Functions. 42
Image Buffer Manipulation Functions . 43
File I/O Support Functions . 44
Scan Mode Identification Function . 44
Process Management Functions. 45

4 Sparks Audio API 47
Summary . 47
About Sparks Audio API . 47
Playback Audio Functions. 48
Global Audio Parameter Access Functions . 50
Memory Buffer Management . 51
SparkClipInfoStruct and SparkTrackInfoStruct . 52
Processing and Analyse Functions. 53
Other Audio Functions . 54

5 Testing Your Spark Using Burn 59
Summary . 59
Overview. 59
Testing Sparks Using Burn in Stand-alone Mode . 59
Using a Script for Your Test Setup. 64
Building Spark DSO Libraries. 65
Using Sparks and Reactivating the Distributed Queueing System 65

Index 67

1

Introduction

Welcome to the Autodesk® Sparks® API Reference Guide for Autodesk

Inferno® 2008, Autodesk Flame® 2008, Autodesk Flint® 2008, Autodesk

Fire® 2008, and Autodesk Smoke® 2008.

Summary
About Sparks . 1

System Requirements . 2

Using This Guide . 3

Getting Help . 3

About Sparks
A Sparks plug-in defines an interactive user interface similar to any of the standard modules in
Autodesk Effects and Editing products and can be used to load clips from the desktop or
EditDesk, manipulate them, and process new clips back to the desktop or EditDesk. These plug-
ins can be used to provide image and audio processing features that are not already available
with Inferno, Flame, Flint, Fire, and Smoke.

In Autodesk Effects products, some Sparks can be used in Batch from the Spark node. In
Autodesk Editing products, some Sparks can be used as soft effects.

Introduction1

2

Sparks plug-ins allow you to customize your environment and expand the capabilities of your
system.

After you create a Sparks plug-in, you can copy it to the /usr/discreet/sparks directory of a
Autodesk Editing or Effects product. For information on how to load a Sparks plug-in into a
Autodesk Editing or Effects product, refer to the “Sparks” chapter in your Inferno, Flame, Flint,
Fire, or Smoke user’s guide.

Compatibility
All the Sparks plug-in conventions detailed in this guide are compatible with Inferno 2008,
Flint 2008, Flame 2008, Fire 2008, and Smoke 2008.

IRIX-Linux Sparks Compatibility
Sparks compiled on SGI® workstations are compatible with Autodesk Editing and Effects
products on IRIX workstations. Sparks compiled on Linux workstations are compatible with
Autodesk Editing and Effects products on Linux workstations.

System Requirements
To build a Sparks plug-in on SGI workstations, you must have the IRIX development option
installed on your system. SGI C++ is optional.

On Linux workstations, you can use the C++ compiler that comes with your system to build
Sparks.

Files related to Sparks plug-ins are located in the ~/sparks directory. They include the following.

Makefile — This file includes parameters and code for compiling and linking Spark code on
both SGI IRIX and Linux platforms. Once compiled and linked, Sparks are loaded onto
Autodesk Editing and Effects products.

spark.h — The header file that must be included in the Sparks plug-in. It contains all the
function declarations required to compile a Sparks DSO (dynamic shared object).

spark*.c — Sample Sparks plug-in files distributed with Autodesk Editing and Effects
products.

When compiling, you must use the spark.h header file distributed with your Autodesk Editing
or Effects product. If you use a more recent header, you might have unresolved symbols when
linking the Sparks plug-in to your Autodesk Editing or Effects product.

Using This Guide

3

The Sparks API is maintained for upwards compatibility, but new versions of the API introduce
new functions. If you use these new functions when developing your Sparks plug-ins, be aware
that users who have not upgraded their systems will not be able to run your Sparks plug-ins.

Using This Guide
The Autodesk Sparks API Reference Guide has been created to allow third parties to develop
software plug-ins for use with Autodesk Editing and Effects products. This guide describes:

• The Sparks interface

• Functions required by a Sparks plug-in

• The organization of the Sparks user interface

• Utility functions that are provided in the API including audio functions

In addition to reading this document, Sparks developers should examine the sample Sparks
source files supplied with Autodesk Editing and Effects products. You can find these files in the
~/sparks directory.

Related Documentation
Read this document in conjunction with the documentation set of your Autodesk Editing or
Effects product. Refer to the “Sparks” chapter in your Inferno, Flame, Flint, Fire or Smoke user’s
guide.

You can also learn about Linux configuration in the Linux Configuration Guide for Autodesk
Sparks Plug-in Developers available through the ADN Sparks program.

Documentation Conventions
The following notation conventions are used in this document.

Getting Help
If you need more information or help with the Sparks Plug-In API, contact the Autodesk
Developer Network (ADN) Sparks program: http://www.autodesk.com/joinadn

Convention Example

Italics denote UNIX files and directories. /usr/project1

Sparks functions appear in Courier bold font. SparkInitialise

Output from functions is printed in Courier regular font. SPARK_FLAG_Y

Introduction1

4

5

Sparks API

This chapter is the starting point for programming Sparks plug-ins. It

provides information about the required framework that makes

communication between Autodesk Editing and Effects products and

Sparks plug-ins possible.

Summary
About the Sparks API . 5

Sparks Interface Functions . 6

Calling Sequence for Sparks Interface Functions . 12

Memory Buffer Management . 13

Sparks User Interface . 19

Desktop and Component Levels . 21

About the Sparks API
A Sparks plug-in is a dynamic shared object (DSO). This is a compiled object that can be
dynamically loaded and linked to a process at run time.

Each Sparks plug-in uses a standard internal format. Since Autodesk Editing and Effects
products makes calls to the Sparks routines, you must correctly name and implement certain
functions in order to create a working Sparks plug-in.

Mandatory—SparkInfoStruct
The parameter of type SparkInfoStruct appears in many of the functions. This
parameter defines the interface between Autodesk Editing and Effects products and the Sparks

Sparks API2

6

environment, and also contains information required for processing source images. The
structure type is defined in the spark.h header file, which must be included in each Sparks
source file.

Sparks Interface Functions
The following section provides the correct naming for mandatory, optional, and recommended
interface functions that you can use to facilitate communication between Autodesk Editing and
Effects products and Sparks plug-ins.

NOTE: The first four functions are mandatory.

Mandatory—SparkInitialise ()
unsigned int SparkInitialise (SparkInfoStruct SparkInfo)

Autodesk Editing and Effects products call the SparkInitialise function in three
situations:

• When you invoke a new Sparks plug-in.

NOTE: When you use the same Sparks plug-in numerous times, the SparkInitialise

function is only called the first time.

• When the resolution of the input used with the Sparks plug-in changes (in Batch or on the
desktop).

• When the resolution of the output of the Sparks plug-in changes. (In this case, the Sparks plug-
in has no input.)

A Sparks plug-in typically uses this function to perform the following:

• To load a setup that was saved from the last invocation of the Sparks plug-in and that sets the
user interface variables to the previously defined values.

• To allocate any resources, such as dynamic memory, that the Sparks plug-in requires.

The return value of the SparkInitialise function determines whether the Sparks plug-in
operates at the desktop level or at the component level, and it is defined by the “bit-wise or” of
the required levels. For example, if the Sparks plug-in is to operate at both the desktop and
component levels, the return value would be (SPARK_DESKTOP | SPARK_MODULE). In this
case, it is up to you to supply software that operates at both these levels. See “Desktop and
Component Levels” on page 21.

Sparks Interface Functions

7

Mandatory—SparkClips()
int SparkClips(void)

The SparkClips function tells Autodesk Editing and Effects products how many source
clips are required by the Sparks plug-in. For example, a Sparks plug-in used for image
compositing requires a front clip, back clip, and matte clip in order to produce an output clip.
Therefore, the SparkClips function would return a value of 3. A Sparks plug-in used for
image blending requires only two source clips; in this case, the SparkClips function would
return a value of 2.

Autodesk Editing and Effects products use the return value to determine which of the Front,
Back, and Matte control buttons appear at the component level. See “The Component Level” on
page 21.

Mandatory—SparkProcess()
unsigned long *SparkProcess(SparkInfoStruct SparkInfo)

The SparkProcess function contains the processing algorithms (written by you) of the
Sparks plug-in. The function is called once for every output frame to be generated, as indicated
by the return value of the SparkProcessStart function. The SparkProcess return
value must be the address of the image buffer that contains the processed image. Autodesk
Editing and Effects products use the contents of the image buffer to generate a frame of the
output clip on the destination reel (or EditDesk); the destination reel is selected when the user
calls the Sparks plug-in from the desktop. If the return value is NULL, no action is taken by the
calling environment of the Autodesk Editing and Effects products.

Mandatory—SparkUnInitialise()
void SparkUnInitialise(SparkInfoStruct SparkInfo)

The SparkUnInitialise function can be used to save user interface configurations or to
release any resources that were allocated by the SparkInitialise function. There is no
associated return value for this function. It is called in the following situations:

• When another Sparks plug-in is invoked from the desktop.

• When the resolution of the input used with the Sparks plug-in changes (in Batch or on the
desktop).

• When the resolution of the output of the Sparks plug-in changes. (In this case, the Sparks plug-
in has no input.)

• Upon exit of Autodesk Editing and Effects products.

Sparks API2

8

SparkProcessEnd()
void SparkProcessEnd(SparkInfoStruct SparkInfo)

SparkProcessEnd() is executed once at the end of the processing loop whether it is
completed or aborted.

NOTE: SparkProcess() must return a valid pointer to a frame buffer if the Sparks plug-in is

called from Batch.

SparkProcessStart()
int SparkProcessStart(SparkInfoStruct SparkInfo)

SparkProcessStart() is no longer mandatory. If not defined, it is assumed to return 1.
The SparkProcessStart function determines the frame layout of the processed clip. The
return value of the function indicates the number of frames to be generated for the current input
frame. Since in most cases there is a one-to-one relationship between the length of the input clip
and the length of the output clip, the function return value is usually 1. The value is different
than 1 for functions in which the length of the processed clip is not the same as that of the source
clip, for example, when using a timewarp function in which the source clip is either expanded
or compressed in time. For an example, see the file sparkAverage1.c, located in the ~/sparks
directory.

NOTE: A Sparks plug-in can also request any frame of any input clip using the sparkGetFrame

utility function. See Chapter 3, “Sparks Utility Library” on page 27.

Recommended—SparkMemoryTempBuffers()
void SparkMemoryTempBuffers(void)

The SparkMemoryTempBuffers function (introduced with Inferno 2.5, Fire 2.5, Smoke
2.5, Flame 5.5, and Flint 5.5 [Sparks API version 2.5+]) allows you to access the memory buffer
interface. This function, unlike the memory management interface from previous versions,
allows memory to be allocated for loading Sparks plug-ins on-the-fly, and is essential to batch
processing. The API memory functions used to register image buffers have an effect only
through this function.

NOTE: There is no return value associated with this function.

HINT: The new memory management system, which is more resource-friendly and provides

greater stability is recommended. It is required to load a Sparks plug-in from Batch or to access the

Player from a Sparks plug-in. See “Memory Buffer Management” on page 13.

Sparks Interface Functions

9

SparkEvent()
void SparkEvent(SparkModuleEvent Event)

The SparkEvent function can be used to notify Sparks plug-ins of certain user events
(defined in spark.h header file).

SparkSetupIOEvent()
void SparkSetupIOEvent(SparkModuleEvent Event, char *Path,
char *File)

The SparkSetupIOEvent function can be used to notify a Sparks plug-in of user load or
save setup events. The path and file parameters will receive the values entered by the user.

SparkIdle()
void SparkIdle(void)

The SparkIdle function can be used to determine when the application is idle and waiting
for an event.

SparkFrameChange()
void SparkFrameChange(SparkInfoStruct SparkInfo)

The SparkFrameChange function can be used by Sparks plug-ins that need to be notified
of frame changes.

SparkAnalyse()
ulong * SparkAnalyse(SparkInfoStruct SparkInfo)

SparkAnalyse() works like SparkProcess() but does not generate any output
clips.

The field SparkInfo.TotalFrameNo passed to this function gives the maximum video
length among the input clips. If none of the input clips contain video frames,
SparkInfo.TotalFrameNo is set to 1. SparkInfo.TotalFrameNo is defined in the
spark.h header file.

SparkAnalyseStart()
int SparkAnalyseStart(SparkInfoStruct SparkInfo)

SparkAnalyseStart() is used to control the length ratio between the input and the
output just as SparkProcessStart() does. If not defined, it is assumed to return 1.

Sparks API2

10

The field SparkInfo.TotalFrameNo passed to this function gives the maximum video
length among the input clips. If none of the input clips contain video frames,
SparkInfo.TotalFrameNo is set to 1. SparkInfo.TotalFrameNo is defined in the
spark.h header file.

SparkAnalyseEnd()
void SparkAnalyseEnd(SparkInfoStruct SparkInfo)

SparkAnalyseEnd() is executed once at the end of the analysis loop whether it is
completed or aborted.

The field SparkInfo.TotalFrameNo passed to this function gives the maximum video
length among the input clips. If none of the input clips contain video frames,
SparkInfo.TotalFrameNo is set to 1. SparkInfo.TotalFrameNo is defined in the
spark.h header file.

SparkInteract()
unsigned long *SparkInteract(SparkInfoStruct SparkInfo, int
SX, int SY, float Pressure, float VX, float VY, float VZ)

The SparkInteract function provides for interactive image manipulation by defining the
Sparks actions when a mouse, tablet, or other input device event occurs in the image window.
For example, this function can be used to define a processing region or crop box in the image.

The input parameters are used as follows:

• SX and SY correspond to the screen coordinates of the input device event, with the origin
defined as the lower-left corner of the screen.

• Pressure indicates the pressure exerted on the input device. The range of values for this
parameter is from 0 to 1.

• VX and VY correspond to image coordinates, with the origin defined as the lower-left corner
of the image. Note that the current position of the image origin in screen coordinates is given
by the FrameBufferX and FrameBufferY fields of the SparkInfo structure.

• VZ is the zoom factor.

The return value should be the address of an image buffer used to update the image window. If
the return value is NULL, no action is taken by the calling environment.

SparkOverlay()
void SparkOverlay(SparkInfoStruct SparkInfo, float
ZoomFactor)

Sparks Interface Functions

11

The SparkOverlay function provides a way to add user-defined information on top of the
image window that is not actually part of the image. Typically, the function is used to draw
things such as object handles, axes, or crop boxes. The function is called every time the image
window is redrawn, immediately after refreshing the image itself.

WARNING: Sparks writers should use the SparkOverlay function carefully, making sure to

restore the graphical context to its original state before exiting the function. Autodesk Editing and

Effects products cannot prevent a Sparks plug-in from changing graphical parameters required for

normal operation. If Autodesk Editing and Effects products start behaving strangely after running

a Sparks plug-in that uses the SparkOverlay function, the first debugging step should be to

comment out SparkOverlay from that Sparks plug-in and run the Autodesk Editing or Effects

product again.

SparkChannelEditor()
void SparkChannelEditor(void)

The SparkChannelEditor function lets you customize the Channel Editor layout by
creating channel hierarchies. It is invoked by the Autodesk Editing or Effects product before the
SparkInitialise function. The sparkCeAddFolder and sparkCeAddControl
API functions have an effect only through this function.

SparkIsInputFormatSupported()
int SparkIsInputFormatSupported(SparkPixelFormat fmt)

The SparkIsInputFormatSupported function allows a Spark to tell IFF whether it
supports a given pixel format.

The input parameter fmt must be one of the supported pixel formats in the
SparkPixelFormat enumeration (declared in the sparks.h header file).

This function must return 1 if the Spark supports the given format. Otherwise, it should return
0. If a Spark does not provide this function, support for the SPARKBUF_RGB_24_3x8 and
SPARKBUF_RGB_48_3x12 formats is assumed, thus maintaining API compatibility with
existing Sparks.

Note that support for certain formats is subject to the license restrictions of Autodesk's Visual
FX and Finishing applications. A Spark that supports RGB 16-bit floating point format may not
be allowed to process an image in that format if the application (into which the image is loaded)
does not support 16-bit floating point processing.

The following image conversion and processing functions only support
SPARKBUF_RGB_24_3x8 and SPARKBUF_RGB_48_3x12 images:

!

Sparks API2

12

sparkMonochrome() sparkNegative()

sparkFromHLS() sparkToHLS()

sparkFromYUV() sparkToYUV()

sparkBlur() sparkComposite()

Calling Sequence for Sparks Interface Functions
This section shows the sequence in which Autodesk Editing and Effects products call the Sparks
interface functions. For the sake of simplicity, the function parameters are not shown.

New Memory Model

clip_total = SparkClips()

SparkMemoryTempBuffers()

SparkChannelEditor()

SparkInitialise()

for(i = 0; i < length_of_longest_input_clip; i++) {

do {

frame_total = SparkProcessStart()

} while(frame_total == 0)

for(j = 0; j < frame_total; j++) {

result_buffer = SparkProcess()

}

}

SparkProcessEnd()

SparkUnInitialise()

Memory Buffer Management

13

Old Memory Model (Inferno/Fire/Smoke 2.5, Flame/Flint 5.5)

SparkChannelEditor()

SparkInitialise()

clip_total = SparkClips()

for(i = 0; i < length_of_longest_input_clip; i++) {

do {

frame_total = SparkProcessStart()

} while(frame_total == 0)

for(j = 0; j < frame_total; j++) {

result_buffer = SparkProcess()

}

}

SparkProcessEnd()

SparkUnInitialise()

Since the SparkInteract function is a ghost function that is called each time an input
device event occurs, it is not shown in the calling sequence.

NOTE: The SparkOverlay function is also called whenever the image window needs

refreshing.

Memory Buffer Management
There are two main ways to approach memory buffer management, referred to here as the old
memory interface and the new memory interface. To maintain backwards compatibility with
the Sparks plug-ins coded for versions earlier than Inferno 2.5, Smoke 2.5, Fire 2.5, Flame 5.5,
and Flint 5.5, the Sparks API will default to the old memory buffer interface. The advantage of
the new memory interface is a more flexible interface that includes the ability to use the Sparks
plug-in from the Batch module.

Old Memory Interface
In general, a Sparks plug-in uses a set of n source clips, where n is determined by the return
value of the SparkClips function, to produce one or more output frames. Autodesk Editing
and Effects products pass the addresses of the input clips to the Sparks plug-in from the

Sparks API2

14

Buffers field of the SparkInfoStruct input parameter. If multiple frames from the
source clips are required to produce a single output frame, all but the last frame of information
must be saved in temporary buffers. This can easily be achieved using the supplemental buffers
that are provided in the Buffers field of SparkInfoStruct.

The maximum number of image buffers available to the Sparks plug-in is 17 plus the number of
buffers declared on the Memory line of the configuration file. There is a restriction that the first
n buffers are reserved for input from Autodesk Editing or Effects products. The additional
buffers can be used in any fashion, and the address of the output image is returned to the calling
environment as the return value of either the SparkProcess or the SparkInteract
function.

If you require more image buffers than Autodesk Editing and Effects products provide, you may
allocate them yourself. You must adhere to the following restrictions to allow the buffers to be
passed back to Autodesk Editing and Effects products for display and/or processing:

• The buffers must be longword aligned in memory. Autodesk Editing and Effects products
reject any buffer that does not follow this constraint.

• The buffer definition must correspond to one of the structures defined in the spark.h header
file.

New Memory Buffer Interface
Sparks plug-ins access the memory buffer interface by defining the
SparkMemoryTempBuffers function. When this function is defined, Autodesk Editing
and Effects products will allocate n input buffers returned by the SparkClips function, plus
one buffer for the result. Any extra buffer(s) must be registered within the
SparkMemoryTempBuffers function’s scope using one of the three memory functions of
the Sparks Utility Library.

All Sparks plug-in memory buffers registered to Autodesk Editing and Effects products receive
a unique ID number:

• The result clip's ID is 1.

• The input clips receive IDs 2 to n.

• Any extra buffer registered use an ID from n+1 to n+x.

Memory Buffer Management

15

These IDs are used by your processing routines to access specific memory buffers. The
following example shows how you can use these IDs.

/* Aliases for Image Buffers */

static int RESULT_ID = 1;

static int AUX1_ID;

static int AUX2_ID;

static int AUX3_ID;

static SparkMemBufStruct SparkResult;

static SparkMemBufStruct SparkAux1;

static SparkMemBufStruct SparkAux2;

static SparkMemBufStruct SparkAux3;

void SparkMemoryTempBuffers(void)

{

AUX1_ID = sparkMemRegisterBuffer();

AUX2_ID = sparkMemRegisterBufferSize(

sizeof(unsigned long)*400);

AUX3_ID = sparkMemRegisterBufferFmt(

200, 100, SPARK_FMT_MONO);

}

/* ...etc */

State Transition of Sparks Memory Buffers
Once a Sparks memory buffer is registered, Autodesk Editing and Effects products are in
control of its state transition. Memory buffers are locked only when needed, for example, when
processing a frame (desktop processing) or when a Sparks module is edited. A Sparks plug-in
can write to a memory buffer only when its state is locked. When processing, the contents of a
buffer are still valid and clean only if the buffer is flagged unlocked and/or clean. If it is flagged
dirty, the Autodesk Editing or Effects product has accessed that memory location, and the
buffer contents have therefore been compromised.

Batch Processing in Autodesk Editing and Effects Products
 When loaded in the Batch environment of Effects products, a Sparks plug-in has to share its
memory resources with other process nodes active in Batch. Sparks memory buffers are

Sparks API2

16

unlocked between processes. If a Sparks memory buffer is used by any other process, its state
will become compromised, or dirty. If a Sparks memory buffer is flagged clean, the contents of
the buffer are still valid.

Working with Memory Buffers
The following are important factors to consider when working with memory buffers:

• A fixed temporary memory buffer is assumed; however, you must use non-fixed temporary
memory buffers if the input or output resolution of your Sparks plug-in could change. You can
assume that the validity of pointers or memory buffers will not persist if the input or output
resolution changes and that corruption problems may ensue. See “sparkMemRegisterBuffer(
)” on page 34.

• If you decide to use the new memory buffer interface, you will benefit from a more flexible
interface and your Sparks plug-in will be supported in the Batch processing module of Effects
products (the old memory interface does not support Batch processing).

• With the new memory interface, the Sparks plug-in interface calling sequence has been
changed: buffer checking done in SparkInitialise or SparkClips is no longer valid.
Buffer allocation is now checked on-the-fly.

• Memory is only allocated when a memory buffer is flagged MEMBUF_LOCKED

WARNING: A registered buffer is not a locked buffer (that is, you cannot access the Sparks memory

unless the buffer is MEMBUF_LOCKED).

• Be careful when using sparkError() within SparkInitialise(). The
sparkError() function unlinks your Sparks DSO and calls SparkUnitialise().

WARNING: Do not delete any uninitialised memory!

Registered

Unregistered

New

Locked

Unlocked
(Clean)

Dirty

!

!

Memory Buffer Management

17

The following is an example of how to use the Sparks memory interface.

static int RESULT_ID = 1;

static int CLIP1_ID;

static int AUX1_ID;

static int AUX2_ID;

static int AUX3_ID;

static SparkMemBufStruct SparkResult;

static SparkMemBufStruct SparkClip1;

static SparkMemBufStruct SparkAux1;

static SparkMemBufStruct SparkAux2;

static SparkMemBufStruct SparkAux3;

int SparkClips(void)

{

return (1);

}

void SparkMemoryTempBuffers(void)

{

AUX1_ID = sparkMemRegisterBuffer();

AUX2_ID = sparkMemRegisterBufferSize(

sizeof(unsigned long)*400);

AUX3_ID = sparkMemRegisterBufferFmt(

200, 100, SPARK_FMT_MONO);

}

unsigned int SparkInitialise(SparkInfoStruct SparkInfo)

{

int bufCount;

int i;

 if (sparkAPIVersionInfo() < 2.5)

 {

/* clean here before bailing out! */

Sparks API2

18

 sparkError("The current IFFFSE version

 "doesn't support this SPARK!");

}

/* etc... */

return (SPARK_MODULE);

}

unsigned long *SparkProcess(SparkInfoStruct SparkInfo)

{

int bufCount, i;

if (sparkMemGetBuffer(RESULT_ID, &SparkResult) == 0)

return NULL;

if (sparkMemGetBuffer(CLIP1_ID, &SparkAux1) == 0)

return NULL;

if (sparkMemGetBuffer(AUX1_ID, &SparkAux1) == 0)

return NULL;

if (sparkMemGetBuffer(AUX2_ID, &SparkAux2) == 0)

return NULL;

if (sparkMemGetBuffer(AUX3_ID, &SparkAux3) == 0)

return NULL;

if (!(SparkResult.BufState & MEMBUF_LOCKED)

|| !(SparkClip1.BufState & MEMBUF_LOCKED)

|| !(SparkAux1.BufState & MEMBUF_LOCKED)

|| !(SparkAux2.BufState & MEMBUF_LOCKED)

|| !(SparkAux3.BufState & MEMBUF_LOCKED)

return NULL;

bufCount = SparkResult.TotalBuffers;

/* ...etc. */

return (SparkResult.Buffer);

}

/* ...etc. */

Sparks User Interface

19

Sparks User Interface
The Sparks user interface employs the same basic control types found in the components of
other Autodesk Editing and Effects products. These control types include an integer numeric
display, a floating point numeric display, a text string display, a colour button, a toggle button,
a mode display, and a push button.

A specific format is used to name the controls. All control names begin with the string "Spark"
followed by a string identifying the control type.

The control name must end in a numeric value that identifies the position of the control on a
predefined grid. For example, the control named SparkFloat0 identifies a floating point
numeric display at position 0 on the grid. The control named SparkPopup21 identifies a
mode display at position 21 on the grid.

Text string parameters are wider than the other types of parameters. Typically, they occupy two
grid positions, except for those at the desktop level in the extreme right column of the
component level.

Control Page Canvas
Sparks plug-ins used in Component mode now have access to the control page canvas by
defining an appropriate SparkCanvasStruct structure. If a Sparks control is also defined
on the control page where a canvas was defined by a Sparks plug-in, the Sparks control will be
drawn on top of the canvas. Control page 5 can be used uniquely for a canvas.The following
example defines a Sparks canvas on control page 5.

SparkCanvasStruct SparkCanvas5 = { HistoDisplayCB,
HistoInteractCB };

Control type string: Identifies:

Int An integer numeric display.

Float A floating point display.

String A text string display.

Color A color button.

Boolean A toggle button.

Popup A mode display.

Push A simple push button.

Sparks API2

20

These are the related structure declarations added to the spark.h header file:

typedef struct {

void (*DisplayCallback) (SparkCanvasInfo);

int (*InteractCallback)(SparkCanvasInfo Canvas, int

PointerX, int PointerY, float PointerPressure);

/* return 1 for canvas display */

} SparkCanvasStruct;

typedef struct {

int X0; /* Canvas Origin */

int Y0;

int Width; /* Canvas Width */

int Heigth; /* Canvas Height */

}; SparkCanvasInfo;

Setup Page Controls
A Sparks plug-in can create up to 22 user interface controls in the Setup menu. You cannot
animate these controls. The following example defines an integer numeric display in the Sparks
setup menu.

SparkIntStruct SparkSetupInt21 = { 5,

1,

10,

1,

SPARK_FLAG_NO_ANIM,

"Undo Levels %d",

NULL } ;

Sparks Hot Keys
Sparks plug-ins used in Component mode have standard predefined hot keys. The F1 through
F4 hot keys can be used to toggle between the input clips and result clip views. The Channel
Editor comes with the standard hot keys. Refer to the 2008 release of the Hot Keys Reference
Guide for your product.

Desktop and Component Levels

21

Sparks Player
Sparks plug-ins using the new memory model have access to the Player. When a clip is
processed, Play and Delete buttons are displayed on the right side on the timebar allowing the
user to respectively play or delete the last clip processed.

Desktop and Component Levels
A Sparks plug-in can operate at either or both of two levels: the desktop level and the
component level. When a Sparks plug-in is chosen, the Autodesk Editing or Effects product
prompts the user to select all required input clips using the standard clip selection cursors.
Enabling the S[] box on the Sparks button in the Autodesk Editing or Effects product lets the
user retrieve the same clips used the last time the Sparks plug-in was invoked.

If the Sparks plug-in can operate at both the desktop and the component levels, the E[] box in
the Autodesk Editing or Effects product then appears on the Sparks button. If the E[] box is
selected before selecting the destination reel, the Sparks plug-in runs at the component level;
otherwise, it runs at the desktop level. The E[] box does not appear if the Sparks plug-in
operates only at one of the levels.

The Desktop Level
At the desktop level, the Sparks controls appear in the menu when the user chooses the Sparks
plug-in. This is similar to the command menu that appears when the user chooses Dissolve in
the Editing menu in Flame.

A Sparks plug-in can have up to six controls at the desktop level. The controls are numbered 0
through 5. No interactive callback functions are associated with the controls at this level. To see
the effect of applying a Sparks plug-in to the source clips, the user must set the control values
and then process the clips by selecting the destination reel or EditDesk.

The Component Level
At the component level, the Sparks user interface occupies the entire desktop. There is an image
window in the work area, control displays and buttons, wide screen viewing tools, and a
Channel Editor. This is similar to the interface of the Dissolve Editor, for example, in the Editing
menu in Flame. Using a Sparks plug-in at the component level is the best way to debug and fine-
tune the Sparks plug-in itself.

The basic controls include timelines, buttons to select the Front, Back, Matte or Result clip for
display, buttons to access the Setup, Control or Anim submenus, and an Exit button.

The controls at the component level are numbered from 6 to 121 and may have associated
callback functions. You can save your user interface configuration, or setup, and create

Sparks API2

22

animation channels for each user interface variable. An animation channel has the same
callback function as that of the corresponding interface control.

Sparks parameters 6 to 34 appear on the first control page; parameters 35 to 63 appear on the
second control page; parameters 64 to 92 appear on the third control page; and parameters 93
to 121 appear on the fourth control page.

The user interface buttons on control pages two to four only appear for Sparks plug-ins that
define parameters on these pages.

Sample User Interface Control
The following example defines an integer numeric display, or slider, in a Sparks menu.

SparkIntStruct SparkInt6 = { 0,

0,

100,

1,

SPARK_FLAG_X | SPARK_FLAG_NO_ANIM,

"Slider Value %d",

NULL } ;

In this declaration, the integer numeric display has the following properties:

• The initial value is 0.

• The minimum value is 0.

• The maximum value is 100.

• The increment value is 1. This is used to modify the current value when the pointer device is
dragged over the display.

• The flags tell the Autodesk Editing or Effects product that this parameter is an X coordinate
that should be rescaled if the Sparks plug-in is applied to a frame of a different size, and that
this parameter should not appear as an entry in the Channel Editor. Other possibilities are
SPARK_FLAG_Y (to identify a parameter as a Y coordinate) and SPARK_FLAG_NO_INPUT
(to tag a display as an output-only field).

• The text string defines how the integer value appears in the numeric display.

• The Value field corresponds to the integer value you enter.

• The NULL parameter indicates that there is no callback function associated with the numeric
display.

Desktop and Component Levels

23

• The value of 6 in the control name tells the Autodesk Editing or Effects product that this
control appears at the component level of the Sparks plug-in, on the first control page.

Most Sparks plug-ins are designed to operate at both the desktop and component levels. In
order to have the same controls available at both levels, you must declare each desktop level
control at the component level as well. For example, the control SparkInt0 operating at the
desktop level may have an almost identical control named SparkInt6 operating at the
component level.

Other Sparks parameter types have similar fields. Refer to the spark.h header file for a complete
list of the fields available for each parameter type.

For controls that operate at the two different levels, you may want to include a callback in the
declaration of the component level control. A callback updates the image each time you modify
the control value (either drag-and-drop or continuous updating). To include a callback in the
previous example, replace the NULL parameter with the name of a function that is called by the
Autodesk Editing or Effects product each time you modify the control value.

NOTE: The interfaces at the two levels are completely independent; you must declare the same

controls at each level.

The Channel Editor
The Sparks user interface includes the standard Channel Editor used by the modules in
Autodesk Editing and Effects products. The Channel Editor is only available at the component
level. By default, all Sparks numerical controls (int and float types) appear in the Channel
Editor unless their Flags field includes the SPARK_FLAG_NO_ANIM value.

You can access the Channel Editor with the Animation button available at the component level.
When it appears, it replaces the Sparks control page. The standard Channel Editor controls to
add, move, and delete keyframes are available. There is also an AutoKey feature that
automatically generates a keyframe when a Sparks control is updated, either through the
control page or through a call to the SparksControlUpdate utility function. You can
toggle the AutoKey on and off from the Set Up, control, or Channel Editor page.

A control is animated by the Channel Editor if it has one or more keyframes. Otherwise, the
control value is taken from the control page.

Sparks API2

24

Adding Controls to the Channel Editor
The Sparks utility functions let you create Channel Editor controls that are not attached to user
interface numerical controls. You define these controls using the same structures as user
interface controls; the controls can be numbered from 0 to 121. You can set and retrieve
keyframes using Sparks utility functions.

NOTE: The Channel Editor supports a maximum of 244 controls (folders and controls are

considered to be the same; that is, you handle both in the same way since Autodesk Editing and

Effects products do not make a distinction).

The following example defines a floating numeric control in the Channel Editor.

SparkFloatStruct SparkUserFloat10 = { 0,

0,

50,

0.5,

SPARK_FLAG_NONE,

"Amplitude: %d",

NULL };

Controls associated with the Channel Editor are identified by the Sparks User prefix. These
controls appear in the Channel Editor only. Unlike regular controls, they are not tied to user
interface controls. The flag and callback fields have no effect with Channel Editor controls.

Customizing the Channel Editor Layout
Sparks utility functions let you create channel hierarchies in the Channel Editor. See “Channel
Editor Functions” on page 36. You can create up to four levels in the Channel Editor. You do this
by adding folders and inserting controls into them. Any controls that you have not added to a
folder are appended to the end of the list on the first level.

Using Channel Editor Folders
Note the following when creating Channel Editor folders:

• You activate levels 2, 3, and 4 of the Channel Editor by creating folders.

• You create folders in a parent-child fashion. For example, to create a folder on the second level,
a folder must already exist on the first level.

• You must first activate a level before adding a Sparks user interface control or Channel Editor
control to it.

Desktop and Component Levels

25

• You can create a maximum of four levels in the Channel Editor. Therefore, you cannot add
folders to level four.

• Autodesk Editing and Effects products keep track of the last item on each level. For example,
if you create a folder on level one and insert controls into it, and then create another folder on
level one, all controls you then insert are added to the newly created folder. This is shown in
the following example.

void SparkChannelEditor (void)

{

sparkCeAddFolder (SPARK_CE_LEVEL1, "offset");

/* ...creates a folder on level 1 and activates level 2 */

sparkCeAddControl (SPARK_CE_LEVEL2,

 SPARK_CE_CONTROL, 121);

/* ...adds the Spark Channel Editor control

number 121 on level 2 in the offset folder */

sparkCeAddFolder (SPARK_CE_LEVEL1, "shift");

/* ...creates a new folder on level 1 */

sparkCeAddControl (SPARK_CE_LEVEL2,

SPARK_UI_CONTROL, 121);

/* ...adds the sparks user interface numerical

control number 121 on level 2 in the shift folder */

}

NOTE: Your UNIX shell displays all errors that occur when using the sparkCeAddFolder and

the sparkCeAddControl functions.

Sparks Setup Management
The Sparks Setup menu is also available at the component level from the Sparks user interface.
Sparks setups (including all current control values and Channel Editor curves) can be saved,
loaded, or deleted.

NOTE: Attempts to load setups containing controls that no longer exist in a Sparks plug-in will fail.

When modifying an existing Sparks plug-in, care should be taken to keep it compatible with earlier

versions.

Sparks API2

26

27

Sparks Utility Library

This chapter introduces the functions in the Sparks utility library that you

can include in your Sparks plug-ins.

Summary
About Sparks Plug-ins . 27

User Interface Functions . 28

System Functions . 33

Memory Functions . 34

Channel Editor Functions . 36

Environment Functions . 39

Image Access Functions . 40

Image Colour Space Conversion Functions . 40

Image-Processing Functions . 42

Image Buffer Manipulation Functions . 43

File I/O Support Functions . 44

Scan Mode Identification Function . 44

Process Management Functions . 45

About Sparks Plug-ins
The Sparks development environment includes a number of utility functions that simplify
image processing and extend the Sparks user interface. Together, the utility functions form the

Sparks Utility Library3

28

Sparks utility library. All these functions use the prefix "spark" (all lowercase) to differentiate
them from the "Spark"-prefixed functions called by Autodesk Editing and Effects products.
The following sections describe the currently available utility functions.

User Interface Functions
Use the user interface functions to show, hide, or control different user interface elements such
as the Channel Editor, cursors, and the file browser.

sparkMessage()
void sparkMessage(char *MessageString)

The sparkMessage function displays the text message supplied by MessageString in
the desktop message window.

sparkCursorBusy()
void sparkCursorBusy(void)

The sparkCursorBusy function can be used to change the cursor type while a clip is being
processed. This function is called from other user interface callback functions only.

sparkViewingCursor()
void sparkViewingCursor(int CursorIndex)

The sparkViewingCursor function can be used to define which of the standard cursors
in Autodesk Editing and Effects products should appear when the pointer device is over the
image window. All currently available cursors for Autodesk Editing and Effects products are
described in the spark.h header file.

NOTE: This list or the appearance of the cursors is subject to change in future releases.

sparkControlUpdate()
void sparkControlUpdate(int ControlNumber)

The sparkControlUpdate function forces Autodesk Editing and Effects products to
redraw a specific user interface control. This function is required; changing the value associated
with a user interface control within the environment of Autodesk Editing and Effects products
does not ensure that the control will be redrawn. The sparkControlUpdate function acts
as a type of callback within a callback, ensuring consistent updating of user interface controls.
The ControlNumber parameter is the number used to position the control; this number is
associated with the control name. See “Sparks User Interface” on page 19.

User Interface Functions

29

sparkReprocess()
void sparkReprocess(void)

The sparkReprocess function is useful in cases when a Sparks plug-in needs to reprocess
the current output frame after a user interface update. Typically, you use this with timewarp
Sparks plug-ins where multiple input frames are used to create one output frame. If a user
parameter is updated, the sparkReprocess function can force a reprocess, causing the
Sparks plug-in to receive all input frames again. The Sparks plug-in then generates a new output
frame to appear in the image window.

sparkViewingDraw()
void sparkViewingDraw(void)

The sparkViewingDraw function refreshes the Channel Editor and image window. It also
generates a call to SparkOverlay, when defined.

sparkMessageConfirm()
int sparkMessageConfirm(char *MessageString)

The sparkMessageConfirm function displays the text message supplied by
MessageString in the desktop message window and displays a Confirm button. This
function returns 1 when the Confirm button is pressed.

sparkClipControlTitle()
void sparkClipControlTitle(SparkClipSelect Clip, char
*Title)

The sparkClipControlTitle function lets a Sparks plug-in change default clip control
titles. The clip (specified by an enumerator value defined in the spark.h header file) title is
replaced with the new title.

sparkPointerRead()
int sparkPointerRead(void)

The sparkPointerRead function returns the pointer device pressure value.

sparkPointerWaitOff()
void sparkPointerWaitOff(void)

The sparkPointerWaitOff function waits and returns when 0 pressure is applied to the
pointer device.

Sparks Utility Library3

30

sparkPointerWaitOn()
void sparkPointerWaitOn(void)

The sparkPointerWaitOn function waits and returns when pressure is applied to the
pointer device.

sparkQueryKeyMap()
int sparkQueryKeyMap(long Device)

The sparkQueryKeyMap function returns the logical state of a device you want to test. The
Device parameter corresponds to the old device codes extracted from gl.h and device.h (on
IrisGL systems).

sparkError()
void sparkError(char *ErrorString)

The sparkError function displays the error message supplied by ErrorString in the
desktop message window and aborts the current Sparks plug-in.

sparkMpFork()
void sparkMpFork(void (*Function()), int NumArgs, ...)

The sparkMpFork function is used for multiprocessing a user-defined function. The
Function argument is the name of the function to be multiprocessed. The NumArgs
argument specifies the number of arguments required by the Function. The other arguments
of sparkMpFork are the arguments of the function to be multiprocessed; you can use a
maximum of six arguments.

It is your responsibility to ensure that the task is correctly allocated to the different CPUs. The
total number of processors available for the task is contained in the NumProcessors field of
the structure SparkInfoStruct, and can be extracted using the SparkInitialise
function.

NOTE: Since Autodesk Editing and Effects products allocate the processing units, do not use actual

IRIX multiprocessing related system calls; otherwise, undesirable results may occur.

User Interface Functions

31

sparkMpInfo()
void sparkMpInfo(unsigned long *offset, unsigned long
*pixels)

The sparkMpInfo function calculates an offset in the image buffer to be processed as well as
the total number of pixels to be processed. The calculation is based on the number of available
processors and on the processor currently being used by the Sparks plug-in.

You should call the sparkMpInfo function from the function that is passed as the first
argument of the sparkMpFork function.

sparkMpForkPixels()
void sparkMpForkPixels(void (*Function) (), ulong Pixels,
int NumArgs,...)

The sparkMpForkPixels function is a subset of the sparkMpFork function. The
Pixels argument lets you determine how to divide pixels between processes.

sparkMpIsMainTask()
void sparkMpIsMainTask(void)

The sparkMpIsMainTask function will return TRUE when called from the main task and
return FALSE otherwise. Tasks are usually created via calls to sparkMpFork,
sparkMpForkPixels, or sparkMpCreateTask.

sparkProcessTruncate()
void sparkProcessTruncate(void)

You can use the sparkProcessTruncate function within the SparkProcess function
to truncate a currently processing clip.

sparkDisableParameter()
void sparkDisableParameter(int Type, int ControlNo)

The sparkDisableParameter function can be used to hide the UI parameter specified
by ControlNo in the control page and the Channel Editor.

sparkEnableParameter()
void sparkEnableParameter(int Type, int ControlNo)

The sparkEnableParameter function can be used to show the UI parameter specified by
ControlNo in the control page and the Channel Editor.

Sparks Utility Library3

32

sparkControlTitle()
void sparkControlTitle(SparkControlSelect Control, char
*Title)

The sparkControlTitle function can be used to rename the control page parameter
identified by Control.

sparkResultClipName()
void sparkResultClipName(char *NewName)

The sparkResultClipName function can be used to set the name of the clip processed by
a Sparks plug-in. By default, the Sparks plug-in will use the Sparks plug-in name as the clip
name.

sparkPointerInfo()
float sparkPointerInfo(int *PX, int *PY)

The sparkPointerInfo() function can be used to get the current pointer device
position. This function returns the current pointer pressure.

sparkGetViewerRatio()
float sparkGetViewerRatio(void)

The sparkGetViewerRatio() returns the current ratio value applied in the image
window.

sparkFrameRate()
double sparkFrameRate()

The sparkFrameRate() function returns the current video frame rate in frames per
second.

sparkSetupControlUpdate ()
void sparkSetupControlUpdate(int ControlNo)

The sparkSetupControlUpdate function forces the application to redraw a specific user
interface setup control.

sparkFileBrowserDisplayLoad()
void sparkFileBrowserDisplayLoad(char *Path, char
*Extension, void (*Callback) (char *FileName))

System Functions

33

The sparkFileBrowserDisplayLoad function displays the file browser and sets the
current search path to Path. Extension is used to filter the file. Callback will be called on the
user-selected file. The selected file is passed as an argument to the callback.

sparkFileBrowserDisplayLoadSequence()
void sparkFileBrowserDisplayLoadSequence(char *Path, char
*Extension, void (*Callback) (char *FileName))

The sparkFileBrowserDisplayLoadSequence function displays the file browser
and sets the current search path to Path, where the user can select multiple files. Extension is
used to filter the file. The selected files are passed as an argument to the Callback one by one;
the Callback is called as many times as there are selected files.

sparkFileBrowserDisplaySave()
void sparkFileBrowserDisplaySave(char *Path, char
*Extension, void (*Callback) (char *FileName))

The sparkFileBrowserDisplaySave function displays the file browser and sets the
current search path to Path. Extension is used to filter the file. Callback will be called on the
user-selected file. The selected file is passed as an argument to the callback.

sparkFileCheckOverwrite()
int sparkFileCheckOverwrite(const char *Name)

The sparkFileCheckOverwrite function can be used within the
sparkFileBrowserDisplayLoad or sparkFileBrowserDisplaySave
callbacks to prompt the user with the standard confirm message.

sparkFileHasExtension()
int sparkFileHasExtension(const char *File, const char
*Extension)

The sparkFileHasExtension function returns 1 if File has an extension equal to
Extension. This function is case sensitive. It returns 0 otherwise.

System Functions
Use the system functions to bypass the sprocs, pcreate, fork, and exec calls that are no
longer available.

Sparks Utility Library3

34

sparkSystemSh()
int sparkSystemSh(int wait, const char *cmd)

The sparksSystemSh function is a wrapper to pcreatel(). If the wait argument is
TRUE, the function will wait for the child process to complete before returning. The cmd
argument will be passed to a subshell (/bin/sh), which will perform the path search—with
wildcard expansion if required—as well as break up the command line into separate arguments
to be passed to the process that has started.

sparkSystemNoSh()
int sparkSystemNoSh(int wait, const char *path, const char
**argv)

The sparksSystemNoSh function is a wrapper to pcreatev(). If the wait argument is
TRUE, the function will wait for the child process to complete before returning. The path
argument points to the executable. The argv argument is a pointer to an array of strings
representing the parameters to the subprocess. Usually argv[0] is the path to the executable;
no path searching is done and no wildcard expansion is performed.

NOTE: The last entry in argv[] should be a zero to indicate its end.

sparkWaitpid()
int sparkWaitpid(pid_t pid, int *statptr, int option)

The sparksWaitpid function is a wrapper to waitpid(). The pid argument—if used
with a FALSE wait argument—is the value returned from the sparksSystemSh or
sparksSystemNoSh functions. If the statptr argument is non-zero, 16 bits of
information called “status” are stored in the low-order 16 bits of the memory location that the
statptr argument points to. Use the wstat Unix command for more information. The
options argument is constructed from the bitwise inclusive “OR” of zero or more of the
“WNOHANG” and “WUNTRACED” flags.

Memory Functions
Use the memory functions to register buffers, set information based on the type of buffer, and
estimate the number of buffers that the system can accommodate.

sparkMemRegisterBuffer()
int sparkMemRegisterBuffer(void)

Memory Functions

35

The sparkMemRegisterBuffer function registers Autodesk Editing and Effects
product-sized buffers. The buffer definition corresponds to one of the structures defined in the
spark.h header file. The size of registered buffers is determined by the current resolution and
current bit depth of the Sparks plug-in. If the output resolution or bit depth of the Sparks plug-
in changes, existing memory buffers will be deleted and new ones registered. The function
returns the buffer ID.

NOTE: Because the input and output resolution of the Sparks plug-in can change, memory buffers

are not valid across resolution changes and cached pointers cannot be relied on to point to valid

data.

WARNING: Image buffers should be requested through the memory management system of

Autodesk Editing and Effects products using API calls. As of Inferno 5.0, Flame 8.0, Flint 8.0,

Smoke 5.2, and Fire 5.2, the use of dynamic memory allocation of image buffers through malloc,

new, or other similar functions is strongly discouraged. If the memory management of the

Autodesk Editing or Effects product cannot satisfy a request for memory, calls to malloc, new,

or other similar functions are unlikely to succeed. Immediate and violent program termination

may ensue; however, you can use dynamic memory allocation for runtime objects and data

structures.

sparkMemRegisterBufferSize()
int sparkMemRegisterBufferSize(unsigned long size)

The sparkMemRegisterBufferSize function registers a buffer of the specified size.
The function returns the buffer ID.

sparkMemRegisterBufferFmt()
int sparkMemRegisterBufferFmt(int width, int
height,SparkBufferFmt)

The sparkMemRegisterBufferFmt function registers a buffer of the specified format.
The function returns the buffer ID.

sparkMemGetBuffer()
int sparkMemGetBuffer(int id, SparkMemBufStruct *memBufInfo
)

When passed the ID of a registered buffer and a SparkMemBufStruct, this function will set
all the information relative to this buffer. This function returns 1 if successful.

!

Sparks Utility Library3

36

sparkMemGetFreeMemory()
int sparkMemGetFreeMemory()

The sparkaMemGetFreeMemory function returns an estimate of the maximum number of
Autodesk Editing and Effects product-sized memory buffers that can be locked at the same time
by a Sparks plug-in.

NOTE: Depending on which type of sparkMemRegisterBuffer is used, Autodesk Editing

and Effects products will provide more or less information in the SparkMemBufStruct with

a buffer. The SparkBufferFmt and SparkMemBufStruct fields used by the Memory

functions are defined in the spark.h header file.

Channel Editor Functions
Use the Channel Editor functions to control keyframes, folders, and the names of controls in the
Channel Editor.

sparkSetCurveKey()
void sparkSetCurveKey(int Type, int ControlNumber, int
FrameNumber, float Value)

You can use the sparkSetCurveKey function to set keyframe values from a Sparks plug-in.
These keyframe values are assigned to the control specified by the Type and
ControlNumber parameters.

sparkSetCurveKeyf()
void sparkSetCurveKeyf(int Type, int ControlNo, float Frame,
float Value)

The sparkSetCurveKeyf function can be used to set keyframes between frames. The
keyframe values are assigned to the control specified by the Type and ControlNo
parameters. See “sparkSetCurveKeyf()” on page 54.

sparkGetCurveValuef()
float sparkGetCurveValuef(int Type, int ControlNumber,
float FrameNumber)

The sparkGetCurveValuef function returns the keyframe value of the control specified
by the Type and ControlNumber parameters.

Channel Editor Functions

37

sparkGetCurveValue()
float sparkGetCurveValue(int Type, int ControlNumber, int
FrameNumber)

The sparkGetCurveValue function is the same as the sparkGetCurveValuef
function except that it takes an int value for FrameNumber rather than a float value.

sparkIsAutoKeyOn ()
void sparkIsAutoKeyOn (int)

The sparkIsAutoKeyOn function returns 1 if the AutoKey function is enabled and 0 if the
AutoKey function is disabled.

sparkCeAddFolder()
void sparkCeAddFolder(int Level, char *Title)

You use the sparkCeAddFolder function to create folders in the Channel Editor. Adding a
folder creates a new sub-level in the Channel Editor into which you can add Channel Editor or
Sparks user interface controls. The level parameter indicates to which active level the folder
should be added. The title parameter is used as a folder name.

sparkCeAddControl()
void sparkCeAddControl(int Level, int Type, int
ControlNumber)

By default all numerical Sparks user interface controls appear in the Channel Editor on the first
level. You use the sparkCeAddControl function to place these controls in the folder
created by the sparkCeAddFolder function. The Type and ControlNumber
parameters specify which item is affected.

sparkSetControlName()
int sparkSetControlName(int Type, int ControlNumber, char
*NewName)

The sparkSetControlName function sets the name of a control appearing in the Channel
Editor to NewName. This function works only if the Sparks plug-in is not in Channel Editor
mode and returns 1 when the renaming occurs. The Type and ControlNumber parameters
specify which item is affected.

NOTE: The Type and Level fields used by the Channel Editor functions are enumerators

defined in the spark.h header file.

Sparks Utility Library3

38

sparkChRemoveKey()
void sparkChRemoveKey(int ControlType, int ControlNo, float
Frame)

The sparkChRemoveKey() function removes the key specified by Frame of the given
control and control type.

sparkChClear()
void sparkChClear(int ControlType, int ControlNo)

The sparkChClear() function removes all keyframes of the given control and control
type.

sparkChCopy()
void sparkChCopy(int SrcControlType, int SrcControlNo, int
DstControlType, int DstControlNo)

The sparkChCopy() function copies the keyframes of the SrcControlNo to the
DstControlNo.

sparkChPreComputeValues ()
int sparkChPreComputeValues(int ControlType, int ControlNo,
float FrameNo)

The sparkChPreComputeValues() function computes the values for the channel
identified by ControlType and ControlNo between FrameStart and FrameEnd.
The sparkChPreComputeValues() function returns SPARK_FAILURE in the
following situations:

• If ControlNo has no associated channel.

• If ControlNo is outside the range.

• If the Channel Editor has not been initialised when the call is made to
sparkChPreComputeValues().

sparkChPreComputedValues()
float sparkChPreComputedValues(int ControlType, int
ControlNo, float FrameNo)

The sparkChPreComputedValues() function retrieves a previously computed
channel value. sparkChPreComputedValues() returns a value of 0.f when an error
occurs.

Environment Functions

39

sparkChReadRawKeys()
int sparkChReadRawKeys(const char *FileName, int
ControlType, int ControlNo)

The sparkChReadRawKeys() function can be used to read the keyframes of the given
FileName ASCII file. The current channel data will be overwritten by the new data. The
function returns 1 if the file was successfully read.

Environment Functions
Use the environment functions to set the parameters of the graphics monitor, determine the
Sparks API version, the directory of the Sparks plug-in, or to determine which module will call
the Sparks plug-in.

sparkGraphSetup()
void sparkGraphSetup(SparkGraphInfoStruct *SparkGraphInfo)

The sparkGraphSetup function returns a structure containing the resolution and pixel
aspect ratio of the viewing area of the graphics monitor.

sparkAPIVersionInfo()
float sparkAPIVersionInfo(void)

The sparkAPIVersionInfo function returns the version number of the system Sparks
API.

sparkProgramGetName()
const char* sparkProgramGetName(void)

The sparkProgramGetName function returns a character string corresponding to the
name of the Autodesk Editing or Effects product in which the Sparks plug-in is currently
loaded.

sparkGetInfo()
void sparkGetInfo(SparkInfoStruct *SparkInfo)

The sparkGetInfo function can be used to obtain information about the resolution of the
current Sparks plug-in.

sparkWorkingDir()
void sparkWorkingDir(char *Dir)

Sparks Utility Library3

40

The sparkWorkingDir function sets the Dir string to the working directory of a Sparks
plug-in.

sparkCallingEnv()
int sparkCallingEnv(void)

The sparkCallingEnv function returns an enumerator value corresponding to the module
calling the Sparks plug-in. These values are defined in the spark.h header file.

Image Access Functions
Use this function to return the value of the requested frame.

sparkGetFrame()
void sparkGetFrame(SparkClipSelect Clip, int FrameIndex,
unsigned long *Destination)

From the desktop, the sparkGetFrame function returns the requested frame of the
requested clip into the destination buffer. In Batch, sparkGetFrame updates the input node
corresponding to the requested frame using the destination buffer for the resulting image. The
destination buffer must be a registered result or a temporary buffer, in RGB format, previously
retrieved with sparkGetBuffer. The index of the first frame in a clip is 0.

Image Colour Space Conversion Functions
Use the colour space conversion functions to determine which colour model to use for the
image. You can also convert images between different colour models or create a monochrome
or negative image.

sparkMonochrome()
void sparkMonochrome(unsigned long *Source, unsigned long
*Destination)

The sparkMonochrome function fills the destination buffer with a monochrome version of
the image in the source buffer.

sparkNegative()
void sparkNegative(unsigned long *Source, unsigned long
*Destination)

Image Colour Space Conversion Functions

41

The sparkNegative function fills the destination buffer with a negative (inverted) version
of the image in the source buffer.

sparkToYUV()
void sparkToYUV(unsigned long *Source, unsigned long
*Destination)

The sparkToYUV function fills the destination buffer with a YUV (Chrominance/
Luminance) version of the image in the source buffer. The channels are mapped as follows:

• G is mapped to Y (luminance).

• B is mapped to U (B chrominance).

• R is mapped to V (R chrominance).

Regardless of the colour space used, all channels are mapped to the range of unsigned 8-bit
integer values.

sparkToHLS()
void sparkToHLS(unsigned long *Source, unsigned long
*Destination)

The sparkToHLS function fills the destination buffer with an HLS (Hue, Luminance,
Saturation) version of the image in the source buffer. The channels are mapped as follows:

• R is mapped to H (Hue).

• G is mapped to L (Luminance).

• B is mapped to S (Saturation).

Regardless of the colour space used, all channels are mapped to the range of unsigned 8-bit
integer values.

sparkFromYUV()
void sparkFromYUV(unsigned long *Source, unsigned long
*Destination)

The sparkFromYUV function fills the destination buffer with an RGB version of the image in
the source buffer. The channels are mapped as follows:

• V (R chrominance) is mapped to R.

• Y (luminance) is mapped to G.

• U (B chrominance) is mapped to B.

Sparks Utility Library3

42

sparkFromHLS()
void sparkFromHLS(unsigned long *Source,unsigned long
*Destination)

The sparkFromHLS function fills the destination buffer with an RGB version of the image in
the source buffer. The channels are mapped as follows:

• H (Hue) is mapped to R.

• L (Luminance) is mapped to G.

• S (Saturation) is mapped to B.

sparkRGBtoYUV()
void sparkRGBtoYUV(int R, int G, int B, int *Y, int *U, int
*V)

The sparkRGBtoYUV function produces the Y, U, and V output values that correspond to the
R, G, and B input values.

sparkRGBtoHLS()
void sparkRGBtoHLS(int R, int G, int B, int *H, int *L, int
*S)

The sparkRGBtoHLS function produces the H, L, and S output values that correspond to the
R, G, and B input values.

sparkYUVtoRGB()
void sparkYUVtoRGB(int Y, int U, int V, int *R, int *G, int
*B)

The sparkYUVtoRGB function produces the R, G, and B output values that correspond to the
Y, U, and V input values.

sparkHLStoRGB()
void sparkHLStoRGB(int H, int L, int S, int *R, int *G, int
*B)

The sparkHLStoRGB function produces the R, G, and B output values that correspond to the
H, L and S input values.

Image-Processing Functions
Create a blurred or a composite version of the clip with the image-processing functions.

Image Buffer Manipulation Functions

43

sparkBlur()
void sparkBlur(unsigned long *Source, unsigned long
*Destination, int x, int y, int Channels)

The sparkBlur function fills the destination buffer with a blurred version of the image in the
source buffer. The x and y parameters define the severity of the blur in the horizontal and
vertical directions, respectively. A high value for either x or y produces a more severe blur. For
a uniform blur, make x equal to y. The Channels parameter determines which channels are
affected by the blur.

sparkComposite()
void sparkComposite(unsigned long *Front, unsigned long
*Back, unsigned long *Matte, unsigned long *Destination)

The sparkComposite function produces a composite image using the input Front, Back,
and Matte image buffers. The Matte image is assumed to be black and white, with identical R,
G, and B values for each pixel. It acts as the alpha channel for the Front image. For each pixel in
the Matte image, if the pixel has a non-zero RGB value, then a pixel from the Front image is
weighted according to the Matte RGB value and appears in the destination image. If the pixel in
the Matte image has a zero RGB value (a black pixel), then a pixel from the Back image appears
in the destination image.

Image Buffer Manipulation Functions
Copy the entire contents or the contents of a particular channel from the source to destination
buffer using the image buffer manipulation functions. You can also change the size of the
destination image from that of the source image.

sparkCopyBuffer()
void sparkCopyBuffer(unsigned long *Source, unsigned long
*Destination)

The sparkCopyBuffer function copies the contents of the source buffer into the
destination buffer.

sparkCopyChannel()
void sparkCopyChannel(unsigned long *Source, int
SourceChannel, unsigned long *Destination, int
DestinationChannel)

The sparkCopyChannel function copies the specified SourceChannel of the source
buffer into the DestinationChannel of the destination buffer.

Sparks Utility Library3

44

sparkResizeBuffer()
void sparkResizeBuffer(unsigned long *Source, int
SourceSize, unsigned long *Destination, int DestinationSize
)

The sparkResizeBuffer function may be used to convert the format of the image buffers.
Use the enumerator values located in the spark.h header file to specify the source and
destination sizes.

File I/O Support Functions
Determine ownership and access privileges of a file using the file I/O support functions. Also
set whether a setup file is saved or loaded.

sparkSetPermissions()
void sparkSetPermissions(char *filename)

The sparkSetPermissions function changes the ownership and access permissions of
the given file to the standard of the Autodesk Editing or Effects product. This function should
be used on every permanent file created by a Sparks plug-in to ensure that all users of Autodesk
Editing and Effects products on a given system are able to access the file.

sparkSaveSetup()
void sparkSaveSetup(char *filename)

The sparkSaveSetup function saves the current Sparks setup (including all current user
interface values and Channel Editor curves) into a file with the given name. The user can load a
saved setup with the sparkLoadSetup function. The setup files of Autodesk Editing and
Effects products are stored in the /usr/discreet/project/<project name>/sparks of the current
project, which is defined on the Sparks line of the configuration file of the Autodesk Editing and
Effects products and is the name of the Sparks plug-in.

sparkLoadSetup()
void sparkLoadSetup(char *filename)

The sparkLoadSetup function loads a setup previously saved with the
sparkSaveSetup function.

Scan Mode Identification Function
Detemine the scan mode of a Sparks setup.

Process Management Functions

45

sparkGetScanFormat()
sparkGetScanFormat()

The sparkGetScanFormat function returns the scan mode of the current Sparks setup
according to the following enumerated type definitions:

typedef enum {

 SPARK_SCAN_FORMAT_UNDEFINED = -1,

 SPARK_SCAN_FORMAT_FIELD_1 = 0,

 SPARK_SCAN_FORMAT_FIELD_2 = 1,

 SPARK_SCAN_FORMAT_PROGRESSIVE = 2

} SparkScanFormat;

Process Management Functions
Set up and control multi-process tasks.

sparkMpAllocateTaskHandle()
SparkTaskHandle_t* sparkMpAllocateTaskHandle()

The sparkMpAllocateTaskHandle function allocates a handle to create a multi-process
task.

int sparkMpCreateTask()
int sparkMpCreateTask(SparkTaskHandle_t* handle, const
char* name, int cpu, SparkTaskFunc_t* entry, void* arg)

The sparkMpCreateTask function creates a multi-process task on the cpu supplied. If the
cpu is -1, the main thread cpu is used. The function returns 0 on success and -1 on failure.

sparkMpWaitTask()
void sparkMpWaitTask(SparkTaskHandle_t* handle)

The sparkMpWaitTask function creates a pause in what is being executed until the task
related to the handle indicated is completed.

sparkMpFreeTaskHandle()
void sparkMpFreeTaskHandle(SparkTaskHandle_t* handle)

The sparkMpFreeTaskHandle function frees the handle.

Sparks Utility Library3

46

sparkMpGetCpu()
int sparkMpGetCpu()

The sparkMpGetCpu function returns which cpu the current thread is running on.

47

Sparks Audio API

This chapter introduces you to the audio functions that you can include in

your Sparks plug-ins.

Summary
About Sparks Audio API . 47

Playback Audio Functions . 48

Global Audio Parameter Access Functions . 50

Memory Buffer Management . 51

SparkClipInfoStruct and SparkTrackInfoStruct . 52

Processing and Analyse Functions . 53

Other Audio Functions . 54

About Sparks Audio API
This chapter describes audio-related functions. All described and referred functions can be
found in the spark.h header file in the ~/sparks directory.

 In addition to reading this chapter, Sparks developers should examine the
sparkAudioPreviewGain example, as well as the sparkAudioAPI,
sparkMono2Stereo, sparkDisplaySound and sparkReverse sample Sparks
source files found in the ~/sparks directory. sparkAudioAPI tests one by one the new audio-
related functions. sparkMono2Stereo shows how to manipulate audio tracks block by

Sparks Audio API4

48

block. sparkDisplaySound shows how to relate samples with the current frame within
SparkProcess(). sparkReverse reimplements clip reversal with audio support.

Playback Audio Functions
The playback audio functions control playback parameters such as the playback mode, the
number of samples per track, and the update of buttons during playback.

sparkEnablePlayAudio()
void sparkEnablePlayAudio(void)

sparkEnablePlayAudio enables the playback mode. It should be called once, when
loading the Sparks plug-in, and any time the input or output resolution of the Sparks plug-in
changes, thus in the SparkInitialise() function.

sparkPrePlayAudio()
 int sparkPrePlayAudio(long nbSamplesTotalPerTrack, int
nbTracks)

nbSamplesTotalPerTrack is the total number of samples (per track) that can be played
during playback. For example, to play the entire clip, nbSamplesTotalPerTrack should
be calculated as:

nbTracks is the number of audio tracks that will be played, for example, if a clip has 3 audio
tracks and nbTracks is set to 2, playback will only play the first 2 audio tracks.

This function prepares the audio Player to play nbSamplesTotalPerTrack samples of the
first nbTracks of the clip. It must be called after the sparkEnablePlayAudio()
function and before the sparkPlayLoopAudio() function. It returns SPARK_SUCCESS
on success; otherwise, SPARK_FAILURE.

Video

Audio 1

Audio 2

Audio 3

nbSamplesTotalPerTrack

Playback Audio Functions

49

sparkPlayLoopAudio()
void sparkPlayLoopAudio(int startSample, int
nbSamplesPerTrack, void **bufferArray)

startSample is the position of the first sample (on each track) to be played in the
bufferArray.

nbSamplesPerTrack is the number of samples (per track) to be played from the
bufferArray.

bufferArray is the pointer to an array of buffers that contain the samples of the audio tracks
to be played back.

NOTE: The number of buffers must be equal to the value of the nbTracks parameter passed to

the sparkPrePlayAudio() function. Each buffer contains at least (startSample +

nbSamplesPerTrack) samples. All buffers have the same size.

This function plays back the nbSamplesPerTrack samples contained in a
bufferArray, starting at the sampleOffset position in the bufferArray. The
sparkPrePlayAudio() function must have been called before calling the
sparkPlayLoopAudio().

With SGI audio, the playback is almost immediate.

sparkPostPlayAudio()
void sparkPostPlayAudio(int abort)

If abort is equal to 1, the audio Player will immediately stop playing; if equal to 0, the Player
will finish playing the nbSamplesTotalPerTrack samples.
See “sparkPrePlayAudio()” on page 48.

This function stops the audio playback according to the value of the abort parameter. It must be
called after the sparkPlayLoopAudio() function.

Buffer 1

startSample > 0

Buffer 2

Buffer 3

nbTracks = 3

at least (startSample * nbSamplesPerTrack) samples

Sparks Audio API4

50

sparkPlayMenuCheck()
int sparkPlayMenuCheck(void)

This function returns 0 if the pointer device hits a button that can be updated during audio
playback (int, float or boolean value buttons) and 1 otherwise.

NOTE: The audio playback functions can typically be used to play back audio tracks while applying

and changing audio parameters in real time. sparkAudioPreviewGain.c shows how to implement a

playback of audio tracks while adjusting the gain of the tracks. The Sparks plug-in contains only

one button to change the gain value. The same gain is applied to all the audio tracks. When the

Preview button is pressed, the audio tracks are played and the gain value can be changed in real

time.

Global Audio Parameter Access Functions
The global audio parameter access functions return information about audio samples, and
values such as audio block size and space available for audio (in bytes and number of tracks).

sparkSampleFormat()
SparkBufferFmt sparkSampleFormat() returns the sample format.

Currently, the only possible return value is SPARK_FMT_AUDIO_INT16.

sparkSampleWidth()
The sparkSampleWidth() function returns the sample width in bytes.

Currently, the only possible return value is 2.

sparkAudioBlockSize()
The sparkAudioBlockSize() function returns the internal audio block size in bytes.

sparkAudioFreeSpace()
uint64_t sparkAudioFreeSpace() returns the free audio space available in bytes.

sparkAudioMaxOutputTracks()
The sparkAudioMaxOutputTracks() function returns the maximum number of
output audio tracks.

Memory Buffer Management

51

sparkFrameRate()
double sparkFrameRate() returns the current video frame rate in frames per second.

sparkSamplingRate()
double sparkSamplingRate() returns the current audio sampling rate in samples per
second.

Memory Buffer Management
Memory allocation when working with audio clips differs from when working with video clips.
Use the following memory buffer management function when working with audio clips.

typedef enum spark_buffer_fmt { } SparkBufferFmt;
typedef enum spark_buffer_fmt { SPARK_FMT_UNKNOWN = 0,
SPARK_FMT_MONO, SPARK_FMT_FLOAT, SPARK_FMT_RGB,
SPARK_FMT_HLS, SPARK_FMT_YUV, SPARK_FMT_RGBA,
SPARK_FMT_HLSA, SPARK_FMT_YUVA, SPARK_FMT_UYVY,
SPARK_FMT_AUDIO_INT16 = 100 } SparkBufferFmt;

SPARK_FMT_AUDIO_INT16 defines an audio-specific memory buffer format. Audio samples
of this format are 16-bit signed integers.

Memory-aligned audio buffers can be allocated with sparkMemRegisterBufferFmt(
). Parameter width gives the number of samples per track and parameter height gives the
number of tracks. Set width to a multiple of sparkAudioBlockSize() /
sparkSampleWidth() to optimize buffer copy and write operations. The sample buffers
are not interleaved because audio is handled as mono tracks in Autodesk Editing and Effects
products.

Allocated memory-aligned audio buffers can be retrieved with sparkMemGetBuffer().
The following fields in the filled SparkMemBufStruct structure can be interpreted as:
BufWidth is the number of samples in a track; BufHeight is the number of tracks;
BufDepth is the number of bits per sample; Stride is the length to the next track in bytes;
and Inc is the increment in bytes to move to the next sample.

Note that sparkCopyBuffer, sparkResizeBuffer and sparkCopyChannel are
image buffer manipulation functions so they should not be used on memory-aligned audio
buffers.

Sparks Audio API4

52

SparkClipInfoStruct and SparkTrackInfoStruct
The following two functions are used for carrying information about the content of the video
clip and the content of the audio track.

typedef struct spark_clip_info_struct { } SparkClipInfoStruct;
typedef struct spark_clip_info_struct { int NbVideoFrames;
int NbAudioTracks; ulong reserved[6]; } SparkClipInfoStruct;

typedef struct spark_track_info_struct { } SparkTrackInfoStruct;
typedef struct spark_track_info_struct { float StartFrame
int LengthSamples; ulong reserved[6]; }
SparkTrackInfoStruct;

SparkClipInfoStruct carries the information about the content of a clip.
NbVideoFrames gives the number of video frames in the clip. It is set to 0 if the clip has no
video content. NbAudioTracks gives the number of audio tracks in the clip. It is set to 0 if
the clip has no audio content.

SparkTrackInfoStruct carries the information about the content of an audio track.
StartFrame is the audio track's offset in frame units from the first video frame. It is negative

NbVideoFrames

N
b

A
u

d
io

Tr
ac

ks

Video

Audio 1

Audio 2

Clip

Processing and Analyse Functions

53

if the track starts before the first video frame. LengthSamples is the number of samples in
the track.

Processing and Analyse Functions
The following functions are used to control when processes begin and end.

SparkProcessEnd()
void SparkProcessEnd(SparkInfoStruct SparkInfo)

SparkAnalyse()
ulong * SparkAnalyse(SparkInfoStruct SparkInfo)

SparkAnalyseStart()
int SparkAnalyseStart(SparkInfoStruct SparkInfo)

SparkAnalyseEnd()
void SparkAnalyseEnd(SparkInfoStruct SparkInfo)

The audio tracks are carried from source to result unless:

• There has been at least one call to sparkNewAudio() between the end of the previous
processing loop and the end of the current one.

• Audio output has been disabled with a call to sparkAudioOutputEnable().

• The Sparks plug-in is called from Batch.

LengthSamples

Video

Audio Gap Audio

Clip

StartFrame < 0

Sparks Audio API4

54

The source clip to copy the audio tracks from is selected with the following precedency: front,
back, matte. If SparkProcess() returns NULL when called in the processing loop, the
Player displays a black frame and no frame is appended to the output clip. Note that
SparkProcess() must return a valid pointer to a frame buffer if the Sparks plug-in is
called from Batch. SparkProcessStart() is no longer mandatory. If not defined, it is
assumed to return 1. SparkProcessEnd() is executed once at the end of the processing
loop whether it is completed or aborted. This function is not mandatory.

SparkAnalyse() works similarly to SparkProcess() but does not generate an
output clip. This function is not mandatory. SparkAnalyseStart() is used to control
the length ratio between the input and the output just as SparkProcessStart() does. If
not defined, it is assumed to return 1. SparkAnalyseEnd() is executed once at the end of
the analysis loop whether it is completed or aborted. This function is not mandatory.

The field SparkInfo.TotalFrameNo passed to all these functions gives the maximum
video length among the input clips. If none of the input clips contains video frames,
SparkInfo.TotalFrameNo is set to 1.

sparkSetCurveKeyf()
void sparkSetCurveKeyf(int type, int controlNo, float
frameNo, float value)

sparkSetCurveKeyf() sets curve keyframes between frames. See “sparkSetCurveKeyf(
)” on page 36. To set curve keyframes relative to a sample index, use the following conversion
formula:

frameNo = (audio element start frame) + (sample index) *

 (sparkFrameRate() / sparkSamplingRate())

Other Audio Functions
The following functions are also used when working with audio. These include functions for
filtering clip selections, getting clip information, reading new audio elements for input,
allocating new audio elements for output, and working with audio samples.

SparkClipFilter()
int SparkClipFilter (SparkClipSelect Clip,
SparkClipInfoStruct ClipInfo)

SparkClipFilter() filters each clip selection. If not defined, the default filter condition
is to accept a clip with at least one video frame. Clip identifies the clip currently filtered and

Other Audio Functions

55

ClipInfo contains the clip information. This function is not mandatory. It is disabled if the
Sparks plug-in is called from Batch.

Returns SPARK_SUCCESS to accept the current clip selection or SPARK_FAILURE to reject it.

sparkGetClipInfo()
int sparkGetClipInfo(SparkClipSelectClip,
SparkClipInfoStruct * SparkClipInfo)

sparkGetAudioTrackInfo()
int sparkGetAudioTrackInfo(SparkClipSelect Clip, int
TrackNo, SparkTrackInfoStruct * SparkTrackInfo)

Both functions give access to clip information. These functions can be called on a clip once it is
selected or within SparkClipFilter() to get more information on the filtered clip.
Clip identifies the clip to get the information from. In sparkGetAudioTrackInfo(),
TrackNo's allowable values range from 1 to the number of audio tracks in the clip. These
functions are disabled if the Sparks plug-in is called from Batch.

Both functions return SPARK_SUCCESS on success or SPARK_FAILURE on failure.

sparkAudioOutputEnable()
void sparkAudioOutputEnable(int Status)

By default, tracks are copied from source to output clip if no new audio track is created. If
sparkAudioOutputEnable() is called with Status set to FALSE, no audio data is
copied in the output clip whether it comes from a source clip or from created tracks. Call
sparkAudioOutputEnable() with Status set to TRUE to return to the default
behaviour. This function has no effect if the Sparks plug-in is called from Batch.

sparkReadAudio()
int sparkReadAudio(SparkClipSelect Clip, int TrackNo, int
StartIndex, int LengthSamples void * Buffer)

sparkReadAudio() reads audio samples from an input clip audio track. Clip identifies
the clip to get the samples from. TrackNo's allowable values range from 1 to the number of
audio tracks in the clip. StartIndex is the index of the first sample to read.
LengthSamples is the number of samples to read. If the interval requested falls out of the
track's limits, missing samples are set to 0. Buffer is a pointer to a memory area at least
LengthSamples*sparkSampleWidth() bytes long. Data transfer is optimized when
StartIndex and LengthSamples are multiples of sparkAudioBlockSize() /

Sparks Audio API4

56

sparkSampleWidth() and Buffer refers to memory aligned on a page size boundary.
This function is disabled if the Sparks plug-in is called from Batch.

sparkReadAudio() returns the number of samples read.

sparkNewAudio()
int sparkNewAudio(int TrackNo, float StartFrame, int
LengthSamples int SetToZero)

sparkNewAudio() allocates and opens a new audio element in the output clip. TrackNo
is the number of the track where the new audio element is created. TrackNo allowable values
range from 1 to sparkAudioMaxOutputTracks() return value. StartFrame is the
new audio element's offset in frame units from the output clip's first video frame. It is negative
if the new audio element starts before the first video frame. LengthSamples is the number
of samples in the new audio element. If SetToZero value is TRUE, all samples in the new
audio element are set to zero. If sparkNewAudio() is called more than once on a track, the
previously allocated audio element in this track is closed and copied to the output clip.

At the end of the process loop, after SparkProcessEnd() is called if defined, all the
remaining opened audio elements are closed and copied to the output clip. If two audio
elements created in the same output track overlap, a crossfade is inserted between them. This
function is disabled if the Sparks plug-in is called from Batch.

sparkNewAudio() returns the number of samples allocated.

sparkWriteAudio()
int sparkWriteAudio(int TrackNo, int StartIndex, int
LengthSamples, void * Buffer)

sparkWriteAudio() writes samples into an opened audio element. TrackNo is the
number of the track where the opened audio element to write in can be found. TrackNo
allowable values range from 1 to sparkAudioMaxOutputTracks() return value.
StartIndex is the index of the first sample to write in the opened audio element.
LengthSamples is the number of samples to write. If the interval requested falls out of the
audio element's limits, out of bound samples are ignored. Buffer is a pointer to a memory
area at least LengthSamples*sparkSampleWidth() bytes long. It is only possible to
write samples in an element once it has been allocated and opened with sparkNewAudio(
). Data transfer is optimized when StartIndex and LengthSamples are multiples of
sparkAudioBlockSize() / sparkSampleWidth() and Buffer refers to
memory aligned on a page size boundary. This function is disabled if the Sparks plug-in is
called from Batch.

Other Audio Functions

57

sparkWriteAudio() returns the number of samples written.

sparkTruncateAudio()
int sparkTruncateAudio(int TrackNo, int LengthSamples)

sparkTruncateAudio() changes the number of samples of an opened audio element.
TrackNo is the number of the track where the opened audio element to truncate can be found.
TrackNo allowable values range from 1 to sparkAudioMaxOutputTracks() return
value. LengthSamples is the new number of samples in the opened audio element. It is only
possible to downsize an opened audio element's number of samples. Currently, this function
only changes the element's out point; no allocated space on the disk is freed. This function is
disabled if the Sparks plug-in is called from Batch.

sparkTruncateAudio() returns SPARK_SUCCESS on success and SPARK_FAILURE
on failure.

Sparks Audio API4

58

 59

Testing Your Spark Using Burn

Summary
Overview . 59

Testing Sparks Using Burn in Stand-alone Mode . 59

Using a Script for Your Test Setup . 64

Building Spark DSO Libraries . 65

Using Sparks and Reactivating the Distributed Queueing System 65

Overview
You can test your Spark using Autodesk® Burn™. Burn is a background rendering application
that permits asynchronous background processing and rendering. To test a Spark, you should
use Burn in stand-alone mode, a mode that allows an IFFFS application to connect directly to
a Render Node.

You can use Burn to process a Batch setup, an EditDesk clip, or a timeline clip on a single Render
Node. Typically, you should use existing setups or clips for which input clips are already
available.

Testing Sparks Using Burn in Stand-alone Mode
You must configure Burn to run in stand-alone mode in order to test your Spark. When Burn is
running in stand-alone mode, it uses the rendering network as follows:

• A single Render Node is designated for rendering jobs.

• The Backburner Manager for the rendering network is bypassed.

• The Backburner Server on the designated Render Node is disabled.

To test a Spark using Burn:
The general workflow for testing a Spark using Burn is as follows.

Testing Your Spark Using Burn5

60

1. Configure the software configuration file (init.cfg) of the Autodesk application to specify
which Burn Render Node to use for testing Sparks. See “Configuring an Autodesk
Application for Testing Sparks via Burn” on page 60.

2. Disable the Backburner Server on the Render Node designated for testing Sparks. See
“Disabling the Backburner Server and Manager” on page 61

3. Start Burn on the designated Render Node. See“Starting Burn on the Render Node” on page
61.

4. Start your application with a special environment variable used to run Burn in stand-alone
mode and then submit Burn jobs to test your Spark. See “Testing Sparks and Previewing
Results” on page 63.

Configuring an Autodesk Application for Testing Sparks via Burn
You must set several keywords in the software initialization configuration file (init.cfg) to
identify the Burn Render Node designated for Sparks testing.

To configure an Autodesk application for testing Sparks via Burn:

1. Log into the account for your Autodesk application.

2. Open the init.cfg file for the application. In a UNIX shell (IRIX) or terminal (Linux), type:

dlcfg

The init.cfg file appears in a text editor.

3. Scroll through the file and locate the following keywords:

• BackburnerManagerHostname

• BackburnerManagerPort

• BackburnerManagerPriority

• BackburnerManagerGroup

4. Modify these keywords to identify the Burn Render Node designated for Sparks testing:

• Set the BackburnerManagerHostname keyword to the name of the Render Node used
to test Sparks.

• Set the BackburnerManagerPort keyword to 9000.

• Comment out the BackburnerManagerPriority and
BackburnerManagerGroup keywords by entering a # at the beginning of their lines.

Setting the keywords in this way configures the application to send Burn jobs directly to a
Render Node, rather than to the Backburner Manager for the rendering network. For

Testing Sparks Using Burn in Stand-alone Mode

 61

example, if the name of the Burn Render Node used to test Sparks is RNode1, the keywords
should be:

BackburnerManagerHostname RNode1

BackburnerManagerPort 9000

#BackburnerManagerPriority 50

#BackburnerManagerGroup <groupname>

5. Save and close the init.cfg file.

NOTE: You can create a dedicated init.cfg file for testing Sparks and start your application with

this file. See the Configuration File Reference Guide for your operating system.

6. Continue with the procedure “Disabling the Backburner Server and Manager” on page 61.

Disabling the Backburner Server and Manager
To run Burn in stand-alone mode, you must disable the Backburner Server and Manager and
start Burn manually on the Render Node designated for Sparks testing as explained in the
following procedure. This computer must be the same Render Node as specified in the software
configuration file (init.cfg) of your Autodesk application.

To disable Backburner Server and Manager:

1. Log in as root on the Linux server and open a terminal, if necessary.

2. Type:

/etc/init.d/backburner stop

The following messages appear:

Stopping Backburner Server ... OK

Stopping Backburner Applications ... OK

3. Continue with the procedure “Starting Burn on the Render Node” on page 61.

Starting Burn on the Render Node
You must start Burn manually on the Render Node designated for Sparks testing. This
computer must be the same Render Node as specified in the software configuration file (init.cfg)
of your Autodesk application. When starting Burn manually, you must specify the test project
as well. You can also run the debugger simultaneously when rendering the test project.

Testing Your Spark Using Burn5

62

To start Burn on the Render Node:

1. Log in as root and open a terminal.

2. Type:

cd /usr/discreet/<product_home>

where <product_home> is the directory where Burn is installed.

3. Type:

./bin/start_burn <project_name> <framestore>/<host_name>

where:

• <project_name> is the name of the project from which you send Burn jobs.

• <framestore> is stonefs or stonefs1 .

• <host_name> is the name of the Linux or IRIX workstation on which you are running
the Autodesk application.

4. Press ENTER.

Burn is initialized and start-up messages appear in the terminal.

When the message “Startup Complete” appears, you are ready to submit jobs to Burn.

5. Submit a Batch setup, library clip, or EditDesk clip to the Render Node to test your Spark.
See “Testing Sparks and Previewing Results” on page 63.

To start Burn with the debugger:

1. Log in as root and open a terminal.

2. Type:

cd /usr/discreet/<product_home>/bin

where <product_home> is the directory where Burn is installed.

3. Set the debug environment variable for Burn by typing one of the following commands.

4. Set the home environment variable for Burn by typing one of the following commands.

Shell Environment Variable Command

bash export BURN_DEBUG1

csh, tcsh setenv BURN_DEBUG1

Shell Environment Variable Command

bash export BURN_HOME=/usr/discreet/<product_home>

csh, tcsh setenv BURN_HOME /usr/discreet/<product_home>

Testing Sparks Using Burn in Stand-alone Mode

 63

where <product_home> is the directory where your application is installed (such as
flame_2008).

5. Type:

./start_burn <project_name> <framestore>/<host_name>

where:

• <project_name> is the name of the project from which you send Burn jobs.

• <framestore> is stonefs or stonefs1.

• <host_name> is the name of the Linux or IRIX workstation on which you are running
the Autodesk application.

6. Submit a Batch setup, library clip, or EditDesk clip to the Render Node to test your Spark.
See “Testing Sparks and Previewing Results” on page 63.

Testing Sparks and Previewing Results
To test your Spark, you must start your Autodesk application with a special environment
variable and then submit the Burn rendering jobs to the designated Render Node. You can
preview the rendering results in the _Burn_ library for Inferno, Flame, or Flint, on the Fire or
Smoke EditDesk, or in the clip library of Fire or Smoke.

To test a Spark with Burn:

1. Log into the account for your Autodesk application and then open a shell or terminal.

2. Set the environment variable that configures the application to run Burn in stand-alone
mode. In the shell or terminal, type:

setenv DL_BURN_STANDALONE_MODE 1

3. With the shell or terminal still open, start the application by typing its name, for example,
smoke. Do not use the application’s desktop shortcut, if one exists.

The application starts and Burn is run in stand-alone mode. You are ready to create and send
Burn jobs from your application to test your Spark.

NOTE: If you are running the Autodesk application on the O2 platform, start the application

using the -Z option to disable volume integrity check.

4. Load a Batch setup, an EditDesk clip, or a timeline clip in a clip library and click Burn.

5. When prompted, click Confirm to render the setup or clip remotely on the Render Node.

The job is submitted to the Burn rendering engine on the designated Render Node.

Testing Your Spark Using Burn5

64

6. Preview the result in the _Burn_ library for Inferno, Flame, or Flint, the Fire or Smoke
EditDesk, or in the clip library of Fire or Smoke.

7. When you have finished testing your Spark, type the following command in the shell or
terminal to shut down Burn on the designated Render Node:

./burnShutDown <-dM>

where:

-d is the name of the Render Node; if this variable is not specified, localhost is used by
default.

-M is the port number used by the Burn rendering engine; if this variable is not specified,
9000 is used by default.

Using a Script for Your Test Setup
If you want to run the same Burn job for several iterations of testing your Spark code, you can
use the script submit_burn. Use this script exclusively for testing changes during development.
You can only use this script after first submitting a Burn job through Batch. This script cannot
be used with Autodesk Editing applications to test a Spark on Burn.

To use the submit_burn script:

1. Use Burn to process a Batch setup from Inferno, Flame, or Flint.

You must first submit a Batch setup to be processed by Burn before you can use the
submit_burn script.

2. Log in as root on the Linux workstation.

3. Type:

cd /usr/discreet/<product_home>/bin

where <product_home> is the directory where Inferno, Flame, or Flint is installed.

4. Type:

./submit_burn <render_node_name> <job_name> <first_frame>

<last_frame>

where:

• <render_node_name> is the name of the Render Node designated for Sparks testing.

• <job_name> is the full name of the Burn job, for example,
Burn_clienthost_060620_15.45.33. This name will appear in the _Burn_ library when you

Building Spark DSO Libraries

 65

submit the first rendition of the Burn job. From then on, use the same name to run the
script.

• <first_frame> and <last_frame> specify the first and last frames to be rendered.

NOTE: Only use this script when you are working in Burn stand-alone mode.

Building Spark DSO Libraries
When you compile a Sparks DSO library, it is important to maintain Sparks integration
flexibility with Autodesk applications. Avoid using explicit dependencies to GL and GLU in the
link command during the compilation of the Sparks DSO. For example, do not use the ld
command with the -lGL or -lGLU options.

Using Sparks and Reactivating the Distributed Queueing System
When you have fully tested your Spark code, do the following to use your Spark on the
Distributed Queueing System:

• Stop the Autodesk application from running in stand-alone mode by typing:

unsetenv DL_BURN_STANDALONE_MODE

• Install the Spark on each Render Node.

• Reset the BackburnerManagerHostname, BackburnerManagerPort,
BackburnerManagerPriority, and BackburnerManagerGroup keywords in the
software initialization configuration file (init.cfg) for the Autodesk application. See
“Configuring an Autodesk Application for Testing Sparks via Burn” on page 60.

• Restart Backburner Manager, if necessary.

• Start Backburner Server on each Render Node on the Distributed Queueing System. See
“Starting Burn on the Render Node” on page 61.

Testing Your Spark Using Burn5

66

index

67

Index

A
analyse functions 53
audio

global parameter access functions 50
audio functions 54

playback 48

B
Backburner Server

stopping 61
batch processing

in Autodesk Editing and Effects products 15
boolean 19
Burn

stand-alone mode 59

C
calling sequence

sparks interface functions 12
Channel Editor

adding controls 24
described 23
using folders 24

Channel Editor functions 36
color 19
component level

sparks plug-ins at 21
control page canvas 19
controls

setup page 20

D
desktop level

sparks plug-ins at 21
Distributed Queueing System

using Sparks 65

E
enum spark_buffer_fmt { } SparkBufferFmt 51
environment functions 39

F
file i/o support functions 44
float 19

G
global audio parameter access functions 50

H
hot keys 20

I
image access functions 40
image buffer manipulation functions 43
image colour space conversion functions 40
image-processing functions 42
int 19

M
memory

new buffer interface 14
new model 12
old interface 13
old model 13

memory buffers

68

Index

management 13, 51
working with 16

memory functions 34

P
playback audio functions 48
popup 19
previewing

Sparks test results 63
process management functions 45
processing functions 53
push 19

S
sample user interface controls 22
scan mode identification function 44
setup page controls 20
spark_buffer_fmt { } 51
spark_clip_info_struct { } 52
spark_track_info_struct { } 52
SparkAnalyse() 9, 53
SparkAnalyseEnd() 10, 53
SparkAnalyseStart() 9, 53
sparkAPIVersionInfo() 39
sparkAudioBlockSize() 50
sparkAudioFreeSpace() 50
sparkAudioMaxOutputTracks() 50
sparkAudioOutputEnable() 55
sparkBlur() 43
sparkCallingEnv() 40
sparkCeAddControl() 37
sparkCeAddFolder() 37
SparkChannelEditor() 11
sparkChClear() 38
sparkChCopy() 38
sparkChPreComputedValues () 38
sparkChPreComputeValues () 38
sparkChReadRawKeys() 39
sparkChRemoveKey() 38
sparkClipControlTitle() 29
SparkClipFilter() 54
SparkClipInfoStruct 52
sparkComposite() 43
sparkControlTitle() 32
sparkControlUpdate() 28
sparkCopyBuffer() 43
sparkCopyChannel() 43

sparkCursorBusy() 28
sparkDisableParameter() 31
sparkEnableParameter() 31
sparkEnablePlayAudio() 48
sparkError() 30
SparkEvent() 9
sparkFileBrowserDisplayLoad() 32
sparkFileBrowserDisplayLoadSequence() 33
sparkFileBrowserDisplaySave() 33
sparkFileCheckOverwrite() 33
sparkFileHasExtension() 33
SparkFrameChange() 9
sparkFrameRate() 32, 51
sparkFromHLS() 42
sparkFromYUV() 41
sparkGetAudioTrackInfo() 55
sparkGetClipInfo() 55
sparkGetCurveValue() 37
sparkGetCurveValuef() 36
sparkGetFrame() 40
sparkGetInfo() 39
sparkGetScanFormat() 45
sparkGetViewerRatio() 32
sparkGraphSetup() 39
sparkHLStoRGB() 42
SparkIdle() 9
SparkInfoStruct 5
SparkInitialize() 6
SparkInteract 10
sparkIsAutoKeyOn () 37
SparkIsInputFormatSupported 11
sparkLoadSetup() 44
sparkMemGetBuffer() 35
sparkMemGetFreeMemory() 36
SparkMemoryTempBuffers() 8
sparkMemRegisterBuffer() 34
sparkMemRegisterBufferFmt() 35
sparkMemRegisterBufferSize() 35
sparkMessage() 28
sparkMessageConfirm() 29
sparkMpAllocateTaskHandle() 45
sparkMpCreateTask() 45
sparkMpFork() 30
sparkMpForkPixels() 31
sparkMpFreeTaskHandle() 45
sparkMpGetCpu() 46
sparkMpInfo() 31

Index

69

sparkMpIsMainTask() 31
sparkMpWaitTask() 45
sparkNegative() 40
sparkNewAudio() 56
SparkOverlay() 10
sparkPlayLoopAudio() 49
sparkPlayMenuCheck() 50
sparkPointerInfo() 32
sparkPointerRead() 29
sparkPointerWaitOff() 29
sparkPointerWaitOn() 30
sparkPostPlayAudio() 49
sparkPrePlayAudio() 48
SparkProcess 7
SparkProcessEnd() 53
SparkProcessEnd() 8
SparkProcessStart() 8
sparkProgramGetName() 39
sparkQueryKeyMap() 30
sparkReadAudio() 55
sparkReprocess() 29
sparkResizeBuffer() 44
sparkResultClipName() 32
sparkRGBtoHLS() 42
sparkRGBtoYUV() 42
Sparks

compiling DSO library 65
previewing test results 63
starting Burn for Sparks testing 61
testing 59, 64
using over Distributed Queueing System 65

sparks audio API
defined 47

sparks interface functions 6
calling sequence 12

sparks memory buffers
state transition of 15

sparks Player 21
sparks plug-in

defined 27
sparks setup management 25
sparks user interface 19
sparkSampleFormat() 50
sparkSampleWidth() 50
sparkSamplingRate() 51
sparkSaveSetup() 44
SparksClips() 7

sparkSetControlName() 37
sparkSetCurveKeyf() 36, 54
sparkSetPermissions() 44
sparkSetupControlUpdate() 32
SparkSetupIOEvent() 9
sparksSetCurveKey() 36
sparkSystemNoSh() 34
sparkSystemSh() 34
sparkToHLS() 41
sparkToYUV() 41
SparkTrackInfoStruct 52
sparkTruncateAudio() 57
SparkUnInitialise() 7
sparkViewingCursor() 28
sparkViewingDraw() 29
sparkWaitpid() 34
sparkWorkingDir() 39
sparkWriteAudio() 56
sparkYUVtoRGB() 42
stand-alone mode 59
stopping

Backburner Server 61
string 19
struct spark_clip_info_struct { } SparkClipInfo-

Struct 52
struct spark_track_info_struct { } SparkTrackInfo-

Struct 52
system requirements 2

U
user interface controls

sample 22
user interface functions 28

V
void sparkMonochrome() 40
void sparkProcessTruncate 31

70

Index

	Autodesk Sparks API Reference Guide
	Contents
	Introduction
	Summary
	About Sparks
	Compatibility
	IRIX-Linux Sparks Compatibility

	System Requirements
	Using This Guide
	Related Documentation
	Documentation Conventions

	Getting Help

	Sparks API
	Summary
	About the Sparks API
	Mandatory-SparkInfoStruct

	Sparks Interface Functions
	Mandatory-SparkInitialise ()
	Mandatory-SparkClips()
	Mandatory-SparkProcess()
	Mandatory-SparkUnInitialise()
	SparkProcessEnd()
	SparkProcessStart()
	Recommended-SparkMemoryTempBuffers()
	SparkEvent()
	SparkSetupIOEvent()
	SparkIdle()
	SparkFrameChange()
	SparkAnalyse()
	SparkAnalyseStart()
	SparkAnalyseEnd()
	SparkInteract()
	SparkOverlay()
	SparkChannelEditor()
	SparkIsInputFormatSupported()

	Calling Sequence for Sparks Interface Functions
	New Memory Model
	Old Memory Model (Inferno/Fire/Smoke 2.5, Flame/Flint 5.5)

	Memory Buffer Management
	Old Memory Interface
	New Memory Buffer Interface
	State Transition of Sparks Memory Buffers
	Batch Processing in Autodesk Editing and Effects Products
	Working with Memory Buffers

	Sparks User Interface
	Control Page Canvas
	Setup Page Controls
	Sparks Hot Keys
	Sparks Player

	Desktop and Component Levels
	The Desktop Level
	The Component Level
	Sample User Interface Control
	The Channel Editor
	Adding Controls to the Channel Editor
	Customizing the Channel Editor Layout
	Using Channel Editor Folders
	Sparks Setup Management

	Sparks Utility Library
	Summary
	About Sparks Plug-ins
	User Interface Functions
	sparkMessage()
	sparkCursorBusy()
	sparkViewingCursor()
	sparkControlUpdate()
	sparkReprocess()
	sparkViewingDraw()
	sparkMessageConfirm()
	sparkClipControlTitle()
	sparkPointerRead()
	sparkPointerWaitOff()
	sparkPointerWaitOn()
	sparkQueryKeyMap()
	sparkError()
	sparkMpFork()
	sparkMpInfo()
	sparkMpForkPixels()
	sparkMpIsMainTask()
	sparkProcessTruncate()
	sparkDisableParameter()
	sparkEnableParameter()
	sparkControlTitle()
	sparkResultClipName()
	sparkPointerInfo()
	sparkGetViewerRatio()
	sparkFrameRate()
	sparkSetupControlUpdate ()
	sparkFileBrowserDisplayLoad()
	sparkFileBrowserDisplayLoadSequence()
	sparkFileBrowserDisplaySave()
	sparkFileCheckOverwrite()
	sparkFileHasExtension()

	System Functions
	sparkSystemSh()
	sparkSystemNoSh()
	sparkWaitpid()

	Memory Functions
	sparkMemRegisterBuffer()
	sparkMemRegisterBufferSize()
	sparkMemRegisterBufferFmt()
	sparkMemGetBuffer()
	sparkMemGetFreeMemory()

	Channel Editor Functions
	sparkSetCurveKey()
	sparkSetCurveKeyf()
	sparkGetCurveValuef()
	sparkGetCurveValue()
	sparkIsAutoKeyOn ()
	sparkCeAddFolder()
	sparkCeAddControl()
	sparkSetControlName()
	sparkChRemoveKey()
	sparkChClear()
	sparkChCopy()
	sparkChPreComputeValues ()
	sparkChPreComputedValues()
	sparkChReadRawKeys()

	Environment Functions
	sparkGraphSetup()
	sparkAPIVersionInfo()
	sparkProgramGetName()
	sparkGetInfo()
	sparkWorkingDir()
	sparkCallingEnv()

	Image Access Functions
	sparkGetFrame()

	Image Colour Space Conversion Functions
	sparkMonochrome()
	sparkNegative()
	sparkToYUV()
	sparkToHLS()
	sparkFromYUV()
	sparkFromHLS()
	sparkRGBtoYUV()
	sparkRGBtoHLS()
	sparkYUVtoRGB()
	sparkHLStoRGB()

	Image-Processing Functions
	sparkBlur()
	sparkComposite()

	Image Buffer Manipulation Functions
	sparkCopyBuffer()
	sparkCopyChannel()
	sparkResizeBuffer()

	File I/O Support Functions
	sparkSetPermissions()
	sparkSaveSetup()
	sparkLoadSetup()

	Scan Mode Identification Function
	sparkGetScanFormat()

	Process Management Functions
	sparkMpAllocateTaskHandle()
	int sparkMpCreateTask()
	sparkMpWaitTask()
	sparkMpFreeTaskHandle()
	sparkMpGetCpu()

	Sparks Audio API
	Summary
	About Sparks Audio API
	Playback Audio Functions
	sparkEnablePlayAudio()
	sparkPrePlayAudio()
	sparkPlayLoopAudio()
	sparkPostPlayAudio()
	sparkPlayMenuCheck()

	Global Audio Parameter Access Functions
	sparkSampleFormat()
	sparkSampleWidth()
	sparkAudioBlockSize()
	sparkAudioFreeSpace()
	sparkAudioMaxOutputTracks()
	sparkFrameRate()
	sparkSamplingRate()

	Memory Buffer Management
	typedef enum spark_buffer_fmt { } SparkBufferFmt;

	SparkClipInfoStruct and SparkTrackInfoStruct
	typedef struct spark_clip_info_struct { } SparkClipInfoStruct;
	typedef struct spark_track_info_struct { } SparkTrackInfoStruct;

	Processing and Analyse Functions
	SparkProcessEnd()
	SparkAnalyse()
	SparkAnalyseStart()
	SparkAnalyseEnd()
	sparkSetCurveKeyf()

	Other Audio Functions
	SparkClipFilter()
	sparkGetClipInfo()
	sparkGetAudioTrackInfo()
	sparkAudioOutputEnable()
	sparkReadAudio()
	sparkNewAudio()
	sparkWriteAudio()
	sparkTruncateAudio()

	Testing Your Spark Using Burn
	Summary
	Overview
	Testing Sparks Using Burn in Stand-alone Mode
	Configuring an Autodesk Application for Testing Sparks via Burn
	Disabling the Backburner Server and Manager
	Starting Burn on the Render Node
	Testing Sparks and Previewing Results

	Using a Script for Your Test Setup
	Building Spark DSO Libraries
	Using Sparks and Reactivating the Distributed Queueing System

	Index

