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Introduction

Introduction

This manual was written to assure the customer that the Autodesk Simulation Mechanical /Multiphysics 2013 performs
consistently and accurately within its defined scope. It contains a large number of Accuracy Verification Examples
(AVES), which compare analysis results with theory for cases taken from well-known engineering reference books. The
software should produce results that are consistent with the material presented in this manual.

How to Access the Models

Model files including results for each example can be accessed by downloading and unzipping the file named
AutodeskSimulation_ave_archives.zip. Use the "Application button: Archive: Retrieve” command to locate and open
the desired model archive, then restore the model to the desired location on your local or network drive.

How to Use This Manual

This manual is divided into a table of contents, this introduction and three chapters. Chapter 1 acquaints you with the
definitions and finite element concepts used throughout the software. Chapter 2 presents a verified analysis of a simple
bar to illustrate a variety of concepts and to give you a "feel” for finite element modeling considerations. Chapter 3
presents the AVEs. It contains abstracts of all AVEs, two tables that index the AVEs by analysis type used and
elements used, respectively, and the descriptions of the AVEs. The descriptions provide a full discussion of each
problem, including all information you would need to recreate the problem on your own. You can use the supplied
model files to rerun the analyses, if desired. The results you obtain may differ by an insignificant amount because of
potential changes in output format or processing options as well as the number of significant digits for math
calculations on your particular computer.

Differences in Processor Output Files

If you experience deviations from the results in this manual, here are a few things to consider before assuming that
there is a problem.

The results for the verification examples in this manual were obtained using processors that were near current at the
original time of publication. The version number of the processor used on a given input file can be found on the header
line in the processor output file. If you find that your processors are out-of-date, contact your account representative in
order to upgrade to the current versions.

You may also experience deviations if you are using the same versions of the processors listed, but on a different
hardware platform. All results posted in this manual were obtained running on a PC workstation. If you are running on
a different hardware platform, or analyzing a very large model using a different amount of memory, you might notice a
slight difference in the results due to round-off errors. These differences, however, should be very small (typically far
less than 0.1%) for significant results.
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It should be emphasized, differences may occur that are not at all significant. For example, the weight and center of
gravity processor typically produces very accurate results because it doesn't lump element masses at the nodes but
instead integrates over the volume of the elements. However, for a model centered at the origin it usually doesn't report
exactly zero coordinates for the center of gravity; it may likely give values something like 2.E-6 for a model with
dimensions the order of 1, due to round-off error in the calculations or in the nodal coordinates. That is a very accurate
answer for the position of the center of gravity, even though the percentage error from zero is infinite. But when the
compiler used to build the program changes, those tiny values may change noticeably (maybe even the sign of some
value will change), but the results will still be very accurate answers.

Similarly, in a model with maximum stress components on the order of 10,000 psi, a difference of 0.02 psi in a
perpendicular stress component is probably a symptom of round-off error. Identical situations should produce identical
calculations, but changing the compiler or the math library or the order in which the calculations are done will often
give answers that are slightly, but insignificantly, different.

The "% Difference" in these examples is defined as follows:

] Model value - theoretical value
% Difference = [ X 100]

theoretical value
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Elementary Finite Element Concepts

Chapter 1: Elementary Finite Element Concepts

A physical mechanical system is modeled by using elements, such as plate elements (Figure 1-1). Material properties,
such as Young's Modulus, Poisson's Ratio, thermal expansion coefficients and density, are then assigned to the
elements. Let's see how you would model and analyze a simple bar.

L
|
K
J
Figure 1-1: A Sample Plate Element
T
2in.

f
25 in.

8 in—|
Figure 1-2: A Simple Bar

Models are constructed of elements by locating points in space (nodes) using coordinates in the global coordinate
system.

Figure 1-3: An FEA Model Showing Node Numbering

This plate (thin shell) model has 10 nodes and 4 elements. The elements are defined by the way in which the nodes are
connected. For example, element number 4 is defined by nodal order 7, 9, 10 and 8. Note that this element is not
referred to as being defined by nodes 7, 8, 9, and 10. When you are referring to an element by the nodes which define
it, it is often important to know the order in which the nodes define the element. Therefore, if you have to refer to an
element by the nodes that define it, it is a good practice to refer to nodes by the order in which they define the element.
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Each node has six potential degrees of freedom (DOF). This means that a given node may displace in three translational
degrees of freedom, referred to as Tx (Translation in the X direction), Ty (Translation in the Y direction) and Tz
(Translation in the Z direction).

A
TRANSLATION

Figure 1-4: Translational Degrees of Freedom

Each node may also displace in three rotational degrees of freedom, referred to as Rx (Rotation in the X direction), Ry
(Rotation in the Y direction) and Rz (Rotation in the Z direction). Translation refers to the movement of a node along
the X, Y, or Z axes (or any combination of the three), while rotation refers to the movement of a node about the X, Y or
Z axes (or any combination). Some element types do not use all of these degrees of freedom, for example, 2-D
elements use only Ty and Tz.

ROTATION

Figure 1-5: Rotational Degrees of Freedom

Boundary conditions are set by restricting various degrees of freedom. For example, if the bar is built into a wall, all
degrees of freedom at the connection to the wall are fixed (restricted). These would be nodes 1 and 2 in Figure 1-6,

below.

Figure 1-6: Nodal Boundary Conditions for a Bar Fixed to a Wall
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Table 1-1 shows the restrictions imposed on translations and rotation of the nodes in the design in Figure 1-6. Degrees
of freedom are defined using a binary format, where 0 means that the node is free to move and 1 means that the node is
fixed in the degree of freedom. Boundary conditions are added to nodes 1 and 2 to indicate that these nodes are fully
fixed.

Table 1-1: Restrictions on Translations and Rotation of the Nodes in Figure 1-6

Node Number TX Ty Tz Rx Ry Rz
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0

Note: Conventions: 0 = Free, 1 = Fixed

In stress analysis, loads can be applied directly at nodes or indirectly via elements.

Figure 1-7: An FEA Model Showing Nodal Loads
In this case, a force of 16 Ibs is applied to the end of the cantilevered bar. Additionally, you could specify pressure or
thermal loads on the elements of the bar. For some elements, thermal loads may be applied by specifying nodal
temperatures. For others, element temperatures may be specified.

Nodal loads are referenced in terms of the global coordinate system, just like node locations.

Element loads are applied in the local coordinate systems. Each type of element has a different local coordinate system.
Figure 1-8 illustrates the local coordinate system used in plate/shell elements.

Figure 1-8: Local Coordinate System (Plate/Shell)
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Figure 1-9 is an illustration of the local coordinate system for beam elements.

Figure 1-9: Local Coordinate System (Beam)

Stresses are frequently referred to using the local coordinate system rather than the global coordinate system. However,
principal stresses are independent of the coordinate system, which makes results based on principal stresses, such as
von Mises stresses and stress intensities, easier to relate to engineering requirements.

A0

Additional mass
at nodes 9 & 10

Figure 1-10: Additional Mass in Dynamic Analysis

In dynamic analysis, additional mass can be added to the system by adding nodal masses, which are analogous to nodal
loads.

Mass is entered in terms of the global coordinates, like nodal forces. Stresses produced by dynamic response are
usually referred to using the local coordinate system.

Once the model and forces/masses have been entered into the system, the following situation exists:

e A force vector {F} or mass matrix [M] has been defined.
e Astiffness matrix [K] has been defined.

The linear stress system will solve one of the following equations.
Static Stress Analysis

{F} = [K] {D}
where:

o {D} = the displacement vector. Stresses are back-calculated from this vector.
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Modal Analysis
[K] x [D] = [M] x [D] x [W]®
where:

e [D] = displacement matrix (mode shapes)
e [W]? = diagonal matrix containing eigenvalues (natural frequencies)

Dynamic Response
(M] {U} + [C] (U} + [K] {U} = [R] (t)
where:

[M] = mass matrix
[C] =damping matrix
e [K] = stiffness matrix
U = acceleration
e U =velocity
e {U} =displacement
e R(t) =any time-dependent loading function (It may be equal to MU, for cases of ground motion, such as
earthquakes.)

You can obtain either stresses and displacement histories with respect to time or maximum displacements and
corresponding stresses.

Bandwidth
One of the variables affecting computer processing speed is the "bandwidth," which is defined by the following.
For any element, the bandwidth is defined as:

(Highest Node Number - Lowest Node Number + 1) * (# DOF per node)

K] 4 L] & 0

LCWEST 1 2 3 4

1 3 5 7 1
Figure 1-11: Node Numbering (Low Bandwidth)

Figure 1-11 shows a one node numbering scheme that yields a low bandwidth. In Figure 1-11, the bandwidth for
element4 = (10 - 7 + 1) x 6 = 24. Note that in this case, the bandwidth is the same for all elements.
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10 q & ¥ L]

HIGHEST| 1 1 3 5

Figure 1-12: Node Numbering (High Bandwidth)
Figure 1-12 shows a node numbering scheme that would yield a very high bandwidth for this geometry.
The bandwidth for element number 1 = (10 - 1 + 1) x 6 = 60

The bandwidth is an important factor in determining the solution time and storage requirements for the stiffness matrix
for your entire model. The highest possible bandwidth for any element in your model is the bandwidth for the entire
model. This makes it very important that the smallest possible bandwidth is achieved.

In classical finite element modeling, and even today with some other finite element systems, you must spend a
considerable amount of time trying to minimize the bandwidth. This is done using techniques such as careful
numbering and adding of the nodes in your model to minimize the maximum difference between the node numbers in
any element. Some finite element systems even use separate programs to do this, but this alters the node numbers in
your model. A routine to minimize the bandwidth is built into the processors. The execution of this routine is totally
transparent. For this reason, when using the software, you usually do not have to worry about the bandwidth of your
model.

Accuracy Verification Examples Manual, Version 2014 19



Sample Analysis of Skewed Elements

Chapter 2: Sample Analysis of Skewed Elements

One of the questions that frequently arises in finite element modeling is, "How does the use of skewed elements affect
the accuracy of the analysis of my model?" As a general rule, significant skewness can be tolerated if the main interest
is displacements in a static analysis case or the determination of natural frequencies. Often, the main impact of irregular
elements relates to stress determination, though there can be an impact on the overall stiffness matrix in some
situations.

Even in this case, a relatively large amount of irregularity can be tolerated in many situations, and there are options that
can reduce the sensitivity of the analysis to badly shaped elements. It is impossible, however, to present any standard
guidelines or "rules of thumb" to determine in advance just how much irregularity in the shapes of the elements is
acceptable.

To help determine the accuracy of analysis results, Precision dithered displays are available. The Precision display
highlights areas of a model where a finer mesh will provide more accurate results.

The sample problem presented in this chapter illustrates the effect of skewed elements on stress results. The sample
problem consists of a plate that is 10" long, 4" wide and 0.5" thick, completely fixed at one end. The plate is loaded
across the free end with the equivalent of 500 Ib of force perpendicular to the plate and 5,000 Ib of force applied at the
free end, stretching the plate away from the fixed end, as Figure 2-1 illustrates.

1000 Ib. on
5 nodes

100 Ib. on S nodes
Figure 2-1: Cantilever Plate with Force Applied at the Free End
Two models were developed and processed. In each model the plate is divided into 40 elements. In Case 1, "skewuss",

the elements are exactly square, having 1" on each side, as Figure 2-2 shows. Figure 2-3 shows the deflected plate, with
the deflections being scaled up by a factor of 10.
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Figure 2-2: Square Elements in Example "'skewuss™
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Figure 2-3: Deflected "'skewuss' Model Superimposed on the Original Model

In the second case "skewss", the same plate is modeled with 40 elements. However, as Figure 2-4 shows, the elements
are very badly skewed. During analysis two warning messages are given, showing that the extreme skewedness has
affected the stiffness matrix. In this case, results are not significantly affected, but a very simple method (besides
remeshing or dividing the two most badly skewed quadrilaterals into pairs of triangles) can be used to improve the
matrix. Simply use the reduced shear plate element formulation which is less sensitive to badly shaped elements than
the default VVeubecke formulation. Figure 2-5 shows the deflected plate with the deflections being scaled up by a factor

of 10.

Figure 2-5: Deflected, Skewed Model Superimposed on Original "'skewss"

At this point the reader is encouraged to further research the effect of irregular elements on a case-by-case basis as the
engineering situation warrants. As a further point of interest, let us compare the high stresses reported by the two

models with numbers calculated by hand, using simple beam theory:

2 2
z _bh” _4x05" 1667 in®
6
3 3
| - bh” _4x05" _ 5 141667 int
12 12
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Mx =100x5x10 =5000 inches Ib (moment)

Sm= M = 2500 psi (membrane stress)
4x0.5

Sh = Mx = 5000 = 30000 psi (bending stress)
Z 0.1667

Sx = Sm+ Sb = 30000 + 2500 = 32500 psi

where:

e b=4"
h=.5"

The maximum stress computed by simple beam theory is within 10.24% of the results reported by both finite element
analyses. The theoretical results are based on beam theory as compared with actual plate bending and stretching
behavior. The plate model can provide a beam solution by setting the Poisson ratio to zero. In such a case, the
difference between beam theory and the plate results is less than 1%. Regarding the deflection of the free end, the beam
theory calculation yields the following result:

3 3
py WL _ °00x10 = 0.1333 inches
3El  3x3.0x107 x0.041667
where:

e W =500 Ib (transverse end force)

e L=10"

e E=3.0x10" psi

e 1=0.041667 in*

This compares to a value of 0.1283" from Case 1, "skewuss", and a value of 0.1278" from Case 2, "skewss".

Note: The analysis is probably more accurate because it accounts for the curling of the bar.
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Chapter 3: Accuracy Verification Examples

This chapter presents abstracts of all examples, an index of AVEs by analysis type used, an index of AVEs by elements
used and the AVE descriptions.

Autodesk Simulation Automated Test

Autodesk Simulation Automated Test is a program that is installed on a system when the AVE files are installed. This
program will run all, or a selected set, of AVE models and compare the results to the accepted values. This can be
executed by navigating to the directory where the AVE files were installed and double clicking on the AlgorScript.exe
file.

The following information must be provided:

Path to the AVE folder: Press the "..." button to the right of this field and navigate to the AVES directory where the
AVE files were installed on the machine.

Path to the Autodesk Simulation installation: Press the "..." button to the right of this field and navigate to the
directory where Autodesk Simulation is installed on the machine.

Path to the testing folder: Press the "..." button to the right of this field and navigate to the directory to which the
AVE models will be unarchived and analyzed.

Start at AVE number: Specify the number corresponding to the first AVE that will be analyzed.

Stop at AVE number: Specify the number corresponding to the last AVE that will be analyzed.

AVE type filter: All of the AVE models between the "Start at AVE number™ and "'Stop at AVE number" will be
performed that fall into the analysis types selected in this section. Pressing the "*Sync with License™ button will select
the analysis types which are available with the current license setup.

Once the necessary information is specified, press the *'Start™ button. The selected AVE models will be unarchived

and analyzed automatically. Depending on how many models are being analyzed, this process could take a
considerable amount of time.
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Abstracts of All Accuracy Verification Examples

AVE - 1: Flat Circular Plate of Constant Thickness (2-D) — A flat, annular, circular plate of 0.5" constant thickness
with its outer edge simply supported and inner edge free is analyzed for stress and deflection under a 50 Ibf/in uniform
annular line load located at the inner edge. The model is constructed of 2-D axisymmetric elements.

AVE - 2: Flat Circular Plate of Constant Thickness (3-D) — A flat, annular, circular plate of constant thickness with
its outer edge simply supported, inner edge free and the load located at the inner edge is analyzed for stress and
deflection. The model is constructed of 3-D solid brick elements.

AVE - 3: Thin-Walled Cylinder with Uniform Axial Load — A thin-walled cylinder under uniform axial load is
analyzed for axial stress and deflection.

AVE - 4: Thick Cylindrical Disk under Uniform Radial Pressure — A thick-walled cylindrical disk that has uniform
internal radial pressure is analyzed for hoop stress and radial deflection. The model uses 3-D brick elements.

AVE - 5: Rectangular Plate with All Edges Simply Supported and Uniform Pressure — A rectangular plate with
all edges simply supported and uniform pressure over a central rectangular area is analyzed for maximum stress. The
model uses 3-D plate elements.

AVE - 6: Flat Rectangular Plate with Three Edges Simply Supported — A flat rectangular plate (10" x 5" x 0.25")
with 3 edges simply supported and one edge free under uniform pressure loading is analyzed for maximum stress. The
model uses 3-D plate elements.

AVE - 7: Cantilever Beam with Nodal Force — A uniform cross-section cantilever beam with fixed-free boundary
conditions at the ends is analyzed for deflection under a center point loading. The model uses beam elements.

AVE - 8: Toroidal Shell under Uniform Internal Pressure — A toroidal shell under uniform internal pressure is
analyzed for stress and deflection. The model represents one octant of an inner tube with symmetry boundary
conditions imposed at all the edges. The model uses 3-D brick elements.

AVE - 9: Beam Guided at the Left and Fixed at the Right — A uniform cross-section beam with fixed-guided
boundary conditions at the ends is analyzed for moment and deflection under a center point loading. The model uses
beam elements.

AVE - 10: Thick-Walled Spherical Vessel under Uniform Internal Pressure — A thick-walled spherical vessel
under uniform internal pressure is analyzed for radial stress and deflection. The model represents one octant of a
sphere with symmetry boundary conditions imposed at all edges. The model uses 3-D brick elements.

AVE - 11: Thick-Walled Cylindrical Vessel under Uniform Internal Radial Pressure — A thick-walled cylindrical
vessel under uniform internal pressure is analyzed for hoop stress and radial deflection. The model represents part of
one quarter of a thick cylinder with mirror symmetry boundary conditions imposed at the symmetry planes. The model
uses 3-D brick elements.

AVE - 12: Hollow Cylinder with Thick Walls and Temperature Gradient — A thick-walled cylindrical vessel
under uniform logarithmic temperature gradient throughout the thickness is analyzed for thermal stress. The model
uses 3-D brick elements.

AVE - 13: Flat Rectangular Plate with All Edges Fixed and Uniform Pressure Loading — A flat rectangular plate
with all edges fixed under a uniform pressure loading is analyzed for maximum stress and deflection. A quarter-
symmetry model is analyzed with symmetry boundary conditions applied at the symmetric edges. The model uses 3-D
plate elements.
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AVE - 14: Flat Rectangular Plate with Two Sides Fixed, Two Sides Simply Supported and Uniform Load — A
flat rectangular plate (20" x 10" x 0.1") with the two short sides fixed, the two long sides simply supported and a
uniform 10 psi load is analyzed for maximum stress and deflection. A quarter-symmetry model is analyzed with
symmetry boundary conditions applied at the symmetry edges. The model uses 3-D plate elements.

AVE - 15: Uniform Beam with Both Ends Fixed — A uniform beam with both ends fixed is analyzed for eigenvalues
and frequencies. The beam is 10" long. It is made of steel and has a 1" x 1" square cross-section. No load is applied to
the beam. The model uses beam elements.

AVE - 16: Thick-walled Cylindrical Vessel under Uniform External Pressure Modeled in 3-D — A thick-walled
cylindrical vessel under uniform external pressure is analyzed for radial stress and deflection. The model represents
one quarter of a thick cylinder with symmetry boundary conditions imposed at the symmetric edges. For this example,
we chose an outside radius of 10" and an inside radius of 5" with external pressure of 50 psi. Steel material properties
were used. The model used 3-D brick elements.

AVE - 17: Thick-walled Cylindrical Vessel under Uniform External Pressure Modeled in 2-D — A thick-walled
cylindrical vessel under uniform external radial pressure is analyzed for hoop stress and radial deflection. For this
example, we chose an outside radius of 10" and an inside radius of 5" with an external pressure of 50 psi. Steel
material properties were used. The model used 2-D axisymmetric elements.

AVE - 18: Thin-walled Conical Vessel under Uniform Internal Pressure with Tangential Edge Supports — A
thin-walled conical vessel under uniform internal pressure is analyzed for stress and deflection. The model represents
one quarter of a cone with symmetry boundary conditions imposed at the symmetric edges. The model uses 3-D brick
elements.

AVE - 19: Straight Bar with Lower End Fixed and Upper End Free — A straight bar is used to model a column
with constant cross section under a compressive loading. Because of the loading, a buckling analysis was performed to
determine when the bar will become elastically unstable. The model uses beam elements.

AVE - 20: Wide-flange Beam with Equal Flanges — The "Inquire:XY Moment of Inertia..." command of FEA
Editor is used to provide the area, moments of inertia, and radii of gyration for a model of a wide-flange beam with
equal flanges.

AVE - 21: Circular Disc Rotating about Its Own Axis with Uniform Angular Velocity Modeled in 2-D — A
homogeneous circular disc of conical cross section, which rotates about its own axis with a uniform angular velocity, is
analyzed for tensile radial stress and tangential inertia stress. The model uses 2-D axisymmetric elements.

AVE - 22: Circular Disc Rotating about Its Own Axis with Uniform Angular Velocity Modeled in 3-D — A
homogeneous circular disc of conical cross section, which rotates about its own axis with a uniform angular velocity, is
analyzed for tensile radial stress and tangential inertia stress. The model uses 3-D brick elements.

AVE - 23: Thin-walled Cylindrical Shell under an Axisymmetric Radial-End Load — A long, thin-walled
cylindrical shell under an axisymmetric radial-end load is analyzed for maximum stress and deflection. A quarter-
symmetry model is used with symmetry boundary conditions applied at the symmetry edges. The model uses 3-D plate
elements.

AVE - 24: Test of the Capabilities of the 'dt/dh' Option for the Plate Element — A flat plate of uniform thickness
with fixed edges and a uniform linear temperature gradient between the two faces of the plate is analyzed for maximum
stress. This accuracy verification example tests the capabilities of the "dt/dh™ option for the plate element. The "dt/dh"
option enables the user to model a linear temperature gradient in the local 3 direction, which is through the thickness of
the plate element.

AVE - 25: Rectangular Plate under Uniform Load Producing a Large Deflection — A rectangular plate, held, not
fixed, is under uniform load which produces a large deflection. Because of the large deformation (relative to the plate
thickness), a nonlinear analysis was performed using Mechanical Event Simulator with the pressure loading feature.
The model uses nonlinear shell elements.
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AVE - 26: Solid Circular Plate Section of Constant Thickness with Uniform Load — A solid circular plate section
of constant thickness with a uniformly distributed load over the entire surface and the edges simply supported is
analyzed for maximum stress. The model uses 3-D plate elements.

AVE - 27: Thin Closed Circular Ring with Circular Cross Section — A thin, closed, circular ring with circular cross
section under uniform compressive loading is analyzed for deflection and moments. The model uses beam elements.

AVE - 28: Thick-walled Cylindrical Vessel under Uniform Internal Radial Pressure — A thick-walled cylindrical
vessel under uniform internal radial pressure (longitudinal pressure zero or externally balanced) is analyzed for hoop
stress and radial deflection. The model uses 2-D axisymmetric elements.

AVE - 29: Ceramic Strip with Radiation and Convection — This example involves a thermal analysis of a ceramic
plate with combined convection and radiation environment applied at the top, the bottom surface fully insulated and the
sides being held at constant temperature using temperature boundary elements. The model uses 2-D thermal elements.

AVE - 30: Two Masses and Three Massless Springs with an Applied Forced Harmonic Vibration — A two
degrees-of-freedom (DOF) system consisting of two masses coupled with three massless springs is analyzed for steady
state displacements and natural frequencies due to forced harmonic response. The model uses beam elements.

AVE - 31: Steady-State Heat Loss of a Steam Pipe with Nonconcentric Insulation — A steam pipe that is
surrounded by nonconcentric insulation is analyzed to determine the steady-state heat loss. The model uses 2-D
thermal elements and temperature boundary elements.

AVE - 32: Elastic Instability of a Flat Plate under Pure Shear Load — A flat rectangular plate with all edges fixed
under a pure shear load is analyzed to determine the buckling load under which the plate will become unstable. The
model uses 3-D plate elements.

AVE - 33: Ceramic Embedded in a High Thermal Conductivity Material — A ceramic strip is embedded in a high-
thermal-conductivity material so that the sides are maintained at constant temperature. The bottom surface is insulated
and the top surface is exposed to a convection environment. Transient thermal analysis is performed to find the
temperature distribution as the ceramic cools. The model uses 2-D thermal elements and temperature boundary
elements.

AVE - 34: Motion of a Two-DOF System Subjected to Random Vibration — A two degrees of freedom (DOF)
mass and spring system is subjected to a random vibration environment (or "white noise™). First, the natural
frequencies are extracted from the modal analysis, and then a random vibration restart analysis is performed to
determine the displacements for the system subjected to an input power spectral density (PSD) applied in the vertical
(X) direction. The analysis uses beam elements.

AVE - 35: Interference Analysis of Two Concentric Thick-walled Rings — Two concentric thick-walled rings or
circular plates, with different material properties, are subjected to a temperature increase in order to perform an
interference analysis. Tangential stress is determined at the inner surfaces of the two rings. The model uses 2-D plane
stress elements.

AVE - 36: Circular Flat Plate with Edge Clamped and Concentrated Load Applied at Center — A circular flat
plate of constant thickness under point loading at the center with all edges fixed is analyzed for maximum deflection.
The model uses 3-D plate elements.

AVE - 37: Thick-walled Spherical Vessel under Uniform Internal Pressure — A thick-walled, spherical vessel
under uniform internal pressure is analyzed for radial stress and deflection. Due to symmetry, one octant of the sphere
is modeled with symmetry boundary conditions applied at the edges. Two models are analyzed, one using 3-D brick
elements and the other using tetrahedral elements.

AVE - 38: Forced Harmonic Response Analysis of a Spring-Mass-Damper System — A single degree of freedom

spring-mass-damper system is analyzed for steady-state displacements, phase angle and natural frequencies due to
forced harmonic vibration applied to the mass. The model uses beam elements.
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AVE - 39: Solid Sphere Analyzed to Find Weight, Center of Gravity and Mass Moment of Inertia — A 1.0 inch
radius solid sphere is analyzed for weight, center of gravity and mass moment of inertia. The model uses 2-D
axisymmetric elements.

AVE - 40: Natural Frequency Analysis of a Graphite/Epoxy Laminated Composite Square Plate — A simply
supported, square, graphite/epoxy laminated composite plate is analyzed for natural frequencies and mode shapes. The
laminate material is comprised of 9 different layers. The model uses thick plate composite elements.

AVE - 41: Mid-span Deflection of a Uniform Steel Beam Simply Supported at Both Ends — A steel beam with
uniform cross section, which is simply supported at both ends and under uniform distributed triangular loading, is
analyzed for deflection and moments. The model uses beam elements.

AVE - 42: Stress Relaxation of a Tightened Bolt Due to Thermal Creep — A bolt with a length of 10 inches and a
cross-sectional area of one square inch is tightened to an initial stress (o) of 1000 psi. The bolt is held at a fixed
displacement for a long period of time (t = 1000 hrs.) at a temperature at which thermal creep occurs. The stress in the
bolt is determined at various times during creep relaxation. Small-strain, small-deformation theory is used. The model
uses beam elements.

AVE - 43: Deflection Analysis of a Helical Spring Under Compressive Loading — A closely coiled solid helical
spring of circular cross-section is subjected to a compressive load and analyzed for deflection. The model consists of
only a single complete turn of the spring.

AVE - 44: Nonlinear Radiation Heat Transfer Analysis of a Cylindrical Disk with Internal Heat Generation — A
hollow cylindrical disk, with internal heat generation, is exposed to a radiation environment. A steady-state heat
transfer analysis is performed to determine the radiation surface temperature. Due to symmetry, only one quarter of the
cylinder is modeled. For comparison, the problem is analyzed using three different element types: 8-node hexahedral
brick, 4-node tetrahedral and 10-node tetrahedral.

AVE - 45: Shear Force and Bending Moment Analysis of a Beam under Distributed Loading — A beam with
square cross-section, under nodal force and distributed loading, is analyzed for shear force and bending moment.

AVE - 46: Thermal Stress Analysis of a Thick-walled Cylindrical Vessel Under Temperature Gradient — A
thick-walled cylindrical vessel under uniform logarithmic temperature gradient throughout the thickness is analyzed for
thermal stress. The model uses 2-D axisymmetric elements.

AVE - 47: Elastic Stability of a Flat Plate under a Pure Axial Load — A flat, rectangular plate with all edges simply
supported under compressive axial load is analyzed to determine the critical load under which the plate will become
elastically unstable (i.e., when buckling will occur). The model uses 3-D plate elements.

AVE - 48: Concrete Frame Structure Subjected to Distributed Loading — A concrete frame structure under
distributed loading is analyzed for bending moment and deflection. The model uses beam elements.

AVE - 49: Solid Aluminum Cylinder Exposed to a Convection Environment and Allowed to Cool — A long, solid
aluminum cylinder is exposed to a convection environment and allowed to cool. A transient thermal analysis is
performed to determine the temperature at a certain radius after 1 minute. The model uses 2-D axisymmetric thermal
elements.

AVE - 50: Linear Mode Shape with Load Stiffening Analysis on a Simply Supported Continuous Beam — A
Linear Mode Shapes and Natural Frequencies with Load Stiffening analysis is performed on a simply supported
continuous steel beam under compressive axial loading. The model uses beam elements.

AVE - 51: Thick-walled Spherical Shell Subjected to Uniform Internal Pressure of Gradually Increasing
Magnitude — A nonlinear stress analysis is performed for a thick-walled spherical shell subjected to uniform internal
pressure of gradually increasing magnitude. Two load cases are considered: 1) the shell just turns plastic and 2) the
shell turns completely plastic. One radian of half of the shell was modeled using 2-D axisymmetric elements.
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AVE - 52: Nonlinear Heat Flow Analysis of a Solid Cylinder — A Steady-State Heat Transfer analysis is performed
to determine the temperature distribution in a solid cylinder exposed to one convection temperature along the top
surface and another convection temperature along the bottom surface. The thermal conductivity of the cylinder varies
with the temperature. The model uses 2-D axisymmetric elements and temperature boundary elements.

AVE - 53: Response Spectrum Analysis of a Simple Beam — A Linear Response Spectrum (Modal Superposition)
analysis is performed to determine moment, force and stress results for a cantilever beam with mass at the end
subjected to a response spectrum load.

AVE - 54: Cantilever Beam with a Gap at the Tip — A cantilever beam is subjected to a concentrated load at the tip.
An elastic support is below the tip. There is a gap between the beam tip and the elastic support. A compression-only
gap element is used to find the deflection of the beam and the reaction of the elastic support.

AVE - 55: Transient Thermal Analysis of a Solid Wall with Internal Heat Generation — A transient thermal
analysis of a solid wall with internal heat generation is performed to determine the temperature at the center of the wall
as a function of time. The problem is analyzed with two models: one using 2-D thermal elements and the other using
3-D thermal brick elements.

AVE - 56: Steady-State Heat Transfer Analysis of a Fin Immersed in a Cooling Fluid — A fin with one end held at
a constant temperature and the other end insulated is immersed in a cooling fluid, which is modeled with convection. A
Steady-State Heat Transfer analysis is performed to determine the temperature along the fin. The model uses 2-D
thermal elements and temperature boundary elements.

AVE - 57: Nonlinear Radiation Heat Transfer Analysis of a Cylinder with Internal Heat Generation — A hollow
cylindrical disk, with internal heat generation, is exposed to a radiation environment. A Steady-State Heat Transfer
analysis is performed to determine the external surface temperature. The model uses 3-D thermal brick elements.

AVE - 58: Continuous Beam, Simply Supported at the Ends, Under a Uniformly Distributed Load — A three-
span continuous beam subjected to a uniformly distributed load is analyzed to determine the reactions at supports and
the maximum moment of the beam.

AVE - 59: Design Spectrum with a Specified Maximum Ground Acceleration — A beam structure with the bottom
fixed and a lump mass at the top is analyzed by the response spectrum analysis method to determine the maximum
relative displacement for a design spectrum with a specified maximum ground acceleration.

AVE - 60: Slab with Internal Charge Density Distribution — An Electrostatic Field Strength and Voltage analysis is
performed for a slab with an internal charge density distribution to determine the voltage distribution inside the slab.
The model uses 3-D electrical solid elements.

AVE - 61: Thermal Deflection Analysis of a Plate with One End Fixed and the Other End Guided — A plate with
one end guided and the other end fixed is subjected to one temperature on the bottom and a different temperature on the
top over half its length. A Linear Static Stress analysis is performed to determine the moments at both ends and the
deflection at the guided end. The model uses 3-D plate elements.

AVE - 62: Torsion of an Elastic Beam with a Channel Cross-Section — An elastic beam with a channel cross-
section is restrained against torsion on one end and free to twist on the other. Two opposing forces are applied to the
intersections of the web and the flanges at the free end, which produces a torsional moment. A linear static stress
analysis is performed to determine displacements. The model uses 3-D plate elements.

AVE - 63: Multidimensional Transient Heat Transfer Analysis — A heated stainless steel cylinder is quenched by
submersion in an oil bath. A Transient Heat Transfer analysis is performed to determine the temperatures at the center
of the cylinder, at the center of a circular face, and at the mid-height of the side at three minutes into the cooling
process. The model uses 2-D axisymmetric elements.

AVE - 64: Fundamental Frequency and Static Lateral Deflections of a Loaded Shaft — A simply supported shaft
loaded by masses is analyzed to determine the fundamental frequency and also the static lateral deflections of the shaft.
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AVE - 65: Annular Plate with a Uniformly Distributed Pressure — An annular plate under a uniformly distributed
pressure, with the outer edge simply supported and the inner edge guided, is analyzed to determine displacement and
stress. For comparison, the problem is modeled three different ways using 2-D, plate and brick elements.

AVE - 66: Nonlinear Static Analysis of a Simply Supported Plate — A square plate with simply supported edges is
subjected to a uniform pressure load. A nonlinear static stress analysis is performed to determine the maximum
deflection. The model uses nonlinear plate/shell elements. For comparison, the problem is modeled using two
different mesh densities and thicknesses.

AVE - 67: A Combined Beam/Plate Model — A flange beam with a plate attached to the top flange is simply
supported on both ends and has a uniform load applied along the span of the beam. The structure is modeled as a
combined beam/plate element model. The moment of inertia and section modulus are calculated for the combined
model. A Linear Static Stress analysis is performed to determine stress.

AVE - 68: Creep Analysis of a Thick-walled Cylinder — Determine the stationary state stress distribution in a thick-
walled cylinder made of a Norton Power Creep Law material when loaded by internal pressure. Due to the symmetry of
the loading and geometry, a 2-D axisymmetric analysis was run instead of modeling the entire 3-D cylinder. A small
displacement, constant pressure solution was obtained for a duration of 10,000 hours. It was observed that at a time of
approximately 2400 hours, the stresses in the cylinder had come to a state of equilibrium.

AVE - 69: Shear Flow in a Simply Supported Beam — A simply supported beam has a rectangular cross section of 1
inch high by 0.5 inches wide. The beam is 10 inches long. A load of 80 pounds is applied at the center of the beam.
This causes a constant shear on the end of the beam. A 2-D model was analyzed. The shear stress was calculated for
various vertical locations and compared to the results.

AVE - 70: Dynamic Analysis of a Beam Model — A propped beam has two concentrated loads. Determine the
ultimate values of the two concentrated loads (i.e., at collapse of the beam structure) if they are increased at such a rate
that they remain in the same proportion to each other. A nonlinear dynamic analysis was run to determine the collapse
of the structure. The analysis was able to predict the onset of gross deformation, which occurs following reaching
plasticity at the right location of the loading in the model. The model uses nonlinear beam elements.

AVE - 71: Thermal Stress Analysis of a Pinned Beam/Truss Structure — The software was used to model and
analyze the thermal stress interactions in a pinned beam/truss structure, which consists of a brass cylinder and a steel
rod pinned to a rigid linkage bar. The goal of the analysis was to thermally load the brass cylinder and find the resultant
deflections and stresses. During the linear static stress analysis, the temperature of the brass cylinder was raised, which
caused the material to expand axially. The steel rod remained at the same temperature and resisted expansion. The
analysis results indicated maximum stress in the brass cylinder. The model uses beam and truss elements.

AVE - 72: Dynamic Nonlinear Analysis of a Beam Model with a Gravity Load — Two slender rods are joined by a
shared pinned node. If the system is released from rest from a particular starting angle, determine the velocity of a
particular endpoint. The problem was modeled using 2-D elements and solved using the nonlinear stress analysis
software.

AVE - 73: Linear Stress Analysis of a Beam Model — A continuous beam is modeled using beam elements. Reaction
force results are compared with theoretical results.

AVE - 74: Two Cylindrical Shells with Internal Pressure Loading — Two cylindrical shells of different thicknesses
are subjected to an internal pressure loading. The goal is to find the radial deflection at the common circumference
between the two shells. The model uses 2-D axisymmetric linear elements.

AVE - 75: Spring and Collar Slide Down Vertical Rod — A collar slides without friction along a vertical rod. A
spring is attached to the collar. If the collar is released from rest, determine its velocity. Because the orientation of the
truss is changing with time, MES software was used to solve this problem. The model uses nonlinear 2-D and truss
elements.
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AVE - 76: Slender Pivoting Rod and Compressed Spring — A slender rod is pivoted about a point which is 1 ft from
the end. The other end is pressed against a spring until the spring is compressed 1 inch. The rod is then in a horizontal
position. If the rod is released from this position, determine its angular velocity and the reaction at the pivot as the rod
passes through a vertical position. An Mechanical Event Simulation was done using nonlinear 2-D and truss elements.

AVE - 77: Dynamic Analysis of an 8-kg Body Using Damping and a Dashpot — An 8-kg body attached to a spring
is moved to the right of the equilibrium position and released from rest. Determine its displacement at a specific time
given damping. An Mechanical Event Simulation was done using nonlinear 2-D and general contact elements.

AVE - 78: Transient Heat Transfer Analysis of a Semi-Infinite Pressure Loading — A semi-infinite, aluminum
cylinder is subjected to a convection on one end and around the perimeter. The goal of the analysis is to determine the
temperatures at the center of the cylinder and the surface at 1 minute after being exposed to the environment. A 3-D,
90° sector of the cylinder was modeled for an Transient Heat Transfer analysis using 3-D thermal brick elements.

AVE - 79: Mechanical Event Simulation of a Slider-Crank Mechanism — The common configuration of a
reciprocating engine is that of a slider-crank mechanism. An Mechanical Event Simulation is conducted to determine
the velocity of the piston. The model uses nonlinear beam and 3-D brick elements.

AVE - 80: Mechanical Event Simulation of a Lunar Lander — A lunar lander is descending onto the moon's surface
with a certain velocity when its retro-engine is fired. The engine produces a thrust that varies with the time and then
cuts off. Calculate the velocity of the lander at a certain time, assuming it has not yet landed. An model of a lunar
lander was built using truss and 3-D solid elements. A Mechanical Event Simulation was performed to calculate
velocity at the specified time.

AVE - 81: Mechanical Event Simulation of a Basketball Being Shot into a Hoop — An Mechanical Event
Simulation is performed to determine the projectile motion of a basketball. The basketball is shot from a certain
distance away and below the center of the basketball rim. The goal of the analysis is to find the vertical and horizontal
displacement of the ball after a certain time. The model uses nonlinear beam and shell and 3-D kinematic elements.

AVE - 82: Heat Flux Transient Heat Transfer Analysis — A block is exposed to an environment such that a known
heat flux is imposed on the surface. The specific heat changes as a function of temperature. Find the final bulk
temperature after a certain time, if the block starts at a certain temperature. 2-D orthotropic elements were used in order
to specify temperature-dependent material properties for the Transient Heat Transfer analysis.

AVE - 83: Mechanical Event Simulation of a Grinder Shaft under Torsion — A grinder has an abrasive wheel
mounted at each end of the shaft and a belt-driven sheave at the center. When turning, the wheel is accidentally
jammed, causing it to stop "instantly". Estimate the resulting maximum torsional stress and deflection of the shaft. A 3-
D model of the shaft and grinding wheel was created and a Mechanical Event Simulation analysis was performed.

AVE - 84: Mechanical Event Simulation of a Chain with Weights at the Hinges — Four weightless rods of equal
length are hinged together to form a hanging chain. Find the angles for this closed kinematic chain, given the length of
each rod and the loads. A 3-D brick element model was built to represent the four rods. A Mechanical Event Simulation
analysis was performed to determine the displacements at points of interest. The angles were then calculated from the
displacements.

AVE - 85: Transient Thermal Analysis of a Cooling Copper Wire — A copper wire is heated by a short circuit to
300 °F before a slow-blow fuse burns out and all heating ceases. Determine how long it will take for the wire
temperature to drop to 120 °F. A 2-D model of the wire cross-section was created. A transient heat transfer analysis
was performed to determine the number of hours required for the wire to cool to the target temperature.

AVE - 86: Heat Flux Loading on a Hollow Cylinder — A hollow cylinder has uniform temperature over the ends and
the outer surface. On the inner surface, a prescribed heat flux is applied to the central part of the surface, while the ends
of the inner surface are insulated. An axisymmetric section of the cylinder is modeled using 2-D elements. A Steady-
State Heat Transfer analysis is performed to determine the temperature at a point of interest.
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AVE - 87: Mechanical Event Simulation of a Cylinder Rolling inside a Curved Surface — A cylinder is rolling
inside a curved surface. Determine the period of small oscillations. A 2-D model of the cylinder and curved surface is
created. A Mechanical Event Simulation analysis is performed to determine the times when the cylinder reaches the
maximum elevation. The average period is calculated from these times.

AVE - 88: Mechanical Event Simulation of a Flyball-Governor — A flyball-governor apparatus consists of four
identical arms (solid cylindrical rods) and two spheres. At the base, and rotating with the system, is a cylinder. Initially,
the system is rotating at a certain speed, which is maintained by a force at the base. If the force is changed, what is the
angular velocity of the system? A 3-D model is created and a Mechanical Event Simulation is performed to determine
the displacement of the node at the end of one arm, which is used to measure the period of revolution.

AVE - 89: Steady-State Heat Transfer Analysis of a Pipe Buried in Earth — A horizontal pipe is buried in earth.
Given the difference in temperature between the pipe wall and the earth surface, calculate the heat lost by the pipe. For
comparison, both 2-D and 3-D models are created and analyzed by steady-state heat transfer analysis.

AVE - 90: 3-D Truss System under a Point Load and Uniform Temperature Increase — This example is a simple
model of a 3-D truss system with 7 elements. Two load cases are applied independently: a 1,000-1b. point load and a
uniform temperature increase of 50 degrees Fahrenheit. This problem verifies the accuracy of the truss element and
illustrates the use of the element load multiplier to applied temperature.

AVE - 91: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Straight Bar — A steel bar is
analyzed for weight, center of gravity and mass moment of inertia. This example verifies the accuracy of the Mass
Properties Analysis processor for truss elements.

AVE - 92: 6-Story, 2-Bay Frame Structure under Uniformly Distributed Loading — This example is a plane frame
example using beam elements with distributed loads. This example verifies the accuracy of the beam element and
illustrates the use of uniform distributed loads. Two load cases are used: point loads and distributed loads. The point
load case is equivalent to the distributed load case to illustrate that equivalent results can be obtained by different
methods. With beam element, distributed loads can be assigned directly to the elements.

AVE - 93: Earthquake Response of a 10-Story Plane Frame — A ten-story plane frame is subjected to a response
spectrum load representing an earthquake. The analysis is performed in two parts: a modal analysis to obtain mode
shapes and frequencies, followed by a response spectrum analysis to calculate stresses and deflections.

AVE - 94: Frequency Response Analysis of a Two Degrees of Freedom System — A two degrees of freedom system
is subjected to a sinusoidal force applied at the second node. This example explores the different options that can be
used to obtain the steady-state frequency response of a structure, namely loads with the same frequency, multiple
frequencies and the same frequency with different phase angles. The model uses beam elements.

AVE - 95: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Square Beam — This AVE
involves a weight, center of gravity and mass moment of inertia analysis of a beam model using beam elements. This
example verifies the accuracy of the Mass Properties Analysis Processor for beam elements.

AVE - 96: Torsion of a Box Beam — A box beam is subjected to torsion using point loads. The torsion is produced by
nodal loads at opposite edges of the beam. A 3-D model is created using membrane elements for a linear static stress
analysis.

AVE - 97: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Circular Plate — A circular plate
is analyzed for weight, center of gravity and mass moment of inertia. The plate is modeled with membrane elements.
This example verifies the accuracy of the Mass Properties Analysis processor for membrane elements.

AVE - 98: Thick-walled Cylinder under Both Pressure and Temperature Loadings — This example involves a

thick-walled cylinder with temperature and pressure applied. This illustrates the axisymmetric form of the 2-D element.
It also illustrates the use of the load case multipliers to apply both the thermal and pressure loads.
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AVE - 99: Stress Concentration around a Hole — This example involves stress concentration around a hole obtained
by a plane stress analysis. A uniform pressure load is applied. Orthotropic material properties are used. The model uses
2-D plate elements.

AVE - 100: Spherical Cap with Pressure — This example involves a spherical cap with uniform pressure. There are
several ways to set up this problem. Using 2-D axisymmetric elements as shown in this example is the easy way. This
problem verifies the accuracy of the 2-D element and shows how to apply uniform pressure to this type of element.

AVE - 101: Cylindrical Tube under Forced Response with Direct Integration — A cylindrical tube with a suddenly
applied constant radial ring load is analyzed using the direct integration method. The model uses 2-D elements.

AVE - 102: Cylindrical Tube under Forced Response with Modal Superposition — A cylindrical tube with a point
load is analyzed using the modal superposition method.

AVE - 103: Patch Test with Constant Stress — This patch test consists of applying a constant stress loading to a
group (patch) of elements and showing that all elements in the patch will have the same stress. Incompatible modes are
suppressed in this example. A static analysis using 2-D plane stress elements is performed.

AVE - 104: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Circular Plate — A circular
plate is analyzed for weight, center of gravity, and mass moment of inertia. The plate is modeled with 2-D plane stress
elements.

AVE - 105: Thick-walled Cylinder under Centrifugal and Pressure Loading — This example is an analysis of a
thick-walled cylinder with centrifugal force and pressure applied as two separate load cases. This problem illustrates
the ability to automatically generate centrifugal loading.

AVE - 106: Cantilever Beam Eigenvalues — A cantilever beam is modeled with 3-D solid elements. A Linear Mode
Shapes and Natural Frequencies analysis is performed to verify natural frequencies.

AVE - 107: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Square Beam — A square steel
beam is analyzed for weight, center of gravity and mass moment of inertia. The beam is modeled with 3-D brick
elements.

AVE - 108: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Solid Sphere — A solid sphere
is analyzed for weight, center of gravity and mass moment of inertia. The sphere is modeled with 3-D brick elements.

AVE - 109: Spherical Cap with Uniform Pressure — This example involves a spherical cap with uniform pressure.
Due to symmetry, only a five-degree wedge of the shell is modeled for the Linear Static Stress analysis.

AVE - 110: Equilateral Triangle with Linear Thermal Gradient — This problem is a rare example of the
application of temperature difference through thickness in plate element analysis. In this case, a triangular wing is
modeled and the through thickness temperature gradient is applied using the element load case multipliers. A plate
element model is created and a Linear Static Stress analysis is performed to find the deflections along the X axis.

AVE - 111: Simply Supported Anisotropic Plate — This example involves a simply supported plate with anisotropic
material properties and a uniform pressure applied perpendicular to the surface. A plate element model is created using
quarter-symmetry and orthogonal boundary conditions. A Linear Static Stress analysis is performed. Results are
compared with the Timoshenko method.

AVE - 112: Rectangular Plate with All Edges Clamped — A square plate with all of its edges clamped is subjected
to a uniform pressure load normal to the plate. VVarious mesh densities are used, and the resulting maximum deflection
is compared to that predicted by the Timoshenko method. This example shows the reliability of the plate/shell element
in bending analysis.
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AVE - 113: Linear Mode Shape Analysis with Load Stiffening, Simply Supported Beam — This beam load
stiffening problem models a steel beam which is simply supported under compressive axial loading. This example
verifies the accuracy of the Linear Mode Shapes and Natural Frequencies Analysis with Load Stiffening processor for
plate elements.

AVE - 114: Thin-walled Cylinder with a Uniform Axial Load — This example is taken from formulas for membrane
stresses and deformations in thin-walled pressure vessels. It is a thin-walled cylinder with a uniform axial loading,
which is analyzed for axial stress and deflection.

AVE - 115: Thick-walled Cylinder under Centrifugal and Pressure Loading — This verification example is a
thick-walled cylinder with pressure and centrifugal force applied as two separate load cases modeled using tetrahedral
elements.

AVE - 116: Weight, Center of Gravity and Mass Moment of Inertia Analysis of a Solid Sphere — This example
involves a weight, center of gravity and mass moment of inertia analysis of a solid spherical model using tetrahedral
elements. This example verifies the accuracy of the Mass Properties Analysis Processor for tetrahedral elements.

AVE - 117: Two Cantilever Beams Connected by a Tension-Only Element at the Tip — Two parallel cantilever
beams, connected by a tension-only cable at the free ends, are subjected to a concentrated load. A tension-only gap
element is used to find the tip deflection.

AVE - 118: L-Shaped Pipe System Subjected to Temperature Load — An L-shaped pipe system is subjected to a
uniformly distributed load, a temperature increase and gravity. Due to the interaction of the gravity, temperature load
and the uniformly distributed load, only a portion of the pipe contacts the support. Ten zero-gap compression-only gap
elements are used to find the reactions. The pipe is modeled with beam elements.

AVE - 119: An Internally Pressurized Cylinder — A sector of an internally pressurized cylinder is modeled using
both thin thick composite elements. Three different mesh densities are considered. Radial displacements and hoop
stresses are calculated and compared to theoretical results.

AVE - 120: Simply Supported Square Laminate Subjected to a Uniform Pressure Load — A simply supported
square laminate is subjected to a uniform lateral pressure. The laminate material is comprised of 9 different lamina
(layers). Due to symmetry, a quarter sector was modeled with symmetry boundary conditions. This problem is modeled
both thin thick composite elements. Two different laminate thicknesses and three different mesh densities are
considered. The goal of the Linear Static Stress analysis is to find the maximum deflection of the central laminate.

AVE - 121: Clamped Circular Plate with a Point Load — A thick, circular plate is subjected to a center point load.
The symmetric nature of this problem allows a one-quarter model to be used. The plate is modeled with sandwich
elements. These elements include a transverse shear deflection for the core layer. The goal of the Linear Static Stress
analysis is to find displacements at various points along the plate radius.

AVE - 122: Large Deformation and Large Strain for a Rubber Sheet — A bell-shaped rubber sheet is subjected to a
uniformly distributed load at the end surface. The rubber material is assumed to be a Mooney-Rivlin type. Because the
sheet is symmetrical, only half of it is modeled using 2-D plane stress elements.

AVE - 123: Plastic Analysis of a Thick-walled Cylinder — A thick-walled hollow cylinder is subjected to internal
pressure that varied with time. The material of the cylinder is assumed to obey the von Mises yield condition. Because
the cylinder is axisymmetrical, only one sector of it with a one radian angle is modeled using 2-D axisymmetric
elements. Since displacements and strains were small, the analysis of the cylinder was carried out using the materially
nonlinear-only formulation.

AVE - 124: Static Large Displacement Analysis of a Spherical Shell — A spherical shell is subjected to a

concentrated apex load. The shell is axisymmetrical, therefore 2-D axisymmetric elements are used in the model. The
goal of the analysis is to determine the deflection at the apex of the shell.
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AVE - 125: Static Analysis of a Simply Supported Plate — A simply supported plate is subjected to a concentrated
load at the center. The material is assumed to be isotropic. Only small displacement is considered. Because the plate is
symmetrical, only a quarter of it is modeled. 3-D elements are used. The goal of the analysis is to determine the
deflection at the plate center.

AVE - 126: Natural Frequencies for a Simply Supported Plate — The geometric and material properties for this
plate are identical to those in AVE 140. Because the plate and loading are symmetrical, only one-quarter of the plate is
modeled. 3-D elements are used. The goal of the analysis is to determine natural frequencies.

AVE - 127: Dynamic Analysis of a Simply Supported Plate under Concentrated Load — A simply supported plate
is subjected to a concentrated load applied at the center. The material is assumed to be isotropic. The goal of the
analysis is to determine the dynamic displacement at the point of applied load at a specific time.

AVE - 128: Wall with Internal Heat Generation — A solid wall has a distributed internal heat generation. Taking
advantage of symmetry, only half the thickness of the wall is modeled. The goal of the Steady-State Heat Transfer
analysis is to determine the temperature distribution inside the wall.

AVE - 129: DDAM Shock Analysis of Heavy Equipment Mounted on the Deck of a Surface Ship —

A piece of heavy equipment is deck-mounted on a surface ship and a design check of a proposed foundation is made
for the elastic-plastic category in the athwartship direction. The equipment is considered to be a rigid body, but,
because of unsymmetrical foundation stiffness and location of the center of gravity, the system rotates as it translates. A
two-degrees-of-freedom system is used to check the foundations. The DDAM results compare very favorably with
analytical hand calculations.

AVE - 130: DDAM Shock Analysis of a Ship's Rudder System — A ship's rudder system, consisting of the bearing
housing and foundation, the rudder stock and the rudder carrier key, are modeled as a mass-spring system. The system
is analyzed for a vertical shock load.

AVE - 131: Linear Static Stress Analysis of a Laminated Strip — A simply supported laminated strip, which
consists of seven layers with varying orientation, is subjected to a 10 N/mm line load at the center. Results for
displacement and bending stresses compare well to NAFEMS benchmark results.

AVE - 132: Distance for Stopping a Car — A 2895-1b weight traveling at 88 ft/s is analyzed to determine the distance
it takes to stop given a specified coefficient of friction between the weight and a concrete surface.

AVE - 133: Body-to-Body Radiation between Two Cylinders — Two concentric cylinders with different emissivities
in a heated room undergo body-to-body radiation. Steady-State Heat Transfer analysis results for the temperature of the
outer cylinder are in close agreement with the theoretical solution for this example.

AVE - 134: Nonlinear Displacement of a Bar with an Axial Load — A bar made of nonlinear material has an axial
load (4000 N) applied to it and undergoes displacement past the yield point of the material.

AVE - 135: Tapered Axisymmetric Thick Shell Subjected to a Pressure Load — A tapered axisymmetric thick shell
that has a pressure load applied to it is analyzed for hoop stress.

AVE - 136: Contact Pressure Analysis of a Punch-Foundation System — A punch has a uniform pressure load
(40,000 N/m?) applied to its top surface, which causes the punch to contact a foundation. An Static Stress with Linear
Material Models analysis is performed to calculate the contact pressure.

AVE - 137: Acceleration Analysis of a Piston-Crank Mechanism — The motion of a piston-crank mechanism is

analyzed via Mechanical Event Simulation with Nonlinear Materials. The acceleration of the piston is calculated for a
particular instant and the results are compared to the theoretical solution.

Accuracy Verification Examples Manual, Version 2014 34



Abstracts of All Examples

AVE - 138: Natural Frequencies Analysis of a Pin-Ended Double Cross Structure — A double cross structure with
its ends pinned is modeled with beam elements. Linear Mode Shapes and Natural Frequencies analysis results for the
first 16 natural frequencies closely match the NAFEMS reference solution.

AVE - 139: Electrostatic Field Strength Analysis of a Spherical Electron Cloud — The electric field intensity of a
spherical electron cloud is calculated by Electrostatic Field Strength and Voltage analysis. The results for the electric
field magnitude at various radii from the electron cloud center are compared to the theoretical solution.

AVE - 140: Steady-State Heat Transfer Analysis of a Rod with an Adiabatic Tip — A long rectangular rod, which
has its base maintained at 300F by heating equipment, is assumed to have an adiabatic tip because the tip area is
approximately 1% of the total surface. Steady-State Heat Transfer analysis results for the temperature at 3 inches above
the base is compared to the theoretical solution.

AVE - 141: Natural Frequency Analysis of a Flat Circular Plate — A flat circular plate of uniform thickness and
radius has its outer edge fully fixed. A Linear Mode Shapes and Natural Frequencies analysis was performed to obtain
the first natural frequency of the plate for comparison to the theoretical solution.

AVE - 142: Cylinder/Sphere under Uniform Internal Pressure — A thin-shelled cylinder/sphere combination is
subjected to a uniform internal pressure of 1 MPa. Static stress analysis results are in close agreement with the
NAFEMS reference solution.

AVE - 143: Heat Generation in a Wire due to Electrical Current — A stainless steel wire passes an electrical
current of 200 Amps and is submerged in a 110°C fluid. Multiphysics capabilities are used to determine the
temperature at the center of the wire. First, an Electrostatic Current and Voltage analysis is done to get the voltage
distribution and then the voltage results are used as input to a Steady-State Heat Transfer analysis to get the
temperature distribution.

AVE - 144: Natural Frequency (Modal) Analysis of a Cantilevered Beam — A 10-m beam with a square cross-
section (0.125 m x 0.125 m) is rigidly supported on one end. A Natural Frequency (Modal) analysis is performed to
obtain the first modal frequency of the beam for comparison to the theoretical solution.

AVE - 145: Tapered Plate with Gravity — A flat, tapered plate (4m x 4m x 2m) is fully constrained at one edge. A
Static Stress with Linear Material Models analysis is performed to determine the stresses at a point of interest due to the
acceleration of gravity. The analysis results closely correlate with the NAFEMS benchmark solution.

AVE - 146: Rectangular Plate Held by Three Wires — A thin, rectangular plate is held in position by three
inextensible wires. A Mechanical Event Simulation with Nonlinear Material Models is performed to determine the
acceleration of the plate when one of the wires is cut.

AVE - 147: Effect of Fins on Heat Transfer from a Steam Pipe — Heated steam flows through an aluminum pipe
with an outer diameter of 3 cm and a temperature that is maintained at 120°C. To determine the effect of adding
cooling fins to the pipe, Steady-State Heat Transfer analyses are conducted on models of the pipe without fins and with
fins.

AVE - 148: Velocity and Reaction Force from a Crate Being Dragged across the Floor — A 100-kg crate is
initially at rest on a smooth horizontal floor. A Mechanical Event Simulation with Nonlinear Material Models is
performed to simulate the crate being dragged for 10 seconds by a 200-N force acting at a 45° angle from parallel to the
floor. The calculated velocity and normal force results are compared to the theoretical solution.

AVE - 149: Heat Transfer between Hot- and Cold-Water Pipes — Two pipes run parallel to each other in a concrete
block. One pipe has hot water (70°C) running through it and the other pipe contains running cold water (15°C). A
Steady-State Heat Transfer analysis is performed to calculate the temperature distribution. Results environment
capabilities are used to determine the heat transfer between the pipes, and they are compared to the theoretical solution
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AVE - 150: Axisymmetric Vibration of a Simply Supported Annular Plate — An annular plate (with an inner
radius of 1.8 m, radial length of 4.2 m and thickness of 0.6 m) is simply supported at its bottom outer edge. A Natural
Frequency (Modal) analysis is performed to calculate the natural frequencies and mode shapes.

AVE - 151: Natural Frequency (Modal) Analysis of a Cantilever Beam with Off-Center Point Masses — A
cantilever beam (10 m long) with a circular cross section (0.5 m in diameter) is fixed at one end and has two off-center
point masses at its free end (10,000 kg and 1,000 kg, respectively, both 2 m from the end of the beam). A Natural
Frequency (Modal) analysis is performed to calculate the first six natural frequencies and mode shapes, which closely
correspond to the NAFEMS benchmark solution.

AVE - 152: Steady-State Heat Transfer Analysis of a Coal Powder Stockpile — A 2-m-deep layer of fine coal
powder generates heat volumetrically due to a reaction between the coal particles and atmospheric gases. A Steady-
State Heat Transfer analysis is performed to calculate the temperature of the upper surface.

AVE - 153: Bending and Wrinkling of a Pretensioned Beam-like Membrane — A beam-like rectangular plate
membrane is tensioned by a uniform normal stress in both the X and Y directions and subject to an in-plane bending
moment applied on its two ends. As the bending moment is increased, a band of vertical wrinkles appears along the
compressed edge. A Mechanical Event Simulation with Nonlinear Material Models is performed to determine the stress
in the membrane and the relation between the bending moment and the overall curvature of the beam-like membrane.

AVE - 154: Displacement of a Restraining Rod Attached to a Beam — A horizontal beam carries a triangular
distributed load and is simply supported near one end and is restrained by a thin aluminum rod at the other end. A
Static Stress with Linear Material Models analysis is run to determine the displacement of the beam at the restrained
end.

AVE - 155: MES of a Parallelogram Linkage Used to Transfer a Crate between Platforms — A parallelogram
linkage is used to transfer crates from one platform to another and is hydraulically operated by an actuator. A
Mechanical Event Simulation with Nonlinear Material Models is conducted to solve for the axial force where a rod
connects to the middle of the platform at time = 0.01 s and 1.00 s.

AVE - 156: Beam with Spring Support under Distributed Load — A horizontal beam is fixed on one end and
supported by a spring at the other end and a distributed load is applied on the top of the beam. A Static Stress with
Linear Material Models analysis is performed to determine the deflection of the beam and the force in the spring.

AVE - 157: Body-to-Body Radiation Heat Transfer in the Frustum of a Cone — A frustum of a cone has its base
heated while its top is held at a constant temperature and the side is perfectly insulated on the outside. A Steady-State
Heat Transfer analysis is performed to determine the temperature of the bottom and side surfaces.

AVE - 158: Circular Plate with Fixed Edges under Uniform Pressure Load — A circular plate is fixed at the edges
and is subjected to a uniform pressure load. A Static Stress with Linear Material Models analysis is run to find the
maximum displacement in the plate.

AVE - 159: Force on the Actuator of a Hydraulic-Lift Table — A hydraulic-lift table, which consists of a platform
and two identical linkages with hydraulic cylinders, is used to raise a crate. A Mechanical Event Simulation with
Nonlinear Material Models is performed to determine the force on the actuator when the linkage is at a particular angle.

AVE - 160: Heat Transfer Rate of a Heat Exchanger Wall with Pin Fins on One Side — A heat exchanger wall
separates a stream of hot liquid from a stream of cold gas. The cold side of the wall has pin fins arranged in a square
pattern. A Steady-State Heat Transfer analysis is performed to determine the total heat transfer rate for the heat
exchanger wall.

AVE - 161: First Natural Frequency of a Rectangular Flat Plate with All Edges Fixed — A square flat plate has all

four edges fixed. A Natural Frequency (Modal) analysis is run to determine the first natural frequency of vibration due
to the plate's own weight under gravity loading.
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AVE - 162: Heat Transfer through Thin Plate — A cylindrical plate is subjected to a temperature load at one end and
a convection load across the outer surface. A Steady State Heat Transfer analysis is run to find the temperature of the
plate on the unheated end.

AVE - 163: Angular Deflection of a Steel Step Shaft — A long shaft made of a hollow and solid region joined by a
step is subjected to several torsional loads with one fixed boundary condition. A Static Stress with Linear Material
Models analysis is performed to determine the rotation of the shaft at the free end.

AVE - 164: Deflection of Simply Support Beam and Spring System— A beam supported both at two ends and in the
middle by a spring experiences dynamic loading from a falling block. A Mechanical Event Simulation with Nonlinear
Material Models is performed to determine the maximum bending stress of the beam and the contact force between the
beam and the block.

AVE - 165: Temperature Drop across Contact — Two stainless steel cylinders are brought into contact and subjected
to a temperature difference across their combined length of 100 C. A Steady State Heat Transfer analysis is run to find
the temperature drop across the cylinders due to contact resistance.

AVE - 166: Natural Frequency of a Flat Plate— A rectangular flat plate has three edges fully fixed and a fourth that
is simply supported. A Natural Frequency (Modal) analysis is run to determine the first natural frequency of vibration
due to the plate's own weight under gravity loading.

AVE - 167: Deflection of Truss — A truss construction is fixed on one end with several loads applied to different
points in the truss. A Static Stress with Linear Material Models analysis is run to find the maximum x and y
displacements of the free end of the truss.

AVE - 168: MES Thermal Loading of Shell Composite — A composite shell experiences a constant thermal load of
100 °F. A Mechanical Event Simulation with Nonlinear Material Models is performed to determine the maximum stress
tensor in the principal directions.

AVE - 169: Deflection of a Spring Supported Beam — A square beam is supported by 7 identical springs and is
loaded at the center. A static stress analysis is performed to find the maximum bending stress and deflection.

AVE - 170: MES of Force Accelerated Block — A brick is dragged across a surface by a 500 N force. A MES is
performed to determine the maximum sustained velocity of the block.

AVE - 171: Radiation between two Cylinders — Two concentric cylinders radiate both to each other and the
environment. A Steady-State Heat Transfer analysis is utilized with body-to-body radiation to find the temperature of
the outer cylinder.

AVE - 172: Steady-State Heat Transfer along a Rod — A bar is subjected to a point load and an ambient
environment. A Steady-State Heat analysis is used to find the temperature of the rod at a given distance from the point
load.

AVE - 173: Natural Frequency of Beam, Spring, and Mass System — A mass and spring are attached to a stiff rod.
A Natural Frequency (Modal) analysis is performed to determine the natural frequency of the system.

AVE - 174: Notched Plate — A simple notched plate experiences pressure loading and fixed boundary constraints. A
Linear Static analysis was used to find the maximum stress of the plate.

AVE - 175: MES Deflection of a Spring Supported Beam — A square cantilever beam is supported by a spring and
loaded by a force at one end. A MES is performed to determine the maximum deflection.

AVE - 176: Flow of Steam through an Insulated Pipe — Steam is flowing through an insulated pipe. A steady-state
heat transfer analysis is used to determine the temperature on the interior and exterior surfaces of the pipe.
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AVE - 177: Heat Lost through the Walls of a Furnace — A furnace is kept at a constant temperature. A steady-state
heat transfer analysis is used to determine the heat lost.

AVE - 178: Natural Frequency of a Simply Supported Beam with a Mass in the Middle — A simply supported
beam has a concentrated mass located at the center. A Natural Frequency (Modal) analysis is performed to determine
the natural frequency of the system.

AVE - 179: Contact Pressure between a Punch and Foundation — A pressure is applied to a punch which contacts a
foundation. A static stress analysis was performed to determine the contact pressure between the punch and
foundation.

AVE - 180: MES Deflection of a Pointer Due to Thermal Expansion — A pointer is connected to aluminum and
steel bars. A MES is performed in order to determine the deflection of the tip of the pointer with respect to a scale
when the temperature increases.

AVE - 181: Natural Frequency of a Weighing Platform — A weighing platform consists of a mass, two levers and a
spring. A Natural Frequency (Modal) analysis is performed to determine the period of the system.

AVE - 182: Axial and Bending Forces Acting on a Wide Flanged Beam — Forces are applied in three directions to a
cantilever beam with a wide-flanged cross-section. A static stress analysis was performed to calculate the maximum
stress in the beam.

AVE - 183: MES of a Pinned Rod Released from Rest — A pinned rod is originally at a 45° angle to the horizontal.
A MES is performed in order to determine the velocity at the tip when the rod becomes horizontal. The results are
within one percentage point of the theoretical results.

AVE - 184: MES of a Pinned Reinforced Concrete Beam — A rectangular concrete beam is reinforced with
reinforcing rods. A uniform pressure is applied along the length. A MES is performed in order to determine the
maximum vertical deflection.

AVE - 185: Riks Analysis of a Curved Cylindrical Shell — A curved cylindrical shell is loaded at the center by a
nodal force. A Riks analysis is performed to determine the load vs. deflection results.
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AVE

Accuracy Verification Example
Title

Linear Natural Frequency (Modal)

Linear Response Spectrum

Linear Random Vibrations

Linear Frequency Response

Linear Transient Stress (Direct Integration)

Linear Transient Stress (Modal

Superposition)

Dynamic Design Analysis Method (DDAM)

Linear Critical Load Buckling

Steady-state Heat Transfer

Transient Heat Transfer

Steady Fluid Flow

Unsteady Fluid Flow

Electrostatic Current & Voltage

Electrostatic Field Strength & Voltage

Mechanical Event Simulation with Linear &

Nonlinear Material Models

\Weight & Center of Gravity

001

Flat Circular Plate of Constant
Thickness (2-D)

X [Static Stress with Linear Material Models

002

Flat Circular Plate of Constant
Thickness (3-D)

x

003

Thin-Walled Cylinder with
Uniform Axial Load

004

Cylindrical Disk with Uniform
Internal Radial Pressure

005

Rectangular Plate with All
Edges Simply Supported and
Uniform Pressure

006

Flat Rectangular Plate with
Three Edges Simply
Supported

007

Cantilever Beam with Nodal
Force

008

Toroidal Shell Under Uniform
Internal Pressure

009

Beam Guided at the Left and
Fixed at the Right

010

Thick-Walled Spherical Vessel
Under Uniform Internal
Pressure

011

Thick-Walled Cylindrical
Vessel Under Uniform Internal
Radial Pressure

012

Hollow Cylinder with Thick
Walls and Temperature
Gradient

013

Flat Rectangular Plate with All
Edges Fixed and Uniform
Pressure Loading

014

Flat Rectangular Plate with
Two Sides Fixed, Two Sides
Simply Supported and Uniform
Load

015

Uniform Beam with Both Ends
Fixed

016

Thick-walled Cylindrical Vessel
Under Uniform External
Pressure Modeled in 3-D

017

Thick-walled Cylindrical Vessel
Under Uniform External
Pressure Modeled in 2-D

018

Thin-Walled Conical Vessel
Under Uniform Internal
Pressure with Tangential Edge
Supports
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AVE

Accuracy Verification Example
Title

Static Stress with Linear Material Models

Linear Natural Frequency (Modal)

Linear Response Spectrum

Linear Random Vibrations

Linear Frequency Response

Linear Transient Stress (Direct Integration)

Linear Transient Stress (Modal

Superposition)

Dynamic Design Analysis Method (DDAM)

Steady-state Heat Transfer

ITransient Heat Transfer

Steady Fluid Flow

Unsteady Fluid Flow

Electrostatic Current & Voltage

Electrostatic Field Strength & Voltage

Mechanical Event Simulation with Linear &

Nonlinear Material Models

\Weight & Center of Gravity

019

Straight Bar with Lower End
Fixed and Upper End Free

X |Linear Critical Load Buckling

020

Wide-flange Beam with Equal
Flanges

021

Circular Disc Rotating about Its
Own Axis with Uniform Angular
Velocity Modeled in 2-D

022

Circular Disc Rotating about Its
Own Axis with Uniform Angular
Velocity Modeled in 3-D

023

Thin-walled Cylindrical Shell
Under an Axisymmetric Radial-
End Load

024

Test of the Capabilities of the
'dt/dh’ Option for the Plate
Element

025

Rectangular Plate Under
Uniform Load Producing a
Large Deflection

026

Solid Circular Plate Section of
Constant Thickness with
Uniform Load

027

Thin Closed Circular Ring with
Circular Cross Section

028

Thick-walled Cylindrical Vessel
Under Uniform Internal Radial
Pressure

029

Ceramic Strip with Radiation

030

Two Masses and Three
Massless Springs with an
Applied Forced Harmonic
Vibration

031

Steady-state Heat Loss of a
Steam Pipe with
Nonconcentric Insulation

032

Elastic Instability of a Flat Plate
Under Pure Shear Load

033

Ceramic Embedded in a High
Thermal Conductivity Material

034

Motion of a Two-DOF System
Subjected to Random Vibration

035

Interference Analysis of Two
Concentric Thick-walled Rings

036

Circular Flat Plate with Edge
Clamped and Concentrated
Load Applied at Center
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AVE

Accuracy Verification Example
Title

Linear Natural Frequency (Modal)

Linear Response Spectrum

Linear Random Vibrations

Linear Frequency Response

Linear Transient Stress (Direct Integration)

Linear Transient Stress (Modal

Superposition)

Dynamic Design Analysis Method (DDAM)

Linear Critical Load Buckling

Steady-state Heat Transfer

ITransient Heat Transfer

Steady Fluid Flow

Unsteady Fluid Flow

Electrostatic Current & Voltage

Electrostatic Field Strength & Voltage

Mechanical Event Simulation with Linear &

Nonlinear Material Models

\Weight & Center of Gravity

037

Thick-walled Spherical Vessel
Under Uniform Internal
Pressure

X [Static Stress with Linear Material Models

038

Forced Harmonic Response
Analysis of a Spring-Mass-
Damper System

039

Solid Sphere Analyzed to Find
Weight, Center of Gravity and
Mass Moment of Inertia

040

Natural Frequency of a
Gr./Epoxy Laminated
Composite Square Plate

041

Mid-span Deflection of a
Uniform Steel Beam Simply
Supported at Both Ends

042

Stress Relaxation of a
Tightened Bolt Due to Thermal
Creep

043

Deflection Analysis of a Helical
Spring Under Compressive
Loading

044

Nonlinear Radiation Heat
Transfer Analysis of a
Cylindrical Disk with Internal
Heat Generation

045

Shear Force and Bending
Moment Analysis of a Beam
Under Distributed Loading

046

Thermal Stress Analysis of a
Thick-walled Cylindrical Vessel
Under Temperature Gradient

047

Elastic Stability of a Flat Plate
Under a Pure Axial Load

048

Concrete Frame Structure
Subjected to Distributed
Loading

049

Solid Aluminum Cylinder
Exposed to a Convection
Environment and Allowed to
Cool

050

Linear Mode Shape with Load
Stiffening Analysis on a Simply
Supported Continuous Beam

051

Thick-Walled Spherical Shell
Subjected to Uniform Internal
Pressure
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052 Nonlinear Heat Flow Analysis X
of a Solid Cylinder
053 Requnse Spectrum Analysis X
of a Simple Beam
054 Cant|_|ever Beam with a Gap at X
the Tip
Transient Thermal Analysis of
055 | a Solid Wall with Internal Heat X
Generation
Steady-State Heat Transfer
056 | Analysis of a Fin Immersed in X
a Cooling Fluid
Nonlinear Radiation Heat
057 Transfer Analysis of a X
Cylindrical Disk with Internal
Heat Generation
Continuous Beam, Simply
058 | Supported at the Ends, Under X
a Uniformly Distributed Load
Design Spectrum with a
059 | Specified Maximum Ground X
Acceleration
Slab with Internal Charge
060 Density Distribution X
Thermal Deflection Analysis of
061 a Plate X
062 Torsion of an Elastic Beam X
with a Channel Cross-Section
063 Multidimensional Transient X
Heat Transfer Analysis
Fundamental Frequency and
064 | Static Lateral Deflections of a X
Loaded Shaft
065 Annular Plate with a Uniformly X
Distributed Pressure
066 Nonlinear Static Analysis of a X
Simply Supported Plate
A Combined Beam/Plate
067 Model X
Creep Analysis of a Thick-
068 Walled Cylinder X
069 Shear Flow in a Simply X

Supported Beam
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Dynamic Analysis of a Beam
070 Model X
071 Thermal Stress Analysis of a X
Pinned Beam/Truss Structure
Dynamic Nonlinear Analysis of
072 | a Beam Model with a Gravity X
Load
Linear Stress Analysis of a
073 Beam Model X
074 Two Cylindrical Shells with X
Internal Pressure Loading
Spring and Collar Slide Down
075 Vertical Rod X
Slender Pivoting Rod and
076 Compressed Spring X
Dynamic Analysis of an 8-kg
077 | Body Using Damping and a X
Dashpot
Transient Heat Transfer
078 | Analysis of a Semi-Infinite X
Pressure Loading
079 Mechanical Event Simulation X
of a Slider-Crank Mechanism
Mechanical Event Simulation
080 of a Lunar Lander X
Mechanical Event Simulation
081 | of a Basketball Being Shot into X
a Hoop
082 Heat Flux Trans_lent Heat X
Transfer Analysis
083 Mechanical Event Simulation X
of Grinder Shaft Under Torsion
Mechanical Event Simulation
084 | of a Chain with Weights at the X
Hinges
085 Transient Thermal Analysis of X
a Cooling Copper Wire
Heat Flux Loading on a Hollow
086 Cylinder X
Mechanical Event Simulation
087 | of a Cylinder Rolling inside a X

Curved Surface
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AVE

Accuracy Verification Example
Title

Static Stress with Linear Material Models

Linear Natural Frequency (Modal)

Linear Response Spectrum

Linear Random Vibrations

Linear Frequency Response

Linear Transient Stress (Direct Integration)

Linear Transient Stress (Modal

Superposition)

Dynamic Design Analysis Method (DDAM)

Linear Critical Load Buckling

Steady-state Heat Transfer

ITransient Heat Transfer

Steady Fluid Flow

Unsteady Fluid Flow

Electrostatic Current & Voltage

Electrostatic Field Strength & Voltage

Mechanical Event Simulation with Linear &

\Weight & Center of Gravity

088

Mechanical Event Simulation
of a Flyball-Governor

> INonlinear Material Models

089

Steady-State Heat Transfer
Analysis of a Pipe Buried in
Earth

090

3-D Truss System under a
Point Load and Uniform
Temperature Increase

091

Weight, Center of Gravity and
Mass Moment of Inertia
Analysis of a Straight Bar

092

6-Story, 2-Bay Frame
Structure under Uniformly
Distributed Loading

093

Earthquake Response of a 10-
Story Plane Frame

094

Frequency Response Analysis
of a Two Degrees of Freedom
System

095

Weight, Center of Gravity and
Mass Moment of Inertia
Analysis of a Square Beam

96

Torsion of a Box Beam

97

Weight, Center of Gravity and
Mass Moment of Inertia
Analysis of a Circular Plate

98

Thick-Walled Cylinder under
Both Pressure and
Temperature Loadings

99

Stress Concentration around a
Hole

100

Spherical Cap with Pressure

101

Cylindrical Tube under Forced
Response with Direct
Integration

102

Cylindrical Tube under Forced
Response with Modal
Combination

103

Patch Test with Constant
Stress

104

Weight, Center of Gravity and
Mass Moment of Inertia
Analysis of a Circular Plate

105

Thick-Walled Cylinder under
Centrifugal and Pressure
Loading

106

Cantilever Beam Eigenvalues
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Weight, Center of Gravity and
107 | Mass Moment of Inertia X
Analysis of a Square Beam
Weight, Center of Gravity and
108 | Mass Moment of Inertia X
Analysis of a Solid Sphere
109 Spherical Cap with Uniform X
Pressure
110 Equilateral Triangle with Linear X
Thermal Gradient
111 Simply Supported Anisotropic X
Plate
Rectangular Plate with All
112 Edges Clamped X
Linear Mode Shape Analysis
113 | with Load Stiffening, Simply X
Supported Beam
Thin-Walled Cylinder with a
114 Uniform Axial Load X
115 | Thick-Walled Cylinder X
Weight, Center of Gravity and
116 | Mass Moment of Inertia X
Analysis of a Solid Sphere
Two Cantilever Beams
117 | Connected by a Tension-Only X
Element at the Tip
L-Shaped Pipe System
118 | Subjected to Temperature X
Load
An Internally Pressurized
119 Cylinder X
Simply Supported Square
120 | Laminate Subjected to a X
Uniform Pressure Load
Clamped Circular Plate with a
121 Point Load X
122 Large Deformation and Large X
Strain for a Rubber Sheet
Plastic Analysis of a Thick-
123 | Walled Cylinder X
124 Static Large Displacement X
Analysis of a Spherical Shell
Static Analysis of a Simply
125 Supported Plate X
126 Natural Frequencies for a X

Simply Supported Plate
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Dynamic Analysis of a Simply
127 | Supported Plate under X
Concentrated Load
128 Wall Wlth Internal Heat X
Generation
DDAM Shock Analysis of
129 | Heavy Equipment Mounted on X
the Deck of a Surface Ship
130 DDAM Shock Analysis of a X
Ship's Rudder System
Linear Static Stress Analysis of
131 . h X
a Laminated Strip
132 | Distance for Stopping a Car X
133 Body-to-Body Radiation X
between Two Cylinders
134 Nonlinear Displacement of a X
Bar with an Axial Load
Tapered Axisymmetric Thick
135 | Shell Subjected to a Pressure X
Load
136 Contact Pressure Analysis of a X
Punch-Foundation System
137 Acceleration Analysis of a X
Piston-Crank Mechanism
Natural Frequencies Analysis
138 | of a Pin-Ended Double Cross X
Structure
Electrostatic Field Strength
139 | Analysis of a Spherical X
Electron Cloud
Steady-State Heat Transfer
140 | Analysis of a Rod with an X
Adiabatic Tip
141 Natural Frequency Analysis of X

a Flat Circular Plate
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Cylinder/Sphere under Uniform
142 X
Internal Pressure
143 Heat Generation in a Wire due X
to Electrical Current
144 Natural Frequency (Modal) X
Analysis of a Cantilever Beam
145 | Tapered Plate with Gravity X
Rectangular Plate Held by
146 Three Wires X
Effect of Fins on Heat Transfer
147 . X
from a Steam Pipe
Velocity and Reaction Force
148 | from a Crate Being Dragged X
across the Floor
149 Heat Transfer between Hot- X
and Cold-Water Pipes
Axisymmetric Vibration of a
150 | Simply Supported Annular X
Plate
Natural Frequency (Modal)
151 | Analysis of a Cantilever Beam X
with Off-Center Point Masses
Steady-State Heat Transfer
152 | Analysis of a Coal Powder X
Stockpile
Bending and Wrinkling of a
153 | Pretensioned Beam-like X
Membrane
154 Displacement of a Restraining X
Rod Attached to a Beam
MES of a Parallelogram
155 | Linkage Used to Transfer a X
Crate between Platforms
156 Beam with Spring Support X
under Distributed Load
Flow through a Tube with
157 Fixed Heat Flux X X
Circular Plate with Fixed
158 | Edges under Uniform Pressure | X
Load
159 Force on the Actuator of a X

Hydraulic-Lift Table
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Heat Transfer Rate of a Heat
160 | Exchanger Wall with Pin Fins X
on One Side
First Natural Frequency of a
161 | Rectangular Flat Plate with All X
Edges Fixed
162 Heat Transfer through Thin X
Plate
Angular Deflection of Steel
163 Step Shaft X
164 Deflection of Beam and Spring X
System
Temperature Difference
165 Across Contact X
166 Natural Frequency of a Flat X
Plate
167 | Deflection of Truss X
168 MESThgrmal Loading of Shell X
Composite
Deflection of a Spring
169 Supported Beam X
MES of Force Accelerated
170 Block X
171 Ra(_jlatlon between two X
Cylinders
172 Steady-State Heat Transfer X
along a Rod
173 | Natural Frequency of a Beam, X
Spring and Mass System
174 | Notched Plate X
175 MES Deflection of a Spring X
Supported Beam
176 FIowofStegmthrough an X
Insulated Pipe
177 Heat Lost through the Walls of X
a Furnace
178 Simply Supported Beam with a X
Mass in the Middle
179 | Contact Pressure between a X

Punch and Foundation
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Accuracy Verification Example

Title

MES Deflection of a Pointer

Due to Thermal Expansion

Natural Frequency of a Simply
Supported Beam with a Mass

in the Middle

Acting on a Wide Flanged

Axial and Bending Forces
Beam

MES of a Pinned Rod
Released from Rest

MES of a Reinforced Concrete

Beam

Riks Analysis of a Curved

Cylindrical Shell

AVE
#

180

181

182

183

184

185

49
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Index of Accuracy Verification Examples by Elements Used

IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

001

Flat Circular Plate of Constant
[Thickness (2-D)

002

Flat Circular Plate of Constant
[Thickness (3-D)

003

[Thin-Walled Cylinder with Uniform
Axial Load

004

Cylindrical Disk with Uniform
Internal Radial Pressure and
Longitudinal Pressure of Zero

005

Rectangular Plate with All Edges
Simply Supported and Uniform
Pressure

006

Flat Rectangular Plate with Three
Edges Simply Supported

007

Cantilever Beam with Nodal Force

008

[Toroidal Shell Under Uniform
Internal Pressure

009

Beam Guided at the Left and Fixed
jat the Right

010

[Thick-Walled Spherical Vessel
Under Uniform Internal Pressure

011

[Thick-Walled Cylindrical Vessel
Under Uniform Internal Radial
Pressure

012

Hollow Cylinder with Thick Walls
land Temperature Gradient
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IAVE # |Accuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell
Boundary

3-D Enhanced Brick
10-node Tetrahedral
Spring

Rigid

Gap

Thin Shell Composite
Thick Shell Composite
3-D Nonlinear Truss
3-D Nonlinear Beam
3-D General Contact
2-D Nonlinear

3-D Nonlinear
Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane
Thermal Boundary
3-D Thermal Plate
4-node Tetrahedral
10-node Tetrahedral
Thermal Brick

2-D Thermal

3-D Electro-boundary
Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact
Actuator

Flat Rectangular Plate with All
013 |Edges Fixed and Uniform Pressure
Loading

x

Flat Rectangular Plate with Two
014 [Sides Fixed, Two Sides Simply X
Supported and Uniform Load

015 |Uniform Beam with Both Ends Fixed X

[Thick-walled Cylindrical Vessel
016 [Under Uniform External Pressure X
Modeled in 3-D

[Thick-walled Cylindrical Vessel
017 |Under Uniform External Pressure X
Modeled in 2-D

[Thin-Walled Conical Vessel Under
018 |Uniform Internal Pressure with X
[Tangential Edge Supports

Straight Bar with Lower End Fixed

019 land Upper End Free

020 \é\llédnz—(falgnge Beam with Equal Demonstration of FEA Editor's "Inquire:XY Moment of Inertia..." capability. No elements are used.

Circular Disc Rotating about Its Own
021 |Axis with Uniform Angular Velocity X
Modeled in 2-D

Circular Disc Rotating about Its Own
022 |Axis with Uniform Angular Velocity X
Modeled in 3-D
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AVE

Accuracy Verification Example
Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid
3-D Fluid

Dynamic Contact

Actuator

023

Thin-walled Cylindrical Shell
Under an Axisymmetric Radial-
End Load

x

024

Test of the Capabilities of the
‘dt/dh’ Option for the Plate
Element

025

Rectangular Plate Under
Uniform Load Producing a Large
Deflection

026

Solid Circular Plate Section of
Constant Thickness with
Uniform Load

027

Thin Closed Circular Ring with
Circular Cross Section

028

Thick-walled Cylindrical Vessel
Under Uniform Internal Radial
Pressure

029

Ceramic Strip with Radiation

030

Two Masses and Three
Massless Springs with an
Applied Forced Harmonic
Vibration

031

Steady-state Heat Loss of a
Steam Pipe with Nonconcentric
Insulation

032

Elastic Instability of a Flat Plate
Under Pure Shear Load

033

Ceramic Embedded in a High
Thermal Conductivity Material
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

034

Motion of a Two-DOF System
ISubjected to Random Vibration

035

Interference Analysis of Two
IConcentric Thick-walled Rings

036

Circular Flat Plate with Edge
Clamped and Concentrated Load
Applied at Center

037

Thick-walled Spherical Vessel Under
Uniform Internal Pressure

038

Forced Harmonic Response Analysis
of a Spring-Mass-Damper System

039

Solid Sphere Analyzed to Find
Weight, Center of Gravity and Mass
Moment of Inertia

040

Natural Frequency of a Gr./Epoxy
Laminated Composite Square Plate

041

Mid-span Deflection of a Uniform
ISteel Beam Simply Supported at
Both Ends

042

IStress Relaxation of a Tightened Bolt
Due to Thermal Creep

043

Deflection Analysis of a Helical
ISpring Under Compressive Loading
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

044

Nonlinear Radiation Heat Transfer
lAnalysis of a Cylindrical Disk with
Internal Heat Generation

045

IShear Force and Bending Moment
lAnalysis of a Beam Under
Distributed Loading

046

[Thermal Stress Analysis of a Thick-
walled Cylindrical Vessel Under
[Temperature Gradient

047

Elastic Stability of a Flat Plate Under
@ Pure Axial Load

048

IConcrete Frame Structure Subjected
to Distributed Loading

049

ISolid Aluminum Cylinder Exposed to
@ Convection Environment and
IAllowed to Cool

050

Linear Mode Shape with Load
Stiffening Analysis on a Simply
ISupported Continuous Beam
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid
3-D Fluid

Dynamic Contact

Actuator

051

[Thick-Walled Spherical Shell
Subjected to Uniform Internal
Pressure

x

052

Nonlinear Heat Flow Analysis of a
Solid Cylinder

053

Response Spectrum Analysis of a
Simple Beam

054

Cantilever Beam with a Gap at the
Tip

055

[Transient Thermal Analysis of a Solid
\Wall with Internal Heat Generation

056

Steady-State Heat Transfer Analysis
lof a Fin Immersed in a Cooling Fluid

057

Nonlinear Radiation Heat Transfer
IAnalysis of a Cylindrical Disk with
Internal Heat Generation

058

Continuous Beam, Simply Supported
at the Ends, Under a Uniformly
Distributed Load

059

Design Spectrum with a Specified
Maximum Ground Acceleration

060

Slab with Internal Charge Density
Distribution

061

[Thermal Deflection Analysis of a
Plate
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

062

[Torsion of an Elastic Beam with a
IChannel Cross-Section

x

063

Multidimensional Transient Heat
Transfer Analysis

064

Fundamental Frequency and Static
Lateral Deflections of a Loaded Shaft

065

IAnnular Plate with a Uniformly
Distributed Pressure

066

Nonlinear Static Analysis of a Simply
Supported Plate

067

IA Combined Beam/Plate Model

068

Creep Analysis of a Thick-Walled
Cylinder

069

IShear Flow in a Simply Supported
Beam

070

Dynamic Analysis of a Beam Model

071

IThermal Stress Analysis of a Pinned
Beam/Truss Structure

072

Dynamic Nonlinear Analysis of a
Beam Model with a Gravity Load

073

Linear Stress Analysis of a Beam
Model

074

[Two Cylindrical Shells with Internal

Pressure Loading
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ISpring and Collar Slide Down
075 \Vertical Rod X X
076 SIenderPlvotlng_Rod and X X
ICompressed Spring
077 Dynamic Analysis of an 8-kg Body x | x
Using Damping and a Dashpot
Transient Heat Transfer Analysis of a
078 R : X
ISemi-Infinite Pressure Loading
Mechanical Event Simulation of a
079 Slider-Crank Mechanism X X
080 Mechanical Event Simulation of a X X
Lunar Lander
Mechanical Event Simulation of a
081 Basketball Being Shot into a Hoop X R
082 Heat F!uxTranS|ent Heat Transfer X
IAnalysis
083 Mechanical Event Simulation of X
Grinder Shaft Under Torsion
084 Mechanical Event Simulation of a X
Chain with Weights at the Hinges
085 Transient Thermal Analysis of a X
ICooling Copper Wire
086 Hethqu Loading on a Hollow X
Cylinder
Mechanical Event Simulation of a
087 [Cylinder Rolling inside a Curved X X
Surface
088 Mechanical Event Simulation of a x | x
Flyball-Governor
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid
3-D Fluid

Dynamic Contact

Actuator

089

Steady-State Heat Transfer Analysis
lof a Pipe Buried in Earth

x

x

090

B-D Truss System under a Point
Load and Uniform Temperature
Increase

091

\Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a
Straight Bar

092

6-Story, 2-Bay Frame Structure
under Uniformly Distributed Loading

093

Earthquake Response of a 10-Story
Plane Frame

094

Frequency Response Analysis of a
[Two Degrees of Freedom System

095

\Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a
Square Beam

096

[Torsion of a Box Beam

097

\Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a
Circular Plate

098

[Thick-Walled Cylinder under Both
Pressure and Temperature Loadings

099

Stress Concentration around a Hole
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid
3-D Fluid

Dynamic Contact

Actuator

100

Spherical Cap with Pressure

101

Cylindrical Tube under Forced
Response with Direct Integration

102

Cylindrical Tube under Forced
Response with Modal Combination

103

Patch Test with Constant Stress

104

\Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a
Circular Plate

105

[Thick-Walled Cylinder under
Centrifugal and Pressure Loading

106

Cantilever Beam Eigenvalues

107

Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a
ISquare Beam

108

\Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a Solid
Sphere

109

Spherical Cap with Uniform Pressure

110

Equilateral Triangle with Linear
[Thermal Gradient
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

111

Simply Supported Anisotropic Plate

x

112

Rectangular Plate with All Edges
Clamped

113

Linear Mode Shape Analysis with
Load Stiffening, Simply Supported
Beam

114

[Thin-Walled Cylinder with a Uniform
Axial Load

115

[Thick-Walled Cylinder

116

\Weight, Center of Gravity and Mass
Moment of Inertia Analysis of a Solid
Sphere

117

[Two Cantilever Beams Connected by
@ Tension-Only Element at the Tip

118

L-Shaped Pipe System Subjected to
[Temperature Load

119

IAn Internally Pressurized Cylinder

120

Simply Supported Square Laminate
Subjected to a Uniform Pressure
Load

121

Clamped Circular Plate with a Point
Load

122

Large Deformation and Large Strain
for a Rubber Sheet
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

123

Plastic Analysis of a Thick-Walled
Cylinder

X

124

Static Large Displacement Analysis
lof a Spherical Shell

125

Static Analysis of a Simply
Supported Plate

126

Natural Frequencies for a Simply
Supported Plate

127

Dynamic Analysis of a Simply
Supported Plate under Concentrated
Load

128

\Wall with Internal Heat Generation

129

DDAM Shock Analysis of Heavy
Equipment Mounted on the Deck of a
Surface Ship

130

DDAM Shock Analysis of a Ship's

Rudder System
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

131

Linear Static Stress Analysis of a
Laminated Strip

x

132

Distance for Stopping a Car

133

Body-to-Body Radiation between
ITwo Cylinders

134

Nonlinear Displacement of a Bar with
lan Axial Load

135

[Tapered Axisymmetric Thick Shell
ISubjected to a Pressure Load

136

IContact Pressure Analysis of a
Punch-Foundation System

137

IAcceleration Analysis of a Piston-
ICrank Mechanism

138

Natural Frequencies Analysis of a
Pin-Ended Double Cross Structure

139

Electrostatic Field Strength Analysis
of a Spherical Electron Cloud

140

ISteady-State Heat Transfer Analysis
of a Rod with an Adiabatic Tip

141

Natural Frequency Analysis of a Flat
Circular Plate

142

ICylinder/Sphere under Uniform
Internal Pressure

143

Heat Generation in a Wire due to
Electrical Current

144

Natural Frequency (Modal) Analysis

of a Cantilever Beam
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid
3-D Fluid

Dynamic Contact

Actuator

145

[Tapered Plate with Gravity

x

146

Rectangular Plate Held by Three
Wires

x

147

Effect of Fins on Heat Transfer from
@ Steam Pipe

148

elocity and Reaction Force from a
Crate Being Dragged across the
Floor

149

Heat Transfer between Hot- and
Cold-Water Pipes

150

IAxisymmetric Vibration of a Simply
Supported Annular Plate

151

Natural Frequency (Modal) Analysis
of a Cantilever Beam with Off-Center
Point Masses

152

Steady-State Heat Transfer Analysis
lof a Coal Powder Stockpile

153

Bending and Wrinkling of a
Pretensioned Beam-like Membrane

154

Displacement of a Restraining Rod
IAttached to a Beam

155

MES of a Parallelogram Linkage
Used to Transfer a Crate between
Platforms

156

Beam with Spring Support under
Distributed Load
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

157

Body-to-Body Radiation Heat
[Transfer in the Frustum of a Cone

x

158

Circular Plate with Fixed Edges
under Uniform Pressure Load

159

Force on the Actuator of a Hydraulic-
Lift Table

160

Heat Transfer Rate of a Heat
Exchanger Wall with Pin Fins on
One Side

161

First Natural Frequency of a
Rectangular Flat Plate with All Edges
Fixed

162

Heat Transfer through Thin Plate

163

IAngular Deflection of Steel Step
IShaft

164

Deflection of Beam and Spring

ISystem
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165 [Temperature Drop/Contact
166 |Natural Frequency of a Flat Plate X
167 [Deflection of Truss X
168 MES Th(_ermal Loading of Shell X
IComposite
169 Deflection of a Spring Supported X X
Beam
170 |MES of Force Accelerated Block X
171 [Radiation between two Cylinders X
172 ISteady-State Heat Transfer along a X
Rod
Natural Frequency of a Beam,
173 ISpring and Mass System X X
174 |Notched Plate X
MES Deflection of a Spring
175 ISupported Beam R
176 FI_owofSteam through an Insulated X
Pipe
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IAVE #

IAccuracy Verification Example Title

Truss

Beam

Membrane

2-D

3-D Brick

3-D Plate/Shell

Boundary

3-D Enhanced Brick

10-node Tetrahedral

Spring

Rigid

Gap

Thin Shell Composite

Thick Shell Composite

3-D Nonlinear Truss

3-D Nonlinear Beam

3-D General Contact

2-D Nonlinear

3-D Nonlinear

Nonlinear Shell

3-D Kinematic

3-D Nonlinear Membrane

Thermal Boundary

3-D Thermal Plate

4-node Tetrahedral

10-node Tetrahedral

Thermal Brick

2-D Thermal

3-D Electro-boundary

Electrical Solid

2-D Electrostatic

2-D Fluid

3-D Fluid

Dynamic Contact

Actuator

177

Heat Lost through the Walls of a
Furnace

x

178

Simply Supported Beam with a Mass
n the Middle

179

IContact Pressure between a Punch
land Foundation

180

MES Deflection of a Pointer Due to
[Thermal Expansion

181

Natural Frequency of a Weighing
Platform

182

lAxial and Bending Forces Acting on
a Wide Flanged Beam

183

MES of a Pinned Rod Released from
Rest

184

MES of a Reinforced Concrete
Beam

185

Riks Analysis of a Curved Cylindrical
Shell

Accuracy Verification Examples Manual, Version 2014

66
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AVE -1  Flat Circular Plate of Constant Thickness (2-D)

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 334, Table 24, Case 1la.

Problem Description

A flat, annular, circular plate of 0.5" constant thickness with its outer edge simply supported and inner edge free is
analyzed for stress and deflection under a 50 Ibf/in uniform annular line load located at the inner edge.

The association between degrees of freedom and bending in elements is confusing to many FEA users. The
commonly used term "element's degree of freedom" is technically incorrect because the degrees of freedom that are
supported by an element do not associate directly with the element, but rather with the nodes that define it. It is
correct, however, to associate certain element types with certain nodal degrees of freedom.

Active vs. Inactive

A degree of freedom is either active or inactive. An active degree of freedom affects the element's solution, whereas
an inactive degree of freedom does not. An active degree of freedom also becomes part of the stiffness matrix,
while an inactive degree of freedom does not. A maximum of six active degrees of freedom (three translational and
three rotational) are possible at a node. In Autodesk Simulation, the default active degrees of freedom are
automatically defined for every node depending on the element type.

Table 1-1 gives the default degrees of freedom for many common linear elements. Some element types do not

require all of the six available degrees of freedom. For instance, truss, 2-D axisymmetric, 2-D continuum, and 3-D
continuum elements all need fewer than six degrees of freedom.

Table 1-1. (0 = Active, 1 = Inactive)

Element Type Translation Rotation

XY | Z2 | X|Y | Z
Truss 0(01|0O0 1 1 1
Beam o(o0o|0|0|0)|O0
2-D Axisymmetric 1100|2111
2-D Continuum 1700 1]11
3-D Continuum (Bricks) | 0 | O [ O | 1 | 1 | 1
Plate 0 0 0 0 0 1

Degrees of Freedom vs. Type of Analysis

The available degrees of freedom do not necessarily determine the kinds of structures that a particular element type
can model. For instance, an engineer could model a structural 1-beam by using plate or 3-D brick elements, if
needed.

For the truss element, however, the absence of rotational degrees of freedom does determine the types of structures

it can realistically be used to analyze. A truss element resists axial forces but does not resist or transmit moments, so
it is essentially equivalent to a beam element with ball joints at both ends.
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Unlike a beam element, a truss element cannot accept a moment load applied to its nodes, while it can accept nodal
forces. Therefore, truss elements should only be used to model 2-D structures that have pinned joints or 3-D
structures with ball joints.

The connection between 2-D and 3-D continuum element's degrees of freedom and the type of structures these
elements can analyze is not always clear. For example, either 2-D or 3-D continuum elements can be used to model
a cantilever beam with a rectangular cross-section and an end load. Stresses generated would be caused by a
bending moment. At first glance, it might appear to a person new to FEA that the active degrees of freedom would
prevent the element from adequately representing the effects. These elements, however, will correctly analyze the
model because they properly interpret the translations caused by the bending moment. These elements will not
support a moment applied to the nodes. Moments are applied as force couples, which is more realistic.

Degrees of Freedom vs. Boundary Conditions

The relationship between degrees of freedom and boundary conditions is also often unclear. Degrees of freedom are
inherent to an element's formulation whereas boundary conditions are assigned by the user. By applying a boundary
condition to a node, the user can constrain one or all of the active degrees of freedom. The user may further restrict
a node, but cannot release a default degree of freedom. For example, if the rotational degrees of freedom are
inactive for an element type, then setting a boundary condition to free those degrees of freedom has no effect.

Inactive degrees of freedom do not tie a model down or prevent the "rigid body modes encountered” message.
Tying two nodes of a brick model down in all three translation directions (for example, Txyz), still allows the model
to rotate about an axis that passes through both of these constrained points. Fixing a third node in a direction
perpendicular to the plane created by the three nodes will prevent the model from rotating.

Autodesk Simulation Solution

For this example, the following values are used:

e a=24in (outer radius)

e b =12in (inner radius)

e w =50 Ibf/in (uniform annular line load)
e t=0.5in (thickness)

e b/a=05

e E =27.5E6 psi (Young's Modulus)

e v =0.3 (Poisson's Ratio)

(Refer to AVE 002 for the theoretical solution to this problem.)

Four different mesh densities were tested. The line load was applied using nodal forces, which, for axisymmetric
elements, are interpreted as per radian.
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Stress
Local 3-3
Ibf/(in"2)

22338
17855
13373
8890.1
4407 .4
-75.244
-4557 .9
-9040.6
-13523
-18006
-22489

Load Case: 1 of 1
Maximum Value: 22338.1 Ibf/(in*2)
Minimum Value: -22488.6 Ibf/(in"2) 2:

1 < Design Scenario 1 >

Figure 1-1. Stress contour (S-tensor in 33 direction: S33)

As shown in Table 1-2, the deflections generated using 2-D axisymmetric elements with the Linear Static Stress
processor very nearly match theoretical deflections, even with a coarse mesh. With a mesh of 2 x 24, the differences
between theoretical stresses and the analysis results are within 0.3%. Furthermore, with a 1 x 12 mesh, the stresses
are still within 1.9% of each other. (The stresses are read away from the application of the nodal forces.)

These percentages show that it is acceptable to use 2-D or 3-D continuum elements in problems involving bending.
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Stress
Local 3-3
Ibf/(in"2)

22338
17855
13373
8890.1
4407 .4
-75.244
-4557 .9
-9040.6
-13523
-18006
-22489

Load Case: 1 of 1

1 < Design Scenario 1 >

Maximum Value: 22338.1 Ibf/(in*2)

Minimum Value: -22488.6 Ibf/(in"2)

Figure 1-1. Stress contour (S-tensor in 33 direction: S33)

Table 1-2. Comparison of Results

Theor 2-D Axisymmetric
y 1x12 Mesh | 2x24 Mesh | 3x36 Mesh | 4x48 Mesh
Vert'c"z‘i'ntgf]‘;'e“'on 04247 | 04245 | 04247 | -04247 | -0.4247
% Difference NA -0.05 0 0 0
Sigma 33 (psi) | 55440 | 22748 22,390 22,345 22,338
(hoop stress)
% Difference NA 1.83 0.22 0.02 -0.01

AVE -1

The model is constructed in the YZ plane where the Y coordinate corresponds to the radial dimension. For the
results, the local axis 3 corresponds to the hoop direction; thus, the stress tensor S33 will show the hoop stress.

Note: The supplied archive file includes the densest mesh (4 x 48) only.
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AVE -2  Flat Circular Plate of Constant Thickness (3-D)

Reference

Roark, R. J. and Young, C. W., Roark's Formulas for Stress and Strain, 5th Edition, New York: McGraw-Hill,
1975, Page 334, Table 24, Case la.

Problem Description

Accuracy Verification Example 001 compares analysis results with theoretical results found in Case 1a from Roark
and Young. Case la analyzes a flat, annular, circular plate of constant thickness with its outer edge simply
supported, inner edge free, and the load located at the inner edge. The model analyzed for the comparison was
constructed of 2-D axisymmetric elements. Analysis results were shown to be within 0.1% of the Roark and Young
Case 1a theoretical answer.

Theoretical Solution

The theoretical stress and vertical deflection are shown below.

6M _ 6(.7757)(50)(24)

o (hoop stress at inner radius) = = 22340.16 psi
(hoop )= 05)° p
3 _ 3
vertical deflection = K wa_ . 0'1934(50)(24) =-0.4247 inch
' D 314789

Where:
¢ M =moment = K,wa
o K,=0.7757 (based on b =12 ina =24 in)
e w =50 Ibs/in
e t=05in
e E =27.5E6 psi (Young's Modulus)
e v =0.3 (Poisson's Ratio)
e K, =-0.1934 (based on a and b)
D = Et¥/12(1-v?) = 314,789

Autodesk Simulation Solution
To further expand on this point, the Roark and Young theory was again compared to analysis results. This time, the

model analyzed for the comparison consisted of brick elements. The results yielded a maximum hoop stress of
22,497.06 psi (the average of the top and bottom faces), which is within 0.70% of the theoretical solution.
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AVE -2

Displacement
Z Component
in

0
-0.042397
-0.084795
-0.12719
-0.16959
-0.21199
-0.25438
-0.29678
-0.33918
-0.38158
-0.42397

Load Case: 1of 1
Maximum Value: 0 in

Minimum Value: -0.423973 in

1 < Design Scenario 1 >

Figure 2-1. The vertical (Z) displacement vector display of the quarter-section model of the annular, circular
plate referred to in Roark and Young, Case 1a. The vertical deflection at the inside radius is -0.42397 in.

The problem was modeled by constructing a 90-degree portion of the annular, circular plate. The plate was modeled
in the xy plane with the following boundary conditions:

e Along the outer radius, Tz at the bottom
e Along the X-axis, TyRxz fixed along the entire face (for symmetry)
e Along the Y-axis, TxRyz fixed along the entire face (for symmetry)

As explained in AVE 001, the rotational boundary conditions (R, and Ry,) are strictly not needed for brick
elements. We included them in the model as an indication of the symmetry condition.

The mesh consisted of 12 elements along the radius and 24 elements along the circumference and 3 elements along
the thickness.

An annular line load of 50 lbs/in was applied as a force at each node along the top of the inner radius by dividing the

total load for a 12 inch radius by ¥4 (it is one quarter of a circle) and by the number of nodes on the inner radius.
(This included applying half the load to nodes along symmetry planes.)

Table 2-1. Comparison of Results

Vertical Deflection Stress
Deflection (inch) or i Sigma (psi) on M
Theory | Analysis 6 Difference Theory | Analysis 6 Difference
-0.4247 | -0.4240 -0.16 22340.16 | 22493.94 0.69
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AVE -3  Thin-Walled Cylinder with Uniform Axial Load

Reference

Roark, R. J. and Young, W. C., Roark's formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 448, Table 29, Case 1A.

Problem Description

This accuracy verification example is taken from formulas for membrane stresses and deformations in thin-walled
pressure vessels. In this example, a thin-walled cylinder under uniform axial load is analyzed for axial stress and
deflection.

Theoretical Solution

For this example the following values are used:

e p=1,000 Ib/linear in (uniform axial load)

e t=0.1in (cylinder thickness)

e E=30x10°psi (Young's Modulus)

e z=12in (length of cylinder)

e R =mean radius =5 inches

e o;=p/t=1,000/0.1= 10,000 psi (applied axial stress)

e Az =pz/Et= (1,000 * 12)/(30E6 * 0.1) = 0.004 in (deflection)

S L
" '
t t
' ot

oyt

Figure 3-1. Thin-walled cylinder with loading and boundary conditions.
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Autodesk Simulation Solution

The mean radius of the cylinder is modeled in FEA Editor as a 3-D shape and the thickness assigned using
membrane elements. The mean radius of the cylinder is 5 inches and the height (in the Z direction) is 12 inches.
The mesh consists of 4 divisions along the length of the cylinder and 16 divisions along the circumference. To
simulate the unrestrained cylinder in the reference, all nodes on the base were restrained in the Z direction (Tz), the
nodes on the X axis were restrained in Y translation (Ty) and the nodes on the Y axis were restrained in X
translation (Tx). These last two conditions are required for model stability. The nodal loads are calculated as:

e Total load = (1000 Ib/in)(2)(r)(5) = 31415.93 Ib
o Fapplied = total load/node = 31415.93/16 = 1963.49 Ib

Displacement
Z Component
in
0.0040251
0.0036226
0.0032201
0.0028176
0.0024151
0.0020126
0.0016101
0.0012075
0.00080503
0.00040251

0

Load Case: 1 of 1
Maximum Value: 0.00402514 in

Minimum Value: 0 in

t
1 < Design Scenario 1 >

Figure 3-2. Axial deflection contour (dz) of the cylindrical shell (using membrane elements) referred to in
Roark and Young, Table 29, Case 1A.

The model uses membrane elements with E and t the same as above:

e Longitudinal stress (S-tensor:Vector:Z) = 10065 psi

e Longitudinal displacement (Z deflection) = 0.00403 in
Model using plate elements:

e Longitudinal stress (S-tensor:Vector:Z) = 10065 psi

e Longitudinal displacement (Z deflection) = 0.00403 in
Model using brick elements:

e Longitudinal stress (S-tensor:Vector:Z) = 10000 psi
e Longitudinal displacement (Z deflection) = 0.00403 in
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Table 3-1. Comparison of Results

AVE -3

Theor Analysis
y Membrane Elements Plate Elements | Brick Elements
Ve”'c"z‘i'n[gﬁ';'e“'on 0.004 0.00403 0.00403 0.00403
% Difference NA 0.75 0.75 0.75
Sigma (1) (psi) 10000.00 10064 10073 10000
% Difference NA 0.64 0.73 0

Note: The supplied archive file includes the membrane element model only please refer to AVE - 118 for the

plate element model.
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AVE -4  Thick Cylindrical Disk under Uniform Radial Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 504, Table 32, Case 1A

Problem Description

A thick-walled cylindrical disk that has uniform internal radial pressure is analyzed for stress and deflection. The
disk is free to deflect in the radial and longitudinal directions.

Theoretical Solution

Gmax = *((a*a + b*b)/(a*a - b*b)) = 1667 psi (hoop stress at inner radius)
Amax = ((g*b)/E)((a*a + b*b)/(a*a - b*b) + v) = 1.967E-4 inch (radial displacement at the inner radius)

Where:
e (g =1000 radial pressure (psi)
e a=6 outer radius (inch)
e b =23inner radius (inch)
e v =0.3Poisson's Ratio
e E =30E6 Young's Modulus (psi)

Displacement

Magnitude
in

0.00019695
0.00019055
0.00018414
0.00017774
0.00017133
0.00016493
0.00015853
0.00015212
0.00014572
0.00013931
0.00013291

Load Case: 1 of 1

Maximum Value: 0.000196951 in

Minimum Value: 0.000132911 in E:

1 < Design Scenario 1 >

Figure 4-1. A displacement magnitude vector display of the thick-walled cylinder referred to in Roark and
Young, Table 32, Case 1A. (See also note 2.)
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Autodesk Simulation Solution

The model is composed of 576 brick elements (3 along the length, 6 through the thickness and 32 around the
circumference). The inner radius is 3 inches and the outer radius is 6 inches. The length is 3 inches. The model is
fixed at four points on one end to allow the cylinder to expand longitudinally and radially per the case in Roark's.
These 4 points are not restrained in their axial direction. A uniform internal pressure of 1000 psi is applied. The
results generated by the Linear Static Stress Analysis processor are:

® Omax = 1697 psi (hoop stress)
® Amax = 1.961E-4

Table 4-1. Comparison of Results

Delta max (inch) oh i sigma max (psi) %
Theory | Analysis 0 Difference Theory Analysis | Difference
1.967e-4 | 1.962e-4 -0.3 1667 1697 1.8

Notes:

1. The hoop stress is obtained by viewing the stress tensor in the X direction and then reading the stress at a
node on the Y axis. (At this location, the X direction corresponds to the hoop stress.) Likewise, the Y
direction stress tensor shows the hoop stress for any node on the X axis.

2. The maximum displacement magnitude in the magnitude plot includes the effect of axial deflection as well
as radial deflection. Thus, the radial deflection given above was obtained from the X displacement or Y
displacement display.
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AVE -5  Rectangular Plate with All Edges Simply Supported and Uniform
Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 387, Table 26, Case 1C

Problem Description

A rectangular plate with all edges simply supported and uniform pressure over a central rectangular area is analyzed
for maximum stress.

Theoretical Solution

sigma max = (BW)/t* parallel to the short edge = 11,264 psi
Where:
o W =qajb;
g = 100 uniform pressure (psi)
e a =20 length of rectangular plate (inch)
¢ b =10 width of rectangular plate (inch)
e a; = 8 length of central rectangular area (inch)
¢ b; = 4 width of central rectangular area (inch)
e t=0.5 thickness of rectangular plate (in)
e [ =0.88 value from Case 1C Table using a = 2b, a;/b = 0.8, and by/b = 0.4.
e v =0.3 Poisson's Ratio
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Autodesk Simulation Solution

The model is composed of 200 3-D plate/shell elements drawn in the X-Y plane. Each element is one-inch square.
There are 20 elements along edge "a" and 10 along edge "b". The boundary conditions are set at Txz on the short
edges of the plate and Tyz on the long edges (to satisfy Roark's definition of “simply supported™). The plate
elements are 0.5 inches thick. Any material can be used provided that Poisson's Ratio = 0.3 and the two moduli are
compatible with this. A pressure of 100 psi is applied to an 8" x 4" rectangular area at the center of the plate. The
long edge of the loaded area is parallel to the long edge of the plate. The results generated by the Linear Static
Stress Analysis processor are:

Omax = 11,255 psi

Stress
Tensor Y-Y
Ibf/(in"2)

11255
9003.8
6752.8
4501.9
2250.9 : gz
9.0949e-013 < = 9 %
-2250.9 : : <

-4501.9
-6752.8
-9003.8
-11255

Load Case: 1of 1

Maximum Value: 11254.7 Ibf/(in*2)
Minimum Value: -11254.7 Ibf/(in"2)

1 < Design Scenario 1 >

Figure 5-1. An Syy tensor stress contour of the rectangular plate referred to in Roark and Young, Table 26,
Case 1C.

Table 5-1. Comparison of Results

Omax (pS|) 0, P
Theory | Analysis /6 Difference
11,264 11,255 -0.08
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AVE -6  Flat Rectangular Plate with Three Edges Simply Supported

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 389, Table 26, Case 2A.

Problem Description

A flat rectangular plate 10" x 5" x 0.25" with 3 edges simply supported and free on the fourth and a uniform 50 psi
load is analyzed for maximum stress.

Theoretical Solution

Maximum stress: sigma max = Bgb*b/(t*t) = 15,800 psi parallel to free edge
Where:

e t=0.25 thickness (inch)

e g =50 uniform pressure (psi)

e a=10 length of long side of plate (inch)

e b =>5length of short side of plate (in)

e B =0.79 parameter from Roark and Young table based on a/b =2

e v =0.3Poisson's Ratio

Autodesk Simulation Solution

The model is composed of 200 3-D plate/shell elements drawn in the X-Y plane. Each element is one-half inch
square. There are 20 elements along edge "a" and 10 along edge "b". The boundary conditions are set at Tyz on
both "a" edges and at Txz on one of the "b" edges. Any material can be used provided that Poisson's Ratio = 0.3 and
the two moduli are compatible with this. The plate elements are 0.25 inches thick. A pressure of 50 psi is applied to
the entire plate. The Linear Stress Analysis processor was used for the analysis.

Max Stress in the "b" direction = 15,772 psi

Stress
Tensor Y-Y
Ibf/(in2)

15772
12618
9463.4
6309
3154.5
9.0949e-013
-3154.5
-6309
-9463.4
-12618
-15772

Load Case: 1of 1
Maximum Value: 15772.4 Ibf/(in*2)

Minimum Value: -15772.4 Ibf/(in*2) k:

1 < Design Scenario 1 >

Figure 6-1. Front view of the problem in Roark and Young Table 26, Case 2A. Stress tensor Y-Y contours are
shown.
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Stress
Tensor Y-Y
Ibf/(in”2)
15772
12618
9463.4
6309

3154.5
9.0949e-013
-3154.5
-6309
-9463.4
-12618
-15772

Load Case: 1 of 1

1 < Design Scenario 1 >

Maximum Value: 15772.4 Ibf/(in"2)

Minimum Value: -15772.4 Ibf/(in"2)

Figure 6-2. Backside view of the problem in Roark and Young Table 26, Case 2A.

Table 6-1. Comparison of Results

O'max (pSi) 0, P
Theory | Analysis 6 Difference
15,800 15,772 0.18
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AVE -7 Cantilever Beam with Nodal Force

Reference

Roark, R. J. and Young, W. C., Roark's Formula for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 96, Table 3, Case 1A.

Problem Description

A 16" long cantilever beam, which is fixed at one end and free at the other, is made of steel and has a 1" x 1" square
cross-section. A 100-Ib downward force is applied at the center of the beam. The beam is analyzed for deflection.

Theoretical Solution

The deflection at the free end of the beam is given as:
ﬂ
6 El
Where:

e W =100 applied force (Ib)

e E =30E6 modulus of elasticity (psi)

e 1 =1/12 moment of inertia (inch)

e | =16 length of beam (inch)

e a=8distance from free end of beam to applied load (inch)

Ya= (21°-31%a+a®) =-0.01706667 inch

Autodesk Simulation Solution
The beam is modeled with two beam elements, each of which is 8" long. A force of 100 Ibs is applied at the center

of the beam in the negative Y direction. One end of the beam has boundary conditions that fix all three translations
and rotations.

The results generated by the Linear Static Stress Analysis Processor are:
*  ya=-0.017149 inch
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Displacement
Y Component
in

0
-0.0017149
-0.0034298
-0.0051447
-0.0068596
-0.0085745
-0.010289
-0.012004
-0.013719
-0.015434
-0.017149

Load Case: 1 of 1
Maximum Value: 0 in
Minimum Value: -0.017149 in

1 < Design Scenario 1 >

Y

L.

AVE -7

Figure 7-1. Undisplaced and displaced views of the cantilever beam in Roark and Young's Table 3, Case 1A.

Table 7-1. Comparison of Results

Comparison of Results

Ya (inch) o i
Theory Analysis 6 Difference
-0.017067 | -0.017149 0.48

Note: This example demonstrates that a coarse mesh such as this will give accurate deflections and stresses at
the nodes. To get a deflection or stress distribution along the length of the beam, more elements would be used.
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AVE -8 Toroidal Shell under Uniform Internal Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 454, Table 29, Case 5A.

Problem Description
A toroidal shell under uniform internal pressure is analyzed for stress and deflection. The model represents one

octant of an inner tube with symmetric boundary conditions imposed at all the edges. We use a total outside
diameter of 30.4", an outside width of 10.4", and a wall thickness of 0.2". An internal pressure of 35 psi is applied.

Sigma _
Max

Figure 8-1. A diagram shows a cross-section of the toroidal shell. The
cross-section is revolved around the Y axis.

Theoretical Solution

Sigma is maximum meridional stress (occurring inside the shell).

Omax = (@J(zA_ Bj at point 0 = 1312.5 psi

2T A-B
Where:

e A =10"radius to center

e B =15"radius air space

e Q =35 psi internal pressure
e T =0.2"wall thickness
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Autodesk Simulation Solution

The problem can be analyzed as 2-D axisymmetric elements, 3-D plate elements, or 3-D brick elements. Brick
elements are used for this example. Due to symmetry, one-eighth of the entire torus was modeled. Eighteen
elements were used in the meridional and circumferential directions and one element along the thickness.

The appropriate boundary conditions were applied to each symmetry plane, as follows:

o X-Symmetry (Tx,Ry,Rz) to all nodes along the edge surface lying in the YZ plane.
e Y-Symmetry (Ty,Rx,Rz) to all nodes along the edge surface lying in the XZ plane.
e Z-Symmetry (Tz,Rx,Ry) to all nodes along the edge surface lying in the XY plane.

The toroidal model that is constructed has 722 nodes and 324 brick elements. An arbitrary set of material properties
were assigned as follows:

e Mass Density = 0.0001 Ibs-s%/in/in

e E=250,000 psi

e Poisson’s Ratio=0.4

The result of interest is the Y'Y stress tensor, which is a function of the load and geometry only and is not affected
by the material properties.

Stress
Tensor Y-Y
Ibf/(in"2)
1365.3
1229.6
1093.8
958.02
822.25
68648
550.71
414.94
27917
1434
7.6257

o
g
'lfﬁll,ﬁiy

Load Case: 10f 1

Maximum alue: 1365.33 IbfA(in"2)

Minirnmum valuge: 7 82575 IbfAin"2) x
0.000 3.819 in 7.839 11.758

1 < Design Scenario 1 > f ! I I

Figure 8-2. A stress tensor display showing Y-direction stress of the toroidal model
constructed for Roark and Young's Table 29, Case 5A.

The numbers used in the Roark and Young formula are thin wall (average stress). Thus, the average of the y-
direction stress at the inside and outside of the torus is:

o Gmax = (1/2)(1252.7 + 1365.3 psi) = 1309.0 psi

Table 8-1. Comparison of Results

Omax (PSI) or i
Theory | Analysis 6 Difference
13125 1309 -0.3
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AVE -9  Beam Guided at the Left and Fixed at the Right

Reference

Roark, R. J. and Young, W. C., Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill, 1975, page
96, Table 3, Case 1b.

Problem Description
Case 1b is a beam that is guided at the left end (A) and fixed at the right (B). A concentrated downward load is
applied at a distance "a" from the left end of the beam. The model analyzed is a 16" long steel beam with a 1" x 1"

square cross-section. A 100 pound downward force is applied at the center of the beam.

Theoretical Solution

Ra=0

yg=0

0,=0

=0

M, = V\/(L——a)z =200 inch Ib

Mg = M =—600 inchlb

2L

Ya = ﬂ(l_— a)’(L+2a)=—6.827E—3 inch
12El

Rg =W =100

Where:

e W =100 applied force (Ib)

E = 30E6 modulus of elasticity (psi)

e | =1/12 moment of inertia (inch*)

L =16 length of beam (inch)

e a =8 distance from guided end of beam to applied load (inch)

Autodesk Simulation Solution

The beam is modeled with ten beam elements. The cross sectional properties are manually entered and the shear area
values have been omitted since the theoretical results do not include shear effects. A force of 100 Ibs is applied at
the center of the beam in the negative Y direction. The right end of the beam is completely fixed (TxyzRxyz) and
the left end of the beam is fixed except for X and Y translations (TzRxyz). The results generated by the Static Stress
Analysis Processor are:

[ Ra = 0.0 . Y = 0.0

e 0,=00 e 03=00

e Mp=200.0inlb e Mg=-600.0inlb
oy, =-0.00682694 inch e Rp=100.01b
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Displacement
Y Component
in

0
-0.00068269
-0.0013654
-0.0020481
-0.0027308
-0.0024135
-0.0040962
-0.0047789
-0.0054616
-0.0061442
-0.0068269

Load Case: 1of 1

Maximum Value: 0 in

Minimum Value: -0.00682694 in

1 < Design Scenario 1>

Y

L.

AVE -9

Figure 9-1. Undisplaced and displaced views of the beam in Roark and Young's Table 3, Case 1b.

Table 9-1. Comparison of Results (M and Mg)

Ma (Ib-in) % Mg (Ib-in) % yA (Ib-in) %
Theory | Analysis | Difference | Theory | Analysis | Difference | Theory Analysis Difference
200 200.0 0.00 -600 -600.0 0.00 -6.827e-3 | -6.827e-3 0.00

Notes:

1. Reaction forces and moments can be obtained by viewing the shear and moment results in the beam
elements in Superview or in the stress output file (.s file) by activating the "Stress data™ checkbox in the

"Output” tab of the "Analysis Parameters™ dialog.

The deflections can be obtained from either Results interface or the summary file (.L file) by activating
the "Displacement/eigenvector data" checkbox in the "Output" tab of the "Analysis Parameters" dialog.

The slopes 6. and 6g can be obtained from the summary file (.L file) by activating the
"Displacement/eigenvector data" checkbox in the "Output" tab of the "Analysis Parameters" dialog.
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AVE - 10 Thick-Walled Spherical Vessel under Uniform Internal Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 506, Table 32, Case 2a.

Problem Description

A thick-walled spherical vessel under uniform internal pressure is analyzed for radial stress and deflection. For this
example, we chose an outside radius of 10" and an inside radius of 7" with an internal pressure of 10,000 psi. Steel
material properties were used.

Theoretical Solution

o1 = 0, is the normal stress in the hoop or tangential direction at radius r.

gb® Y a’+2r®

Ab is the radial displacement at the inside radius.

Ab :(q_bj[(l—v)(a3+2b3)+\,}

EN 2@°-b%

Where:

* a =10 inch outside radius

* b =7 inch inside radius

* g = 10,000 psi internal pressure
* v = 0.3 Poisson's Ratio

* E =30E+6 psi Young's Modulus

for r =7 inches

* o, =12,831.05 psi
* Ab =0.002796 inch

Autodesk Simulation Solution

One-eighth of the spherical thick shell is modeled using 3-D brick elements. Care is taken to get a smooth mesh
with smaller elements at the inside radius where the high stresses were expected. The resulting mesh has 546 nodes
and 375 brick elements with 5 layers of elements through the thickness.

Analyzed stress tensor contour:

* Sy max =12,881.9 psi (S, = Syy = hoop stress on XZ plane)

Analyzed displacement vector contour:

* translation max = 0.002795 inch
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12882
10684
8487
6289.6
4092.1
1894.7
-302.78
-2500.2
-4697.7
-6895.1
-9092.6

Stress
Tensor Y-Y
Ibf/(in"2)

Load Case: 1of 1
Maximum Value: 12881.9 Ibf/(in*2)
Minimum Value: -9092.58 Ibf/(in*2)

1 < Design Scenario 1 >

Figure 10-1. A stress contour of the model created for Roark and Young's Table 32, Case 2a.

Table 10-1. Comparison of Results

Translation max (inch)

; Sigma 2 (psi) .
9 0
Theory Analysis %0 Difference Theory | Analysis Yo Difference
0.002796 | 0.002795 -0.11 12831.05 | 12,881.9 0.40

Accuracy Verification Examples Manual, Version 2014

AVE -10

89



AVE - 11

AVE - 11 Thick-Walled Cylindrical Vessel under Uniform Internal Radial
Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 504, Table 32, Case 1la.

Problem Description

A thick-walled cylindrical vessel under uniform internal pressure is analyzed for hoop stress and radial deflection.
For this example, we chose an outside radius of 10" and an inside radius of 7", with an internal pressure of 10,000
psi. Steel material properties are used.

Theoretical Solution

G, is the normal stress in the hoop or tangential direction at radius r.

gb® \ a’+r?
O, = T2 ) a2_p?

Ab is the radial displacement at the inside radius.

2 2
- (25

Where:

* a =10 outside radius (inch)

* b =7 inside radius (inch)

* (0 =10,000 internal pressure (psi)

* v =0.3 Poisson's ratio

* E = 30E+6 Young's modulus (psi)
forr=7:

* o, =29,216 psi
* Ab=0.007517"

Autodesk Simulation Solution

An 8" section of one quarter of the thick cylindrical shell is modeled using 3-D solid elements. The resulting mesh
has 594 nodes and 400 elements with five layers of elements through the thickness. Symmetry boundary conditions
are applied such that the model represents 1/8 of the actual object. (Z Symmetry on the XY cut-plane, Y Symmetry
on the XZ cut-plane and X Symmetry on YZ cut-plane.) A pressure of 10,000 psi is applied at the inner surface of
the vessel.

From the Results interface, Stress tensor display:
* SY-Y max = 29,254 psi - the hoop stress at the inside radius.

From Results Interface, X displacement vector display:
* translation max = 0.007514" - the displacement at the inside radius.
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Stress
Tensor Y-Y
Ibf/(in*2)

29254
25425
21596
17766
13937
10108
6278.1
2448.8
-1380.6
-5210
-9039.4

Load Case: 1of 1

1 < Design Scenario 1 >

Maximum Value: 29254.4 Ibf/(in*2)

Minimum Value: -9039.38 |bf/(in"2)

(=

& ¥
7 L

ede

AVE - 11

Figure 11-1. An 8" section of one quarter of the thick cylindrical shell described in Table 32, Case 1a. Note
that S22 (equivalent to Syy for brick elements) represents the hoop stress only on the face of the bottom of the

view.

Table 11-1. Comparison of Results

Translation Max (inch)

Theory

Analysis

S22 Max (psi)

% Difference

Theory

Analysis

% Difference

0.007517

0.007514

0.04

29,216

29,254

0.13
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AVE - 12

AVE - 12 Hollow Cylinder with Thick Walls and Temperature Gradient

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 585, Section 15.6, Case 16.

Problem Description

A thick-walled cylindrical vessel under uniform logarithmic temperature gradient throughout the thickness is
analyzed for thermal stress. There is a temperature difference of AT between the outside surface and the inside
surface of the cylinder. The ends of the cylinder are not constrained. The solution is valid away from the ends of
the cylinder. The internal temperature distribution is logarithmic throughout the thickness (i.e., a steady-state
temperature distribution). For this example, an outside radius of 2" and an inside radius of 1" were used with a
temperature difference of 10°F.

Theoretical Solution

Outer surface:

N [1_ 2b?
2(1-v)loge(Cy U ¢*~b

Inner surface:

_ ATeE [1_ 2¢?

" 20-vloge ¢ U e*-b

Where:

C
> loge Ej tension = 998 psi circumferential stress

(¢}

C
loge Bj compression = -1574 psi circumferential stress

* AT = 10°F temperature difference (hotter on inside than outside)
* a = 6E-6/°F coefficient of thermal expansion

* E = 30E6 psi modulus of elasticity

* v =0.3 Poisson's ratio

* ¢ =2 inches outside radius

* b =1 inch inside radius

Autodesk Simulation Solution

One-eighth of the thick-walled cylinder is modeled with 3-D brick elements. The mesh consists of 9 elements
through the thickness (with smaller elements near the inside where the stress is higher), 8 elements around the
circumference, and 8 elements along the length (4 inches in our model). Symmetry conditions of T, are applied to
the nodes at z = 0, conditions of T, are applied to the nodes at Y = 0 and Ty to the nodes at X=0.

If the temperatures were known at each radial position (easy to calculate with the help of a heat transfer book), the
temperatures could be applied manually to the model. Alternatively, a steady-state heat transfer analysis could be
performed to calculate the temperature distribution, then use these results for the stress model. (The supplied
archive uses the latter approach.)
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Temperature
°F
10 = 3.555e-009
0 —
2 |
7 @
6 ‘ Wy
5 iq
4 ‘
3 ‘
2 =
1 |
° |
‘ 3.218
Load Case: 1of 1 ‘
1.520
Maximum Value: 10 °F

Minimum Value: 3.55454e-009 °F v&x

1 < Design Scenario 1 >

Figure 12-1. The temperature results at various radial positions.

From the Results interface, the stress tensor display:

Outer surface:

* oy =984 psi
Inner surface:
* o= -1560 psi

Both results are taken at the symmetry face along the length; that is, the face farthest from the free end.

Stress
Tensor Y-Y
Ibf/(in*2)
1111.2
832.73
554.24
275.75
-2.7466
-281.24
-559.73
-838.22
-1116.7
-1395.2
-1673.7

Load Case: 1of 1

Maximum Value: 1111.22 Ibf/(in*2)

Minimum Value: -1673.7 Ibf/(in"2)

k

2 < Design Scenario 2 >

2

Figure 12-2. A stress contour of the model created for Roark and Young's Section 15.6, Case 16. Note that

S22 (equivalent to Syy for brick elements) represents the hoop stress only on the face at the bottom of this
view.
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Table 12-1. Comparison of Results

o (Outer Surface) (psi)

% Difference

Theory

Analysis

o (Inner Surface) (psi)

Theory

Analysis

% Difference

998

984

-14

-1574

-1560

-0.9
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AVE-13

AVE - 13 Flat Rectangular Plate with All Edges Fixed and Uniform
Pressure Loading

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 392, Table 26, Case 8A.

Problem Description

A flat rectangular plate with all edges fixed under a uniform pressure loading is analyzed for maximum stress and
deflection.

Theoretical Solution

The maximum stress will occur at the center of the long edge with a value of:
Omax = P1b?/t? = 28,650 psi
Where:

* (=100 uniform pressure (psi)

* a =12 length of plate (inch)

* b =6 width of plate (inch)

* t=0.25 thickness of plate (inch)

* B, =0.4974 value from case 8A with a/b =2

* v =0.3 Poisson's Ratio

Autodesk Simulation Solution

One quarter of the plate is modeled in the X-Y plane with 3-D plate/shell elements by using symmetry boundary
conditions (24 elements along the long edge and 12 elements along the short edge). Because the stress is maximum
at the center of the long edge, one element at this location was further subdivided into 17 elements using a geometric
progression with an adjacent ratio of 1.333.

Stress
von Mises
Ibf/(in*2)

25516
22996
20476
17956
15436
12916
10396
7876.2
5356.2
2836.2 L
316.15

Load Case: 1o0f 1
Maximum Value: 25516.4 Ibf/(in*2)
Minimum Value: 316.152 [bff(in*2) I

X

1 < Design Scenario 1 >

Figure 13-1. A close-up display of the mesh at the corner where stress is maximum.

Accuracy Verification Examples Manual, Version 2014 95



AVE-13

The nodes at X = 6 and Y = -3 are fully constrained. To apply symmetry conditions, the nodes at Y = 0 are
constrained in TyR,,, while the nodes at X = 0 are constrained in T,Ry,. The model is processed with the linear static
stress analysis processor. The S, stress tensor contour is shown in Figure 13-2 below. The maximum stress is:

Gmax = 28,682 psi

Stress
Local 2-2
Ibff(in"2)
28682
22946
17209

-1.819e-012

11473
5736.5

-5736.5

-11473
-17209
-22946

C

~ T Lo |
& Sris

-28682

Load Case: 1of 1
Maximum Value: 28682.4 |bf/(in*2)

Minimum Value: -28682.4 |bf/(in*2)

1 < Design Scenario 1 >

Y

L.

Figure 13-2. Results display of the stress tensor in the Local Y direction (Sy,)

Table 13-1. Comparison of results

Oma (pSI) 0, ;
Theory | Analysis 6 Difference
28,650 28,682 0.11
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AVE - 14 Flat Rectangular Plate with Two Sides Fixed, Two Sides Simply
Supported and Uniform Load

Reference

Roark, R. J. and Young, W. C., Roarks's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 390, Table 26, Case 5A.

Problem Description

A flat rectangular plate 20" x 10" x 0.1", with the two short sides fixed, the two long sides simply supported and a
uniform 10 psi load is analyzed for maximum stress and deflection.

Theoretical Solution

The maximum stress occurs at the center of the short edge and has a value of:
* maximum stress = Bgb®/(t%) = 71460 psi
The maximum vertical deflection occurs at the center of the plate and has a value of:
* maximum deflection = -agb*/Et® = -0.3073 inch
Where:
* t=0.1 thickness (inch)
* =10 uniform pressure (psi)
* a =20 length of long side of plate (inch)
* b =10 length of short side of plate (inch)
* B =0.7146 parameter from Roark and Young
* E = 30E6 Young's Modulus
* v =0.3 Poisson's Ratio
* o =0.0922 parameter from Roark and Young

Autodesk Simulation Solution

The plate was modeled in the X-Y plane using 1/4 symmetry and is composed of 214 3-D plate/shell elements.
There are 20 elements along edge "a" and 10 elements along edge "b". The center of the short edge was meshed
finer to achieve higher accuracy. (One element was subdivided into 15 elements using a geometric progression with
an adjacent ratio of 2.)
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Stress
von Mises
Ibf/(in"2)
63759
57510
51260

45010
38760
32510
26260

20010
13761
7510.8
1260.9

Load Case: 1o0f 1

Maximum Value: 63759.4 Ibf/(in*2)

Minimum Value: 1260.94 Ibff(in*2)

BOTTOM

1 < Design Scenario 1 > ‘

Figure 14-1. A close-up display of the mesh at the corner where stress is maximum.

AVE - 14

The boundary conditions are set at Ty, along edge "a" and fixed along edge "b". The symmetry boundary conditions
along the edge at x=0 are set to TxRy,. The symmetry boundary conditions along the edge at y=5 are set to T,R,.

The plate elements are 0.10 inch thick. A pressure of 10 psi is applied on the top surface of the plate.

Stress
Tensor X-X
Ibf/(in*2)
71738
57391

BOTTOM

43043

28695

14348

0

-14348

-28695

-43043

-57391

-71738

Load Case: 1of 1
Maximum Value: 71738.5 Ibf{(in*2)
Minimum Value: -71738.5 Ibf/(in*2)

1 < Design Scenario 1>

Y

vl

Figure 14-2. A stress tensor display (Sxx) of the top surface of the plate.

Table 14-1. Comparison of Results

Theory | Analysis | % Difference
Maximum Vertical Deflection (inch) | -0.3073 -0.3064 0.29
Maximum Stress (Sxx) (psi) 71460 71738 0.39
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AVE - 15

AVE - 15 Uniform Beam with Both Ends Fixed

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, page 576, New York:
McGraw-Hill, 1975, Table 36, Case 2B.

Problem Description

A uniform beam with both ends fixed is analyzed for eigenvalues and frequencies. The beam is 10" long. It is made
of steel and has a 1" x 1" square cross-section. No load is applied to the beam.

Theoretical Solution

The natural frequencies of the beam are given as:

Ko [Elg
fo=— =2

21 \ wL
Where:

* g =2386.4 in/sec? gravity

* w = 0.2836 uniform load per unit length including beam weight (lb/in)
* E = 3E7 modulus of elasticity (psi)

* | = 1/12 moment of inertia (inch*)

* L =10 length of beam (inch)

* K, = parameter from Roark and Young table

Autodesk Simulation Solution

The beam is modeled with 50 beam elements, each of which is 0.2" long. The cross sectional properties are
manually entered and the shear area values have been omitted since the theoretical results do not include shear
effects.

Both ends of the beam are fixed in translation and rotation (TxyzRxyz). Since the theoretical frequencies consider
bending only, boundary conditions of all other nodes are set to TxzRxy. The results generated by Linear Mode
Shapes and Natural Frequencies processor are presented in the table below. One of the bending mode shapes is
shown in Figure 15-1 below.
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Mode: 5of 5

Frequency: 27730.8 cyclesfs
Maximum Value: Not Available
Minimum Value: Not Available

1 < Design Scenario 1>

AVE - 15

Figure 15-1. The Results display shows the second bending mode shapes of the beam in Roark and Young

Table 36, Case 2B.

Table 15-1. Comparison of Results

K Natural Frequencies,
Mode (Roanrk) f. (H2) % Difference
Roark | Analysis
1 22.4 2081 2078 -0.14
2 61.7 5731 5728 -0.05
3 121 11240 11230 -0.09
4 200 | 18580 18564 -0.09
5 299 | 27770 27731 -0.14
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AVE - 16

AVE - 16 Thick-walled Cylindrical Vessel under Uniform External Pressure
Modeled in 3-D

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 504, Table 32, Case 1C.

Problem Description

A thick-walled cylindrical vessel under uniform external pressure is analyzed for radial stress and deflection. For
this example, we chose an outside radius of 10" and an inside radius of 5" with external pressure of 50 psi. Steel
material properties were used.

Theoretical Solution

o, is the normal stress in the hoop or circumferential direction at radius r.
qaz(b2+ rZ)
c, =—
2
r2 (az _ b2 )

Ab is the radial displacement of the inside radius.

2
Ab—_d.23°b
E a’—Db?

Where:

* a =10 outside radius (in)

* b =5 inside radius (in)

* (=50 external pressure (psi)

* E =30E+6 Young's Modulus (psi)
For r =5 inches:

* 0, =-133.33 psi
* Ab=-2.2222E-5in

Autodesk Simulation Solution

A 13" long section of one-quarter of the thick cylindrical vessel was modeled using 3-D solid elements. The
resulting mesh has 1470 nodes and 1080 elements with 9 layers of elements through the thickness, 9 around the
circumference and 15 along the length. A finer mesh was constructed on the inside radius where the stress is higher.
Mirror symmetry boundary conditions are applied such that the model represents one-eighth of the actual object: Tz
for the bottom surface and Ty along the y=0 plane and Tx along the x=0 plane. From the Results interface:

Stress tensor display, hoop stress at inner radius

Sxx =-133.12

Y displacement display, radial displacement of inner radius translation = -2.2203E-5

The stress and displacements were taken at the symmetry plane in the X-Y plane remote from the effects of the free
end.
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-3.2025
-16.193
-29.184
-42.175
-55.166
-68.157
-81.148
-94.139
-107.13
-120.12
-133.11

Stress
Tensor X-X
Ibf/(in*2)

Load Case:

Tof1

Maximum Value: -3.20253 Ibf/(in*2)

1 < Design Scenario 1 >

Minimum Value: -133.111 Ibfi(in"2)

b

Figure 16-1. An Sxx stress tensor display (hoop stress for the right cross-sectional surface).

Table 16-1. Comparison of Results

Radial Displacement of

the Inside Radius (inch) | % Difference o2 (psi) % Difference
Theory Analysis Theory | Analysis
-2.2222E-5 | -2.2203E-5 -0.09 -133.33 | -133.11 -0.16
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AVE - 17

AVE - 17 Thick-walled Cylindrical Vessel under Uniform External Pressure
Modeled in 2-D

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 504, Table 32, Case 1C.

Problem Description

A thick-walled cylindrical vessel under uniform external radial pressure is analyzed for hoop stress and radial
deflection. For this example, we chose an outside radius of 10" and an inside radius of 5" with an external pressure
of 50 psi. Steel material properties were used.

Theoretical Solution

o, is the normal stress in the hoop or circumferential direction at radius r.
qaz(b2+ rZ)
c, =—
2
r2(a2+b?)

Ab is the radial displacement of the inside radius.

2
Ab—_d.23°b
E a’—Db?

Where:

* a =10 outside radius (in)

* b =5 inside radius (in)

* (=50 external pressure (psi)

* v =0.3 Poisson's Ratio

* E = 30E+6 Young's Modulus (psi)
For r =5 inches

* 0, =-133.33 psi
* Ab=-2.2222E-5in

Autodesk Simulation Solution

The cylindrical vessel was modeled using 2-D axisymmetric elements. A 6 x 20 mesh was used (120 elements).
Pressure was applied on the outside edge. Mirror symmetry boundary conditions were applied at the base (T,) such
that the model represents 1/2 of the actual object. The model is 20" long.

Results from the Linear Static Stress Processor (at r = b) are:

* Stress tensor display in the X direction (hoop stress)
Sxx = - 132.24 psi

* Displacement in the Y direction (radial displacement)
Translation = -2.2334E-5
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Stress
Tensor X-X
Ibf/(in*2)

-83.1

-88.325
-93.549
-98.774
-104

-109.22
-114.45
-119.67

-124.9

-130.12
-135.35

Load Case: 1of 1

1 < Design Scenario 1 >

Maximum Value: -83.1001 Ibf/(in*2)

Minimum Value: -135.346 Ibf/(in"2)

AVE - 17

Figure 17-1. A 2-D axisymmetric model of the thick-walled cylindrical vessel described in Table 32, Case 1C.

The stress in the X direction (hoop stress) is shown.

Table 17-1. Comparison of Results

Translation (inch) op i Sxx (psi) or i
Theory Analysis /6 Difference Theory | Analysis % Difference
-2.2222E-5 | -2.2334E-5 0.50 -133.33 | -132.24 0.82
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AVE - 18

AVE - 18 Thin-walled Conical Vessel under Uniform Internal Pressure with
Tangential Edge Supports

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 449, Table 29, Case 2A.

Problem Description

A thin-walled conical vessel under uniform internal pressure with tangential edge supports. A pressure of 10 psi,
wall thickness of 0.10" and an angle of 30 degrees were chosen. Steel material properties were used.

Theoretical Solution

The meridional stress (o) and the circumferential, or hoop stress (c») at radius of curvature R is given as:

and radial displacement (AR) of a circumference as:

2
AR =R (1— Xj
Etcosa 2

* (=10 internal pressure (psi)

* E = 3E+7 Young's Modulus (psi)
* v =0.3 Poisson's Ratio

* o = 30 conical angle (degrees)

* t=0.10 wall thickness (in)

At R =4.013 inch:

* o1 =231.69 psi
* o, =463.38 psi
* AR =5.269E-5 inches
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Autodesk Simulation Solution

The problem can be analyzed as an axisymmetric model composed of 2-D elements, 3-D plate elements or 3-D brick
elements. An additional coordinate system was specified with an axis along the 30 degree slant of the part to get
accurate tangential stress values.

In this case, the model was constructed of 720 brick elements using 1/4 symmetry. Elastic boundary elements were
used for tangential edge support. The static stress processor was used to analyze the model. The following results
were averaged at the inside (node number 1447) and outside (node number 1448) nodes closest to the radius R, and
measured at the nodes in the XY plane (a local coordinate system was used to obtain the o, results):

* o, =(235.15 + 217.91)/2 = 226.53 psi

* o, = (471.26 + 446.09)/2 = 458.68 psi

* AR = (5.339E-5 + 5.163E-5)/2 = 5.251E-5 inch

Stress
Tensor Z-Z
Meridional

Ibf/(in"2)
345.49
311.91
278.33
244.76
211.18
177.6
144.02
110.44
76.861
43.282
9.7037

Load Case: 1of 1

Maximum Value: 345.492 |bfi(in"2)
Minimum Value: 9.70366 Ibf/(in*2)

1 < Design Scenario 1 >

Figure 18-1. A meridional stress contour display of the conical pressure vessel. ZZ is meridional component
of the local (rectangular) coordinate system on the face in the XY plane.
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Stress
Tensor Z-Z
Ibf/(in*2)
547.71
491.79
435.88
379.96
324.04
268.12
212.21
156.29
100.37
44.452
-11.466

Load Case: 1of 1

Maximum Value: 547.712 Ibf/(in*2)
Minimum Value: -11.4659 Ibf/i(in"2)

1 < Design Scenario 1>

Figure 18-2. An Szz stress contour display of the conical pressure vessel. Szz is the hoop stress on the face in
the XY plane.

Table 18-1. Comparison of Results

o (psi) % o, (psi) % AR (inch) %
Theory | Analysis | Difference | Theory | Analysis | Difference | Theory | Analysis | Difference
231.69 226.53 -2.2 463.38 458.68 -1.0 5.269E-5 | 5.251E-5 -0.34

Accuracy Verification Examples Manual, Version 2014 107



AVE - 19

AVE - 19 Straight Bar with Lower End Fixed and Upper End Free

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 534, Table 34, Case 1A.

Problem Description

Case 1A is a straight bar with the lower end fixed and upper end free. The bar is 10 inches long, made of steel and
has a constant circular cross-section of 0.5 inches in diameter. A 10 Ib downward load is applied with no
intermediate load. Because of the loading, a buckling analysis was performed to determine when the bar will
become elastically unstable.

Theoretical Solution

The load at which the bar will buckle is given as:

Where:

* E = 30E6 modulus of elasticity (psi)

* | =0.003068 moment of inertia (in*)

* | =10 length of bar (in)

* K =0.25 parameter from Roark and Young table (P,/P; = 0)
The result is:

* P, =2270.97 Ibs
Autodesk Simulation Solution

The bar is modeled with 10 beam elements, each of which is 1 inch long. A force of 10 Ibs is applied at the top of
the bar in a negative Y direction. The bottom of the bar has all translations and rotations fixed.

The results generated by the Linear Critical Buckling Load processor are:

e  Buckling load multiplier = 226.841 (from Summary file)
e Buckling load = 226.841(10-1b applied load) = 2268.41 Ibf
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Mode: 10f 5

Buckling Load Multiplier: 226.841
Maximum Value: Not Available
Minimum Value: Not Available

1 < Design Scenario 1>

Y

L.

AVE - 19

Figure 19-1. Model of straight bar created for Roark and Young's Table 34, Case 1A. The figure shows both
undeformed and deformed views.

Table 19-1. Comparison of Results

Theory Analysis % Difference
Buckling Load Multiplier 227.1 226.841 0.11
Buckling Load 2270.97 Ibf | 2268.41 Ibf 0.11
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AVE - 20 Wide-flange Beam with Equal Flanges

Reference
Young, Warren C., Roark’s Formulas for Stress and Strain, Sixth Edition, page 64, Table 1, Case 6.
Problem Description

This verification problem tests the capabilities of the "2D Moment of Inertia" command in FEA Editor. The
"Moment of Inertia" menu is used to provide the area and moments of inertia for any closed outline that is drawn in
any plane.

Table 1, Case 6 is a wide-flange beam with equal flanges. For this example, we chose a web depth of 4", a flange
width of 6", a flange thickness of 1", and a web thickness of 1".

Theoretical Solution

* A=2bt+t,d
* 1=[((b(d + 2t)°)/12) - (((b - t,,)d*)/12)] where axis 1 is perpendicular to the web
* 1, = [((b*)/6) + ((t,°d)/12)] where axis 2 is parallel to the web
* b =6 flange width (in)
* d =4 depth of web (in)
* t=1flange thickness (in)
*  ty, =1 web thickness (in)
A=16.0in
I, = 81.333 in*
l, = 36.333 in*

Autodesk Simulation Solution
The outline of the flange was drawn in the Y-Z plane in FEA Editor. The following results were obtained with the
"Moment of Inertia” menu using 2,000 divisions:

e Area=16.01in
e 1,=81373in*
e 1,=36.369in
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2-D Moment of Inertia Re:

sults
16,0100t
(9.7026-017, 2.29450-015)
61,3733 i+
-4.3785e D16 4

36,3692 in4

(0.000, 1.000, 0.000)
(0.000, 0.000, 1.000)

F4

L.

Figure 20-1. Wide-flange beam model in FEA Editor

Table 20-1. Comparison of Results

Theory | Analysis | % Difference
Area (in®) | 16.0 16.01 0.06
I, (in®) | 81.333 | 81.373 0.05
l,, (in%) 36.333 36.369 0.10
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AVE - 21

AVE - 21 Circular Disc Rotating about Its Own Axis with Uniform Angular
Velocity Modeled in 2-D

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Sixth Edition, New York: McGraw-Hill,
1989, page 705, Section 15.2, Case 9.

Problem Description

A homogeneous circular disc of conical cross section which rotates about its own axis with a uniform angular
velocity of 2500 rpm is analyzed for tensile radial stress and tangential inertia stress. The disc has a 4 inch radius
hole, an outer radius of 20 inches, a 1.5 inch inner thickness, and a 0.5 inch outer thickness. Steel material
properties were used.

Theoretical Solution

At any point a distance of r inches from the center, the tensile radial (c,) and tangential (o) inertia stresses are given
by:
or = TK; + Ap; + Bp;
Gt = TKt + Aql + qu
Where:
* T =0.0000282R*N%5
* R is the radius to the apex of the cone

* N is the speed in RPM
* 3 is the weight density

The parameters K, Ky, p1, q1, and g, are given in Roark and Young for a range of r/R from 0 to 1.0. Parameters A
and B were found by setting the radial stress at the inner and outer surfaces to a known value (0 in this case) and
solving the equations simultaneously. The parameters used for this example are:

r'R K, Ki P1 Oa P2 [SP)

Inner Rim [0.143]0.1778]0.1746]1.618(1.558| -33.99 |42.252

Outer Rim|0.714]0.1055]0.142414.056 (2.883|-0.5247| 3.027
r=84 [0.300|0.1761]0.1767|1.898(1.738| -6.371 | 10.89

& = 0.2836 Density (Ib/in®)

e R =28 Conical disk radius (in)

E = 30E+06 Young's modulus (psi)

e v =0.3 Poisson's ratio

T = 39,188 Equation coefficient

e A =-998.95 Derived from equations
e B =157.44 Derived from equations

The stresses at r = 8.4 in. from the center are:

* o, =4001.9 psi
* oy =6902.9 psi
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Autodesk Simulation Solution

AVE - 21

The circular disc was modeled using 160 2-D axisymmetric elements. One node was constrained in the z-direction
to prevent rigid body motion. The loading is centrifugal with a rotation rate of 2500 rpm and the axis orientation set
to the Z direction. The stress results at r =8.4 in. are:

* o, = 3984.45 psi stress tensor in Y direction
* oy = 7030.24 psi stress tensor in X direction

Stress
Tensor Y-Y
Ibf/(in*2)
4067.3
3653.6
3239.8
2826.1
24123
1998.6
1584.8
11711
757.32
343.57
-70.185

Load Case: 1of 1

Maximum Value: 4067.34 |bfi(in"2)
Minimum Value: -70.1846 1bf/(in*2)

1 < Design Scenario 1 >

k

Figure 21-1. Stress results for the homogeneous circular disc of conical section. The Syy stress shown
corresponds to the radial stress.

Table 21-1. Comparison of Results

o (psi) A, o (psi) o
Theory | Analysis | 20 DN ["Froory | Analysis | 20 Drrerence
40019 | 3984.45 2043 6902.9 | 7030.24 184

Note: This problem was reanalyzed in Accuracy Verification Example 023 using 3-D solid (brick) elements.
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AVE - 22

AVE - 22 Circular Disc Rotating about Its Own Axis with Uniform Angular
Velocity Modeled in 3-D

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Sixth Edition, New York: McGraw-Hill,
1989, page 705, Section 15.2, Case 9.

Problem Description

A homogeneous circular disc of conical cross section which rotates about its own axis with a uniform angular
velocity of 2500 rpm is analyzed for tensile radial stress and tangential inertia stress. The disc has a 4 inch radius
hole, an outer radius of 20 inches, a 1.5 inch inner thickness, and a 0.5 inch outer thickness. Steel material
properties were used.

Theoretical Solution

At any point a distance of r inches from the center, the tensile radial o, and tangential o, inertia stresses are given by:
o= TK: + Ap; + Bp;

o= TK;+ Ag; + BQp

Where:

T = 0.0000282R*N%5

R is the radius to the apex of the cone
N is the speed in RPM

d is the weight density

* % % X

The parameters K, K, p1, g;, and g, are given in Roark and Young for a range of r/R from 0 to 10. Parameters A
and B were found by setting the radial stress at the inner and outer surfaces to a known value (0 in this case) and
solving the equations simultaneously. The parameters used for this example are:

r'R K, Ki P1 Ja P2 [Sp)

Inner Rim [0.143]0.1778]0.1746]1.618(1.558| -33.99 |42.252

Outer Rim|0.714]0.1055|0.142414.056 (2.883|-0.5247| 3.027
r=84 |0.300|0.1761]0.1767|1.898(1.738| -6.371 | 10.89

& = 0.2836 Density (Ib/in®)

e R =28 Conical disk radius (in)

E = 30E+06 Young's modulus (psi)
¢ v =0.3 Poisson's ratio

T = 39,188 Equation coefficient

A =-998.95 Derived from equations
B = 157.44 Derived from equations

The stresses at r = 8.4 in. from the center are:

* o, =4001.9 psi
* oy =6902.9 psi
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Autodesk Simulation Solution

The disc was modeled using 2880 3-D solid brick elements. Symmetric boundary conditions were used for one
quarter of the model. In addition, one node at the inner rim was constrained in the z-direction to prevent rigid body
motion. The loading is centrifugal with a rotation rate of 2500 rpm and the axis orientation set to the Z direction.
The stress results r = 8.4 in are:

* o= 3977.48 psi stress tensor in Y direction at Y-Z symmetry plane
* oy = 7017.97 psi stress tensor in X direction at Y-Z symmetry plane

Stress

Tensor Y-Y

Ibf/(in*2)

12183

10981
9779.3 =
8577.7 ===
7376.1 =
6174.5 —_—
4972.9 ===
37713 == x
2560.7
1368.1
166.54

Load Case: 1 of 1

Maximum Value: 12182.5 Ibf/(in*2)
Minimum Value: 166.541 [bf/(in*2) %Y
1 < Design Scenario 1>

Figure 22-1. Stress results for the homogeneous circular disc of conical section. The Syy stress for nodes at
the the Y-Z plane corresponds to the radial stress.

Table 22-1. Comparison of Results

o (psi) 0n M o (psi) o i
Theory | Analysis ¥ Difference Theory | Analysis /6 Difference
4001.9 | 3977.48 0.59 6902.9 | 7017.97 1.67

Note: This problem was analyzed in Accuracy Verification Example 022 using 2-D axisymmetric elements.
The difference between the analyses using 2-D axisymmetric and 3-D solid brick elements are:

* o, = 0.17% difference
* o, =0.17% difference
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AVE - 23 Thin-walled Cylindrical Shell under an Axisymmetric Radial-End
Load

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Sixth Edition, New York: McGraw-Hill,
1989, page 533, Table 29, Case 8.

Problem Description

A long, thin-walled cylindrical shell under an axisymmetric radial-end load is analyzed for maximum stress and
deflection. The loaded end is free and the tube is long enough such that the support conditions have no effect
(A1>6). For this example, we chose a total length of 5 inches and a radius of 2.5 inches. A 50 Ib/in radial end load
and steel material properties were used.

(Gl (i)
@ 0
G (i

Y&X
O D

Figure 23-1. FEA model of the cylindrical shell with loading and boundary conditions.

Theoretical Solution

The longitudinal stress (o;) for this case is zero everywhere. The maximum radial displacement (Ay) and
circumferential or hoop stress (c,) are respectively given as:

Vo
Ay=——"2_
MEPYYE
2VoAR
G, =——""—
t
Where:
1
\ x{w—w)}‘*
R?t?
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3
D= Et

12(1-v?)
* Vo =50 Radial end load (Ib/in)
* R = 2.5 Cylinder radius (in)
* t=0.1 Cylinder wall thickness (in)
* E = 30e+6 Young's modulus (psi)
* v =0.3 Poisson's ratio

Maximum values (at the loaded end) are:
* Ay =-5.356 e-4 in
* o, = 6427 psi

Autodesk Simulation Solution

AVE - 23

The cylindrical shell was modeled using 1,512 plate/shell elements and 1/4 symmetry boundary conditions (T R, on
the y=0 edge, and T,R, on the x=0 edge with one node fixed T, for solution stability). Note that the longitudinal
axis is the z-axis. Results from the linear stress processor at the loaded end are:

* Radial displacement = -5.343 e-4 in
* Circumferential stress = 6463 psi average

Stress
Local 1-1
Ibff(in"2)

809.87
82.565
-644.74
-1372
-2099.3
-2826.6
-3553.9
-4281.3
-5008.6
-57359
-6463.2

Load Case: 1 of 1
Maximum Value: 809.868 lbf/(in"2)
Minimum Value: -6463.16 1bf/(in"2)

1 < Desigh Scenario 1 >

v

Figure 23-2. Hoop stress (o) contour for the thin cylindrical shell.

Table 23-1. Comparison of Results

Theory Analysis | % Difference
Radial Displacement (Ay) (inch) | -5.356e-4 | -5.343e-4 0.24
Circumferential Stress (o,) (psi) 6427 6463 0.56
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AVE - 24 Test of the Capabilities of the ‘dt/dh’ Option for the Plate Element

Reference
Young, Warren C., Roark's Formulas for Stress and Strain, Sixth Edition, page 721, Case 5.
Problem Description

This verification example tests the capabilities of the "dt/dh™ option for the plate element. The "dt/dh" option allows
the user to model a linear temperature gradient in the element's local 3 direction, which is through the thickness.

A flat plate of uniform thickness with fixed edges and a uniform linear temperature gradient between the two faces
of the plate is analyzed for maximum stress. For this example, we chose a 6" x 12" x 1" thick plate with a
temperature difference of 100 degrees between opposite faces.

Theoretical Solution

Maximum resulting bending stress:
1 E
oy =—AT
e =Y @-v)
Where:

* AT = 100 Temperature difference (°F)

* vy =6.5E-06 Thermal expansion coefficient
* E = 30E+06 Modulus of elasticity (psi)

* v =0.3 Poisson's ratio

= 13,928.57 psi at the center

Autodesk Simulation Solution

The plate was modeled in FEA Editor with 72 plate elements. All nodes on the edges of the plate were fully
constrained. The "delta T thru thickness" temperature gradient was specified in the "Element Definition" data entry
screen.

The bending stress tensor (S11) results from the analysis is:
* o =13928.57 psi
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Stress
Tensor X-X
Ibf/(in*2)
13928.57
11142.86
8357.143
5571.429
2785.714

9.094947e-013
-2785.714
-5571.429
-8357.143
-11142.86
-13928.57

Load Case: 1of 1

Maximum Value: 13928.6 Ibf/(in*2)
Minimum Value: -13928.6 Ibf/(in"2)
1 < Design Scenario 1 > !

Figure 24-1. Stress tensor (S11) display from the Results environment.

Table 24-1. Comparison of Results

o (psi) o Di
Theory Analysis 6 Difference
13,928.57 13,928.57 0.0
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AVE - 25 Rectangular Plate under Uniform Load Producing a Large
Deflection

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, McGraw-Hill, New York,
1975, page 408.

Problem Description

The case described is a rectangular plate, held, not fixed, under uniform load producing a large deflection. The
model is a square 36" x 36" x 0.1046" plate made of steel. A 0.5 psi pressure load is applied to the plate. Because
of the large deformation (relative to the plate thickness), a nonlinear analysis was performed using MES with the
pressure loading feature.

Theoretical Solution

From Roark and Young, the relationships among load, deflection and stress are interpolated as:

yit=1.76
Gh?%/Et? = 20.40
based on gb*/Et* = 247.9

Where:

* (=0.5applied pressure load (psi)
* E = 28.3E6 modulus of elasticity (psi)
* t=0.1046 plate thickness (in)
* b =36 plate length (in)
* v =0.316 Poisson's ratio
Deflection (calculated from above formula) at plate center:

y =0.184 in

The stress due to diaphragm and bending stresses (calculated from the above formula) at the plate center:

o = 4874 psi
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Autodesk Simulation Solution

AVE - 25

Due to geometric symmetry, only 1/4 of the plate was modeled using 36 high-order shell elements. A 0.5 psi load

was applied normal to the plate. The two edges of the plate were held, but not fixed (T, applied only).

The results of the nonlinear static stress analysis by Mechanical Event Simulation (MES) processor are:

Deflection at plate center:
* y=0.184in

Stress at plate center:

* o = 4640 psi on tension side

Displacement
Magnitude
in

0.18446
0.16601
0.14757
0.12912
0.11068
0.09223
0.073784
0.055338
0.036892
0.018446
0

Time: 50 s

Minimum Value: 0

Time Step: 50 of 50

Maximum Value: 0.18448 in

in

1 < Design Scenario 1>

K

Figure 25-1. Nonlinear displaced shape and displacement contour from MES

Table 25-1. Comparison of Results

Comparison of Results

Theory | Analysis | % Difference
y (inch) | 0.184 0.184 0
o (psi) 4874 4640 -4.8
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AVE - 26 Solid Circular Plate Section of Constant Thickness with Uniform
Load

Reference

Young, Warren C., Roark's Formulas for Stress and Strain, Sixth Edition, page 437, Table 24, Case 27.

Problem Description

A solid circular plate section of constant thickness with a uniformly distributed load over the entire surface and the
edges simply supported is analyzed for maximum stress. A 60° section was used with a radius of 10 inches and a
thickness of 0.1 inches. A 10-psi pressure load was applied normal to the section. Steel material properties were
used.

Theoretical Solution

o, and o are radial and tangential stresses in the section, respectively. The maximum values of these stresses are
given by:

ga’
Or = B t2
2
a
Ot = qut—z
Where:

* a =10 radius (inches)
* t=0.1 plate thickness (inches)
* (=10 applied pressure (psi)
* B =0.147 parameter from Table 24, Roark and Young for 60°
* B, =0.155 parameter from Table 24, Roark and Young for 60°
* v =0.3 Poisson's ratio
For a 60° angle section:
* o, = 14,700 psi
* oy = 15,550 psi

Autodesk Simulation Solution

The circular section was modeled using 800 plate/shell elements. A 20 x 40 mesh (tangential and radial,
respectively) was used. Simply supported boundary conditions were applied to all edges (T,y, applied only).

In order to use the local element orientations to view the radial and tangential stresses, the Element Definition was

set such that the "Orient i Node" option was selected for the "Nodal Order method". A coordinate to define the
element's in-plane orientation was manually entered.
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Results from the Linear Static Stress processor are:
* 6,= 05 =14,651 pSl
* oy = oy = 15,385 psi

Stress
Local 1-1
Absolute Value
Ibf/(in*2)
15385
13854
12323
10793
9262.2
77316

6201

4670.4
3139.8
1609.2
78.635

Load Case: 10of 1
Maximum Value: 15384.5 Ibf/(in"2)
Minimum Value: 78.6348 Ibf/(in"2)

1 < Design Scenario 1>

Figure 26-1. Tangential (o1;) stress contour (absolute value)

Table 26-1. Comparison of Results

Theory | Analysis | % Difference
or =6 (psi) | 14,700 14,651 0.33
6. =oy (psi) | 15,550 15,385 1.06
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AVE - 27 Thin Closed Circular Ring with Circular Cross Section

Reference

Young, Warren C., Roark's Formulas for Stress and Strain, Sixth Edition, page 263, Table 17, Case 1.

Problem Description

This example is a thin closed circular ring with circular cross section. Two concentrated loads of 100 Ibs are applied
at the top and bottom of the ring acting toward the center. Steel material properties are used. We want to find the
internal moments and deflections of the ring.

Theoretical Solution

The moment at the top load location (M,), change in horizontal diameter (Dy), and change in vertical diameter (Dy)
from Roark's formulae are:

M. WRK,
T
3 2
H=WR E—K2+2K2
El | 2 T

El 4 T

Ki=1-a+ B~ 1 forthin rings
K, =1 - a ~ 1 for thin rings
Where:
* A =0.031416 beam cross sectional area (in?)
* R =10 radius of ring (in)
* W =100 applied force (Ib)
* E = 3e7 modulus of elasticity (psi)
* v =0.3 Poisson's ratio
* 12 = 13 = 7.854e-5 moment of inertia (in*)
* 72 =73 = 7.854e-4 section moduli (in*)

_ 3 2
o, _ ~WR [nKl_szJ

M, = 318.31 Ib-in
Dy = 5.7983 in
Dy = -6.3143 in
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Autodesk Simulation Solution

AVE - 27

The circular ring was modeled with 52 beam elements of circular cross section. A force of 100 Ibs was applied at
the top and bottom nodes in the Y direction. The model was constrained with T, at the top and bottom nodes, and

with Ty, at the two side nodes. The results from the Static Stress Analysis processor are:

* Ma = 317.92 Ib-in
* D, =5.782in
* Dy =-6.298 in

Local 3 Moment
Ibf in
317.923
254,338
190.754
127.169
63.5845
1.42109e-014
-63.5845
-127.169
-190.754
-254.338
-317.923

Load Case: 1o0of1
Maximum Value: 317.923 Ibf in
Minimum Value: -317.923 Ibf in

1 < Design Scenario 1>

Table 27-1. Comparison of Results

Figure 27-1. Moment contour. The figure shows both undeformed and deformed views.

Ma (Ib-in) % Dy (in) % Dy (in) %
Theory | Analysis | Difference | Theory | Analysis | Difference | Theory | Analysis | Difference
318.31 317.92 0.12 5.7983 5.782 0.28 -6.3143 -6.298 0.26
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AVE - 28 Thick-walled Cylindrical Vessel under Uniform Internal Radial
Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York, McGraw-Hill,
1975, page 504, Table 32, Case 1A.

Problem Description
A thick-walled cylindrical vessel under uniform internal radial pressure (longitudinal pressure zero or externally
balanced) is analyzed for hoop stress and radial deflection. For this example, we chose an outside radius of 10

inches and an inside radius of 7 inches, with an internal pressure of 10,000 psi. Steel material properties were used.

Theoretical Solution

G, is the normal stress in the hoop or tangential direction at radius r.

gb® \ a’+r?
O, = T2 ) a2_p?

Ab is the radial displacement at the inside radius.

2 2
- (25

Where:

* a =10 outside radius (in)

* b =7 inside radius (in)

* (0 =10,000 internal pressure (psi)

* v =0.3 Poisson's ratio

* E = 30E+6 Young's modulus
Forr=17:

* o, =29,216 psi
* Ab=0.007517 in

Autodesk Simulation Solution

A 4-inch section of the thick cylindrical shell is modeled, but mirror symmetry boundary conditions are added to
simulate an 8-inch long cylinder. This problem was previously analyzed (AVE - 11) using 3-D brick elements. For
comparison we use 2-D axisymmetric elements in the current model. The resulting mesh has 121 nodes and 100
elements with 10 layers of elements through the thickness. Results were taken from the lower left corner of the
model.

1. Stress Tensor X-X (hoop stress for a 2-D axisymmetric model) at the inside radius = 29,198 psi
2. Y displacement at the inside radius = 0.007517 in

Note: These results are taken at the node on the symmetry plane. This is the node farthest from the effects of
the free face, which Roark and Young are not considering in this case.
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29338
28322
27305
26289
25273
24256
23240
22224
21207
20191
19175

Stress
Tensor X-X
Ibf/(in*2)

Load Case: 10of1
Maximum Value: 29338 Ibf/(in"2)
Minimum Value: 19174.6 Ibf/(in"2)

1 < Design Scenario 1>

29198

AVE - 28

Figure 28-1. An 8-inch section of the thick cylindrical shell described in Case 1A. Notice that Sxx represents

the hoop stress for 2-D axisymmetric elements.

Table 28-1. Comparison of Results

Delta (inch) on i o, (psi) or M
Theory | Analysis 6 Difference Theory | Analysis 6 Difference
0.007517 | 0.007517 0.0 29,216 29,198 0.06

The results using brick elements (AVE - 11) were essentially the same.
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AVE - 29 Ceramic Strip with Radiation and Convection

Reference
Holman, J. P., Heat Transfer, Fifth Edition, New York: McGraw-Hill, 1981, page 96, Example 3-8.
Problem Description

This Accuracy Verification Example will test the nonlinear iteration capabilities of the thermal analysis processor.
The test problem is a 0.02 meter wide, by 0.01 meter high ceramic strip. The bottom surface of the strip is perfectly
insulated. The sides are held at a constant 900°C. The top is exposed to a combined convection and radiation
environment with the following conditions:

* T =50°C ambient temperature
* h =50 W/m%C film coefficient
* £=0.7 emissivity
In addition, the following parameters are used in the analysis:
* k =3.0 W/m°C thermal conductivity of ceramic

* 5 =5.669e-8 W/m*°K* Stefan-Boltzmann constant
* Tags = 273 conversion from °C to °K

Theoretical Solution

The following three points were chosen from the reference for comparison with the analysis results:

T2 - middle of the strip on the top surface
T5 - middle of the strip at the midline
T8 - middle of the strip on the bottom surface

The reference employs a Gauss-Seidel iterative technique to obtain the following steady-state temperatures for these
points:

T2 =711°C (984°K)

T5 =791°C (1064°K)

T8 = 815°C (1088°K)
Autodesk Simulation Solution
The ceramic strip was modeled with 1152 2-D planar thermal elements. Applied temperatures were applied to the
nodes on the sides of the strip to hold them at the prescribed temperature of 900°C. The radiation and convection
conditions were applied to the top surface (surface #2).
Since the governing equation for radiation is a nonlinear function, an iterative procedure must be used to update the

nodal temperatures between processor runs until the temperatures from two successive iterations converge to within
an acceptance criteria. The processor fully automates this iteration process.
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After 5 iterations, the temperature results calculated by the thermal analysis processors are:

* T2=703.783°C
* T5=787.454°C
* T8=2813.530°C

Temperature
°C
899.9
880.2
860.6
841
821.4

801.8

782.2

762.6

743

7234

703.8

Load Case: 10f1
Maximum Value: 899.851 °C
Minimum Value: 703.783 °C

1 < Design Scenario 1 >

Figure 29-1. Temperature results of the ceramic strip.

Table 29-1. Comparison of Results

0,
Point Name Temperature ( C.) % Difference
Theory | Analysis
T2 711 703.783 1.02
T5 791 787.454 0.45
T8 815 813.530 0.18
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AVE - 30 Two Masses and Three Massless Springs with an Applied Forced
Harmonic Vibration

Reference

Thomson, William T., Theory of Vibration with Applications, Second Edition, Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1981, page 143, Example 5.3-1.

Problem Description
This Accuracy Verification Example tests the capabilities of the Linear Frequency Response processor. The
problem is a two degrees-of-freedom (DOF) system consisting of two masses, coupled with three massless springs,

with a forced harmonic vibration applied to one of the masses. The system is analyzed for steady state
displacements and natural frequencies due to forced harmonic response.

§_—X1 g_—XZ
r’Fsin(Wt)
& &

Figure 30-1: Diagram of the two degrees-of-freedom system from Example 5.3-1.

Theoretical Solution

The reference provides the following formulas for the steady-state vibration amplitudes, X; and X,, and the two
natural frequencies of the system:

(2k—mo? )F

I ) Ay

kF
A Ay )
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The following parameters were used for this analysis:

* k=100 Ib/in. spring rate

* m=1.0 Ib-sec’/in mass

* o =20 rad/sec = 3.1831 Hz exciting frequency
* F =100 Ib force

The results of substituting these values into the above formulas are as follows:

* o, = 10 rad/sec

* m, =17.32 rad/sec
* X;=0.666 in

* X,=0.333in

Autodesk Simulation Solution

The springs were modeled with 6 massless beam elements using FEA Editor. Each beam element is 5 inches long,
making each spring 10 inches long. The two end nodes were fully constrained and all other nodes were permitted to
translate in the axial direction only. Lumped masses can be added in FEA Editor. The stiffnesses of the beam
elements were determined using the following formula:

k = AE/L axial stiffness of beam = 100 Ib/in (given)
One set of parameters that satisfies this is:

* A =1in’ area of beam
* E = 1000 psi modulus of elasticity
* L =10" length of a spring

Because the Linear Frequency Response analysis processor uses a modal superposition technique, the file was first
run through the Linear Mode Shapes and Natural Frequencies analysis processor. The analysis type was then
changed to Linear Frequency Response, and the Analysis Parameters screen was used to enter the forced harmonic
vibration information. Then a forced harmonic response analysis was run. The natural frequencies computed by the
Linear Mode Shapes and Natural Frequencies analysis processor and the peak amplitudes computed by the Linear
Frequency Response analysis processor were as follows:

* o = 10.0 rad/sec (0% difference from the theoretical solution)
* m, = 17.32 rad/sec (0% difference)

* X1 =0.666 in (0% difference)

* X, =0.333in (0% difference)
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Displacement
Magnitude
in
0.6667
0.6
0.5333 0.333
0.4667
04
0.3333
0.2667

0.2 =

0.1333 0.667
0.06667
0

Load Case: 10of 1
Frequency: Not Available
Maximum Value: 0.666665 in z

Y
Minimum Value: 0in k(

2 < Design Scenario 2 >

Figure 30-2. Displacement at the nodes where the masses are located.

Table 30-1. Comparison of Results

Theory | Analysis | % Difference
®; (rad/sec) 10 10.0 0.0
®; (rad/sec) 17.32 17.32 0.0
X4 (inch) 0.666 0.666 0.0
X, (inch) 0.333 0.333 0.0
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AVE - 31 Steady-State Heat Loss of a Steam Pipe with Nonconcentric
Insulation

Reference

Giedt, W.H., Principles of Engineering Heat Transfer, First Edition, D. VVan Nostrand Company, Inc.

Problem Description

In this problem, a steam pipe is surrounded by insulation. The pipe is located 3.25 inches off from the centerline of
the insulation cylinder. The diameter of the pipe is 6.5 inches. The outside diameter of the insulation cylinder is
16.25 inches. The temperature of the pipe's outer wall is held at 212°F, and the temperature of the outside of the
insulation is held at 70°F (air temperature). Determine the steady-state heat loss of the steam pipe with
nonconcentric insulation.

Theoretical Solution

The heat flow rate is:

q= 2nkl(ti—to)
coshl(yi) _cosh*Y°
li lo

The following parameters were used:

*  k=0.0045 BTU/hr/in°F conductivity of insulation
* | =1in length of pipe run

* ;= 212°F pipe temperature

*  t,=70°F air temperature

*  1,=28.125 in radius of insulation cylinder

* ;= 3.25in radius of pipe

The y values are evaluated as shown below:

2 2 2

y, =0~ 78 _ 69063
2a
and,
2_ 2, a2
yo= o *8 101563
2a

Using a value of 3.25" for a, the offset of the centers of the pipe and the insulation, the following steady-state heat
flow rate is obtained:

q=5.792 BTU/hour
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Autodesk Simulation Solution
The insulation was modeled using 2000 2-D planar elements.

Fixed temperatures were imposed on the inside and outside of the insulation. The resulting temperature profile is
shown above. The heat flow predicted is:

e ¢ into insulation (all Faces within Surface 2) = 5.619 BTU/hour
e ¢ out of insulation (all Faces within Surface 3) = 5.878 BTU/hour

The slight difference between the heat into the pipe versus the heat out of the insulation is due to the heat flux
calculation. Heat fluxes are calculated at the element centroid, so the heat flux through the face is based on a
projection of the heat flux times the area of the face. Around the pipe, the area of the face is slightly smaller than
the "centroid" area, leading to an underestimate of the heat flux. The opposite occurs around the insulation. A finer
mesh in the radial direction would decrease the difference.

Heat Flow Rate
Btu/hr

0.09001109
0.08428734 s

=
W SRS s

0.07856359 V

it

0.07283984
0.06711609
0.06139234
0.05566859
0.04994484
0.04422109
0.03849734
0.03277359

Load Case: 10of1

Maximum Value: 0.0900111 Btu/hr
Minimum Value: 0.0327736 Btu/hr

1 < Design Scenario 1>

Figure 31-1. Heat flow rate is shown for the insulation section. The image is captured without using the
smoothing option. ""Results Options™, ""Maximum Value' setting was utilized.

Table 31-1. Comparison of Results

Heat Flow Rate q (BTU/hour)
Heat into Insulation Heat out of Insulation
Theory | Analysis | % Difference | Theory Analysis % Difference
5.792 5.618 -3.0 5.792 5.878 1.5
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AVE - 32 Elastic Instability of a Flat Plate under Pure Shear Load

Reference
Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, McGraw-Hill, New York, 1961, pages 379-383.

Problem Description

This verification problem involves determining the critical load at which a flat plate under a pure shear load will
become elastically unstable (i.e., when buckling will occur). The rectangular plate analyzed is submitted to the
action of shearing forces uniformly distributed along the edges, which are simply supported.

Theoretical Solution

The critical load at which the plate will become unstable is defined as
2
D
TCF = k x 2
b°h
Where:

Eh®

and k is a constant depending on the ratio a/b = 2. The values used for this analysis were:
* D=915.75
* a =20 length of plate long side (in)
* b =10 length of plate short side (in)
* E = 10e6 modulus of elasticity (psi)
* v =0.3 Poisson's ratio
* h =0.1 plate thickness (in)
* Kk = 6.6 constant based on a/b=2 ratio

T = 5965.15 psi
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Autodesk Simulation Solution

The plate was modeled using a 20 x 40 mesh (800 elements) and was simply supported on all edges (T, applied). In
addition, corner nodes were constrained to avoid rigid-body solutions. The node at the origin has Txyz; the
diagonally opposite node has Tz; and the remaining two nodes have Txz. The plate elements were loaded along the
edge using nodal forces based on a 10 psi shear load (0.5 Ibs on each edge node and 0.25 Ibs at each corner node).
The lower cutoff buckling load factor was set to -1000 in order to calculate a potential negative critical buckling
load multiplier.

The buckling load multiplier (BLM) calculated by the processor was:
BLM =-599.37

The critical load at which the plate will buckle is, therefore:
T = (Absolute Value of BLM) x (Applied Load) = 5993.7

Mode: 10of 1
Buckling Load Multiplier: -599.371

Maximum Value: Not Available
Minimum Value: Not Available FY
1 < Design Scenario 1 >

Figure 32-1. Buckling mode shape for the lowest buckling eigenvalue.

Table 32-1. Comparison of Results

Ter (BLM x Applied Load) (psi) % Difference
Theory Analysis
5965.15 5993.7 0.48
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AVE - 33 Ceramic Embedded in a High Thermal Conductivity Material

Reference

Holman, J. P., Heat Transfer, Fifth Edition, New York: McGraw-Hill, 1981, pages 148-149, Problem 4-11.

Problem Description

A 1 x 2 cm ceramic strip is embedded in a high-thermal-conductivity material so that the sides are maintained at
300°C. The bottom surface is insulated. At time zero the ceramic is uniform in temperature at 300°C. The top
surface is then exposed to a convection environment. We want to find the temperature distribution as the ceramic
cools.

Theoretical Solution

A finite difference method was used to solve for the temperature distribution in the ceramic.

The following parameters were also used:

* T =50 ambient convection temp. (°C), top surface
* ) =200 convection coefficient (W/m?)
* k = 3.0 conduction coefficient (W/m°C)
* p = 1600 density (kg/m?)
* ¢ =0.80 specific heat (kJ/kg°C)
The temperature distribution at a distance of 0.5 cm from a side and after cooling for 12 seconds is:

* T (top surface) = 243.32°C
* T (center of strip) = 279.87°C
* T (bottom surface) = 289.71°C
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Autodesk Simulation Solution

The ceramic strip was modeled using a 40 by 40 mesh of 2-dimensional planar thermal elements. Due to symmetry,
only one-half of the strip was modeled. Applied temperatures were used to maintain the left side at 300°C. Using a
time step of 2 seconds, the Transient Thermal Processor solved for the following temperature distribution at a time
of 12 seconds (time step 6):

* T (top surface) = 239.46°C

* T (center of strip) = 280.37°C

* T (bottom surface) = 290.41°C

Temperature
°C
300
2931
286.3
2794
2726
265.7
258.9
252
2452
2383
2315

Time: 12 s

Time Step: 6 of 10

Maximum Value: 300 °C z

Minimum Value: 231.497 °C Ly

1 < Design Scenario 1 >

Figure 33-1. Temperature distribution of a ceramic strip at a time of 12 seconds. XZ Mirror plane has been
activated to show the full strip.

Table 33-1. Comparison of Results

Temperature (°C)
Nodal Temperature attime=12s % Difference
Theory | Analysis
T (top surface) 243.32 239.46 6.8%
T (center of strip) 279.87 280.37 2.5%
T (bottom surface) 289.71 290.41 6.8%

Note: Transient thermal analysis calculates temperature change. Hence, the correct way to compare the
percentage difference is to compare the temperature changes between theory and the results. Therefore, the
above values were calculated as follows:

(Tinitial - Tﬁnal )Theory - (Tinitial - Tfinal )ALGOR %100
(Toia—T

final )Theory

% difference =
initial

T. —(T.
% difference = ( fm(al )ALGORT ( final )Theory ><100

T final )Th eory

initial
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AVE - 34 Motion of a Two-DOF System Subjected to Random Vibration

Reference

Hurty, W. C., Rubenstein, M. F., Dynamics of Structures, Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1964, pages
402 - 405.

Problem Description
This verification problem involves determining the motion of a two degrees of freedom (DOF) mass and spring

system subjected to a random vibration environment (or "white noise"). The displacements are determined for the
system subjected to an input power spectral density (PSD) applied in the vertical (X) direction.

M2
K2
b
= %Iﬁ
¥
A A A

Figure 34-1. Two-DOF dynamic system subjected to a random vibration.

Theoretical Solution
Using the modal method from Hurty and Rubenstein, the mean square response is:
2, U, (x) xm,xG(o)xo,x2x1

X (x)=>"

r=1 C‘)?XSXB

Where:
* Uy(x) = normalized mode shapes (inches)
* m, = mass (Ib-sec?/in) = M1 = M2 = 75 (Ib-sec?/in)
* o, = natural frequency (rad/sec)
* G(o) = 10e6 input spectral density (g%/cps)
* B =0.01 viscous damping
The values of the spring constants are:
* K1=100,000 Ib/in
* K2 =150,000 Ib/in

Hurty and Rubenstein solutions are:
x3(1) = 14.135, x(1) = 3.7597
x3(2) = 27.172, x(2) = 5.2126
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AVE - 34

The two-DOF mass and spring system was modeled using 10 beam elements, with concentrated mass located at

nodes 10 and 14. Other dimensions and properties of the model include:

* Length from origin to M1 =30 in
* Length from M1 to M2 =20 in

* Area=0.1in’

* Mass Density =0

* Young's Modulus = 3.0e7

* Poisson's Ratio = 0.3

The above beam properties will produce the given spring constants based on K = AE/L.

A Natural Frequency (Modal) analysis was run to extract the first two modes (normalized to the mass matrix) which

are:
(1) = 23.632 rad/sec, and
®(2) = 69.100 rad/sec

Then a Linear Random Vibration analysis was run with the approximation method. The PSD of 0.15 g%cps in the

X-direction was input using the "Analysis Parameters" screen. The responses are:
x(1) =3.763
x(2) = 5.217

Displacement
Magnitude
in
5.217
4.695
4174
3.652

3.13

2.609
2.087
1.565

1.043 \\(
8.521 7 ~GTE

Load Case: Resultant of 2
Frequency: Resultant
Maximum Value: 5.217 in

Minimum Value: 0 in

2 < Design Scenario 2 >

5.217

¥

Figure 34-2. Displacement at the node where mass 1 and 2 are located. (""Resultant™ option is activated)

Table 34-1. Comparison of Results

Theory | Analysis | % Difference

x(1) (inch) | 3.7597 | 3.763 0.09

x(2) (inch) | 52126 | 5.217 0.08

Accuracy Verification Examples Manual, Version 2014

140



AVE - 35

AVE - 35 Interference Analysis of Two Concentric Thick-walled Rings

Reference

Burgreen, D., Elements of Thermal Stress Analysis, Jamaica, N.Y.: C.P. Press, 1971, pages 204-211.

Problem Description

Two concentric thick-walled rings or circular plates, with different material properties, are subjected to a
temperature increase in order to perform an interference analysis. A ring with an inside radius of 3" and an outside
radius of 4" is to have an inner ring with a wall thickness of 1" forced into it. An interference between the rings of
0.01 inches is obtained when they are held at the elevated temperature. We want to find the tangential stresses at the
inner surfaces of the two rings.

Theoretical Solution

The tangential stresses at the inner surfaces of the two rings are given as:
A=-R(o,—a, T,—T,)=.01 interference

2RIE
R.fJRl.z[(al_az)(To_Td)]
j i

Oy =—

" E,(RZ+R?) R%*+R? E
= 2 Y 2+71V2_V1
E,|R?-R? ) R2-R? E,

RZ+R?
RE_R%El[(al_az)(To_Td)]

"% T E(R2+R?) RIAR?

E, [ Rt ithi B

+ N
E,|R?-R? | RZ_R? E,
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Where:

* o4 = 13.3 e-6 (thermal expansion coefficient - inner ring 1)
* o, = 9.6 e-6 (thermal expansion coefficient - outer ring 2)
* R; =2 (inner ring 1 inner radius, inches)

* R; = 3 (inner ring 1 outer radius, inches)

* R, =4 (outer ring 2 outer radius, inches)

* E; =10.3 e+6 (Elastic modulus, inner ring 1, psi)

* E, = 27.6 e+6 (Elastic modulus, outer ring 2, psi)

* v, =0.334 (Poisson’'s ratio, inner ring 1)

* v, =0.304 (Poisson's ratio, outer ring 2)

* T4 = 70 (stress-free reference temperature, °F)

* T, =970.9 (final temperature of rings, °F)

The solution for the inner surfaces is
oy (inner ring) = -33,295 psi
o (outer ring) = 33,030 psi

Autodesk Simulation Solution

The rings were modeled using 2-D plane stress elements. Due to symmetry, only one-quarter of the object was
modeled by applying T, to all nodes on the surface parallel to the y-axis, and applying T, to all nodes on the surface
parallel to the z-axis. The mesh was generated with the Two-Dimensional Mesh Generation capability, with a
global mesh density of 1000 and mesh refinements (element size h=0.05 within 0.5" radius) placed at the inside
radius of each ring on the Z axis, resulting in 2756 elements.

The following information was entered:
For part 1 (ring 1):

* thickness = 1
* stress free reference temperature = 70

For part 2 (ring 2):

* thickness = 1
* stress free reference temperature = 70 F

For the "Analysis Parameters: Thermal/Electrical” tab, the default nodal temperature = 970.9 F

The linear static stress analysis processor solved for the following stresses:

oy (inner ring) = -33,410 psi
o (outer ring) = 33,106 psi

These stress values are obtained using smoothed stress tensor results (Y-Y direction at the inner radius for both parts
along the Z axis). To view the stress on the inside of the outer cylinder, the inner cylinder must be made hidden.
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Stress

Tensor Y-Y
Ibf/(in"2)

-971.98
-4215.8
-7459.5
-10703
-13947
-17191
-20435
-23678
-26922
-30166
-33410

Load Case 10f 1
Maxmum Value: -371.983 lof/(in"2)

Minimum Value: -33409 7 Iof/(in*2)

1 < Design Scenaria 1>

AVE - 35

Figure 35-1. Vector stress tensor (Y direction) contour display of the inner ring. The elements of the outer

ring are hidden in this display.

Stress
Tensor Y-Y
Ibf/(in"2)

33106
28953
24800
20647
16495
12342
8189
4036.2
-116.6
-4269 .4
-8422.2

Load Case. 10of 1
Madmum Yalue: 33105 8 lot/(in'2)

Minimum Value: -8422 18 Ib#/(in*2)

1< Design Scenana 1>

Figure 35-2. Vector stress tensor (Y direction) contour display of the outer ring. The elements of the inner

ring are hidden in this display.

Table 35-1. Comparison of Results

o1, (inner ring) (psi) o (outer ring) (psi)

% Difference

Theory | Analysis Theory | Analysis

% Difference

-33,295 -33,410 0.35 33,030 33,106

0.23
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AVE - 36 Circular Flat Plate with Edge Clamped and Concentrated Load
Applied at Center

Reference

Timeshenko and Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, Inc., 1959, pages
67-69.

Problem Description

The subject problem is a circular flat plate with the edge clamped. A concentrated load is acting at the center. We
want to find the maximum deflection at a given distance from the center of the plate.

Theoretical Solution
The maximum deflection at any distance r from the center of the plate is given in the reference as follows:

@ -r?)

_ Pr?

w Iog£+
87D a 16xnD

_ Pa?
16 D

atr=0

Eh®

Dzlzil—vzi

Where:

* P =1.0 concentrated load (Ibs)

* a=1.1125 plate radius (inches)

* E = 30.0e6 modulus of elasticity (psi)
* v =0.3 Poisson's ratio

* h =0.02 plate thickness (inches)

* D =21.978 inch-lbs

The solution for deflection at the center of the plate (r = 0) is:
* w =0.00112 inches
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Autodesk Simulation Solution

One quarter of the circular plate was modeled using 80 3-D plate elements. Symmetry boundary conditions were
applied. The plate was modeled in the XZ-plane, and nodes along the Z-axis were constrained in TxRy,, and nodes
along the X-axis were constrained in T,R,,. The outer edge of the plate was fully constrained.

A 0.25-1b nodal force was applied at the center node in the Y-direction to simulate a 1-Ib force on the full model.
The model was processed using the Linear Static Stress analysis processor. The calculated Y-displacement results
are:

* max. Y-displacement = 0.0011054 in

Displacement
Y Component
in
0.0011054
0.00099486
0.00088432
0.00077378
0.00066324
0.0005527
0.00044216
0.00033162
0.00022108
0.00011054

0

Load Case: 1 of 1
Maximum Value: 0.0011054 in

Minimum Value: 0 in

1 < Design Scenario 1 >

Figure 36-1. Y-displacement display of point loaded circular plate (1/4-symmetry model).

Table 36-1. Comparison of Results

Maximum Y-Displacement (inch) % Difference
Theory Analysis 0
0.00112 0.0011054 1.30
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AVE - 37 Thick-walled Spherical Vessel under Uniform Internal Pressure

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975, page 506, Table 32, Case 2a.

Problem Description

A thick-walled, spherical vessel under uniform internal pressure is analyzed for radial stress and deflection. For this
example, we chose an outside radius of 10" and an inside radius of 7". Internal pressure of 10,000 psi was applied
and steel material properties were used. This AVE is similar to AVE - 10. The main difference is the use of tet
elements with midside nodes.

Theoretical Solution

o1 = 0, is the normal stress in the hoop or tangential direction at radius r.

gb® ) a®+2r?

Ab is the radial displacement at the inside radius.

Ab:(q_bj((l—v)(a%zw)wj

E 2(a3— b3)

Where:

* a =10 inches (outside radius)

* b =7 inches (inside radius)

* g = 10,000 psi (internal pressure)
* v =0.3 Poisson's ratio

* E = 30E6 psi (Young's modulus)

Forr =7 inches
* o =12831.05 psi
* Ab =0.002796 inches

Autodesk Simulation Solution

Due to symmetry, only one octant of the spherical vessel was modeled. Mirror symmetry boundary conditions were
used at the edges on the XY, YZ and ZX planes.

For purposes of comparison, the problem was first modeled using 3-D brick elements. The results were as follows:

* oy max = 12,627.89 psi
* Ab =0.002878 inches
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Next, the mesh was recreated using 3-D, solid tetrahedral elements.

Displacement
R Component

Coordinate System 1

in

0.0028776
0.0027647
0.0026518
0.0025389
0.002426

0.0023131
0.0022003
0.0020874
0.0019745
0.0018616
0.0017487

Load Case: 1 of 1
Maximum Value: 0.00287756 in
Minimum Value: 0.00174871 in

1 < Design Scenario 1 >

Figure 37-1. Displacement contours for the model with brick elements.

Stress
Tensor Y-Y
Ibf/(in*2)
12714
10665
8617.1
6568.8
45205
24723
423.98
-1624.3
-3672.6
-5720.8
-7769.1

Load Case: 1of 1
Maximum Value: 12713.6 Ibf/(in*2)
Minimum Value: -7769.1 Ibf/(in"2)

1 < Design Scenario 1 >

Figure 37-2. Stress contours for the model with brick elements.

AVE - 37

The Element Definition data entry screen

enabled us to specify either 4-node (midside nodes not included) or 10-node (midside nodes included) tetrahedral
elements. For the first case, we used 4-node elements to do a quick check of the displacements and stresses. We
then re-"check" the mesh with 10-node elements for the final, high-accuracy result. In essence, we performed a
quick convergence analysis with the "flip of a switch". However, midsides nodes must be constrained to ensure

accurate results. This is most easily accomplished by defining surface boundary conditions

The stress analysis results using 10-node tetrahedra were:

o1 max = 12,757.67psi

Ab =0.0028 in
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Displacement
X Component
in
0.0028003
0.0025203
0.0022403
0.0019602
0.0016802
0.0014002
0.0011201 =
0.0008401 =
0.00056007
0.00028003

0

Load Case: 1of 1

Maximum Value: 0.00280033 in

Minimum Value: 0 in i

2 < Design Scenario 2 >

Figure 37-3. Displacement contours for the model with 10-node tetrahedral elements.

Stress

Tensor Y-Y

Ibf/(in*2)
12862
10576
8289.5
6003.2
3716.9
1430.6
-855.62
-3141.9
-5428.2
-7714.4
-10001

Load Case: 1of 1

Maximum Value: 12862 Ibf/(in"2)

2 i
Minimum Value: -10000.7 Ibf/(in*2)

2 < Design Scenario 2 >

Figure 37-4. Stress contours for the model with 10-node tetrahedral elements.

Table 37-1. Comparison of Results

Theory Br_ick Eleme_nts Tetrghedral EIe_ments
Analysis | % Difference | Analysis | % Difference
o1 max (psi) | 12,831.05 | 12,627.89 1.58 12,757.67 0.57
Ab (inch) 0.002796 | 0.002878 2.93 0.0028 0.14
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AVE - 38 Forced Harmonic Response Analysis of a Spring-Mass-Damper
System

Reference

Thompson, W.T., Theory of Vibration with Applications, Second Edition, Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1981, page 49.

Problem Description

A single degree of freedom spring-mass-damper system is analyzed for steady-state displacements, phase angle and
natural frequencies due to forced harmonic vibration applied to the mass. A machine of weight W is supported on
springs of stiffness k. A harmonic disturbing force of magnitude F, and frequency w, acts on the mass. Determine
the displacement in terms of peak amplitude X, phase angle y and frequency m,. The viscous damping coefficient is
C.

F o F

[T

Figure 38-1. Spring-mass-damper system.

Theoretical Solution

From vibration theory, the following can be derived:

Fo
X= - ,and
J (k-mo? ) + (co)
_ c
v=tan” k— r(rf(n2
m =W/g

g = 386.40 in/sec?
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Where:
* m=0.5Ib-s¥in
* k=200 Ib/in

[k
0=0, = E = 20 rad/sec

* Fy=10.016Ib

*

* = C - damping ratio = 0.3
2mom

* ¢ =6 Ib-sec/in

n

Autodesk Simulation Solution

The springs were modeled with 10, beam elements connected in series, each 1 inch long. The ground node was fully
constrained and the other nodes were permitted to translate in the axial direction only. The lumped mass was added
in the FEA Editor.

The axial stiffness of the beam elements is AE/L. By setting the area A to 1.0 in® and the modulus of elasticity E to
2000 psi, the desired spring stiffness K of 200 Ib/in was obtained.

The dynamic linear modal analysis was performed for one natural frequency using the Linear Mode Shapes and
Natural Frequencies analysis processor. A non-zero mass density is required for the beam elements to obtain a
solution, but the value should be small so that the beam's mass has a negligible effect on the answer. Then the
analysis type was changed to Linear Frequency Response and the "Analysis Parameters™ screen was used to specify
the forced harmonic vibration information and a restart analysis was run using the frequency response processor.

The natural frequency computed by the Linear Mode Shapes and Natural Frequencies analysis processor and the
peak amplitude and phase angle computed by the Linear Frequency Response analysis processor are given below in
tabular format along with the theoretical solutions.

Displacement
Y Component
n

0.08347
0.07512
0.06677
0.05843
0.05008
0.04173
0.03339
0.02504 =
0.01669
0.008347
0

Load Case: 1of 1

Frequency: Not Available

Maximum Value: 0.0834665 in
Y
Minimum Value: 0 in

2 < Design Scenario 2 >

Figure 38-2. Displacement contours (SRSS) in the Y direction.
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Table 38-1. Comparison of Results

Theory | Analysis | % Difference
®y (rad/sec) 20.00 20.0 0.0
Amplitude (in) 0.083 0.083 0.0
Phase Angle ¢ (deg) 90 90 0.0

AVE - 38

The frequency and forced amplitude can be found from Result interface (Results Options: Response type: SRSS) or
the summary files. The phase angle is obtained only from the summary file.
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AVE - 39 Solid Sphere Analyzed to Find Weight, Center of Gravity and
Mass Moment of Inertia

Reference

Ellis, R. and Gulick, D., Calculus with Analytic Geometry, HBJ, New York, 1978, page 913.

Problem Description

A 1.0 inch radius solid sphere is analyzed for weight, center of gravity and mass moment of inertia.

Theoretical Solution
The mass moment of inertia equation for a solid sphere is given as:
_ 8pmr®

15

Where:

* 1= 1.0 radius of sphere (in)
* p = 7.34E-4 mass density (Ib-s%/in”)

Figure 39-1. The 1.0 inch radius solid sphere was modeled with 800 2-D axisymmetric elements.
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Autodesk Simulation Solution

The sphere was modeled with 800 2-D axisymmetric elements. Steel material properties were used. In the results
interface, the "Tools:Weight and Center of Gravity..." command was used to access the pop-up window for
calculating weight, center of gravity, and mass moment of inertia (g=386.4 in/s?). The results are given in tabular
format below.

Weight (b} 11875400

i
e 1.229E-03
Iy 1.22966-03

2Zc SBIENT Iz 1.2266-03

Volume firf] | Wegh (b1) e ] Ve fin) Zeli) | boclbiein) | vyl Iz (b
O000E +00__0 0OCE +

Patl )
[ jrnamed> | 41634E+00 118796400 | O 00| GGBIE7 12296600 12236603 12236603

Figure 39-2. The weight, center of gravity and mass moment of inertia

Table 39-1. Comparison of Results

Theory | Analysis | % Difference
Volume, V (in°) 4.19 4.19 0.0
Weight, W (Ib) 1.188 1.188 0.0
Xc (inch) 0.00 0.00 0.0
Y (inch) 0.00 0.00 0.0
Zc (inch) 0.00 0.00 0.0
Mass Moment of Inertia, X Axis (Ib-s*-in) | 0.00123 | 0.00123 0.0
Mass Moment of Inertia, Y Axis (Ib-s*-in) | 0.00123 | 0.00123 0.0
Mass Moment of Inertia, Z Axis (Ib-s*-in) | 0.00123 | 0.00123 0.0
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AVE - 40 Natural Frequency Analysis of a Graphite/Epoxy Laminated
Composite Square Plate

Reference

Ashton, J. E., and Whitney, J. M., Theory of Laminated Plates, Technomic Publishing Co., Inc., Stamford,
Connecticut, 1970, p. 70.

Problem Description

A simply supported graphite/epoxy laminated composite lin x lin square plate with nine layers alternating at 0° and
90° [0/90]s with respect to the global Z axis is analyzed for natural frequencies and mode shapes. Thicknesses of the
layers at 0° and 90° are 0.001 inch and 0.00125 inch respectively.

Theoretical Solution

The following material properties are given in material principal directions:

* EX =40E6 psi (Modulus of elasticity)
* EY = 1E6 psi (Modulus of elasticity)
* NUXY =0.25 (Poisson’s Ratio)

* GXY = 0.6E6 (Shear Modulus)

* GXZ =0.6E6 (Shear Modulus)

* GYZ =0.5E6 (Shear Modulus)

* Density = 1.0 Ib. s%/in* (Mass density)

Autodesk Simulation Solution

Due to symmetry only a quarter of the plate was modeled. Simply supported boundary conditions (Tx,, R,) were
applied along the outer edges and symmetry boundary conditions were applied along the symmetry edges.

Note: The use of symmetry to reduce the size of dynamics problems can result in missing modes that do
not have the symmetry of the reduced model. In this example, the antisymmetric mode shapes are
excluded.

256 composite elements (16 x 16 mesh) were used for analyzing the mode shapes. The Natural Frequency (modal)

processor was used for the analysis. The first four natural frequencies of the plate are presented below in tabular
form along with the theoretical solution.
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Mode: 3 of 4

Frequency: 205.696 cycles/s

1 < Design Scenario 1 >

AVE - 40

Figure 40-1. This deflected natural frequency analysis contour shows the 3rd mode shape of the laminated
composite plate with 2 active mirror planes.

Table 40-1. Comparison of Results

Frequency (Hz) .
Mode Theoretical | Analysis % Difference
1 30.064 30.044 0.07
2 167.113 166.96 0.09
3 205.867 205.70 0.08
4 270.579 268.75 0.68
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AVE - 41 Mid-span Deflection of a Uniform Steel Beam Simply Supported

at Both Ends

AVE - 41

Reference

Pytel, A. and Singer, F. L., Strength of Materials, Fourth Edition, Harper & Row Publishers, New York, 1987, p.

193.

Problem Description

A steel beam, 10" long with a 1" x 1" cross-section, is simply supported at both ends. Determine the mid-span

deflection with non-uniformly distributed triangular loading.
Theoretical Solution

The mid-span deflection of the beam is given as:

5= (s "5

Where:

* W, =100 Ib/in (uniform distributed triangular loading)
* E = 30E6 psi (modulus of elasticity)

* | =1/12 in* (moment of inertia)

* L =10 in (length of beam)

f
ﬁ\ﬂ\’\’\’\f\ﬁ . N ¢
Toe P T Ry

| L) 2 |

Lf2

Figure 41-1. Uniform distributed loading is illustrated in this drawing.
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Autodesk Simulation Solution

The beam was modeled with two beam elements, each 5 inches long. For simulating the simply supported boundary
conditions, one end of the beam has TxyzRxy fixed and the other end of the beam has TyzRxy fixed.

This problem demonstrates the FEA Editor’s non-uniformly distributed loading capacity for beam elements. To
apply a non-uniformly distributed force, the "Beam Distributed Load" command was used. A force magnitude of
100 Ibf/in on the fixed end and a O Ibf/in in the center of the beam was entered for the selected beam members.

The reference results and the Linear Static Stress analysis processor results are given below in tabular form.

Displacement

Magnitude
in

0.001875
0.001688
0.0015
0.001313
0.001125
0.0009375
0.00075 -
0.0005625
0.000375

0.0001875
0

Load Case: 1of 1

Maximum Value: 0.00187501 in Y
Minimum Value: 0 in I—}x

1 < Design Scenario 1 >

Figure 41-2. Displacement magnitude contour. Both deflected and undeflected beams are shown.

Table 41-1. Comparison of Results

Mid-span Deflection A (in)
Reference Analysis
1.875e-3 1.875e-3 0.0

% Difference
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AVE - 42  Stress Relaxation of a Tightened Bolt Due to Thermal Creep

Reference

Timoshenko, S., Strength of Materials, Part 11, Advanced Theory and Problems, Third Edition, Van Nostrand Co.,
Inc., New York, 1956, p. 530.

Problem Description

A bolt with a length of 10 inches and a cross-sectional area of one square inch is tightened to an initial stress (o) of
1000 psi. The bolt is held at a fixed displacement for a long period of time (t = 1000 hrs.) at a temperature at which
thermal creep occurs. Determine the stress in the bolt at various times during creep relaxation. Small-strain, small-
deformation theory is used.

Theoretical Solution

The bolt material has a creep strain rate given by:

ic =ko

From this equation using:
do : .
P ~E . E=—ko"E

and integrating over the time period from "0" to "t" we get stress at any time instant "t" as:

|
o, = |6t "+ k(n—1) Bt} 1)
Where:
* E =3.E7 psi (Young's Modulus)
* 69 =1000 psi (initial stress)
* k = 4.8E-30/hr. (creep strain relaxation constant)
*n=7
t = 1000 hrs (time period)

*

Autodesk Simulation Solution

One 2-D plane stress continuum element was used for this visco-elastic material model for nonlinear creep analysis.
Boundary condition Tyz was used at the lower left corner node and Ty at the upper left corner to simulate the
tightened bolt fixities at the left end. To obtain the 1000 psi preload, prescribed displacements were applied to the
right end. The magnitude of the displacement was 0.000333 inch (deflection = o,L/E) where the length L is given
in the problem statement (10 inches). The MES with Nonlinear Material Models analysis type was used for the
analysis.

A total of 1000 solution steps and 100 timestep iterations for each solution step were used to apply the preload over
a short time interval (1 hr), but the results were output every 100 steps (100 hours). The second-order time
integration method and a creep strain calculation tolerance of 5E-2 were entered in the Element Definition data entry
screen. This solution is both a time-hardening and strain-hardening solution.
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Stress
Tensor Y-Y
Ibf/(in*2)

901.03

901.03

Time: 1000 hr
Time Step: 10 of 10

Maximum Value: 801.033 Ibf/(in"2)

Minimum Value: 801.033 Ibf/(in*2)

1 < Design Scenario 1 >

ke

Figure 42-1. Stress Tensor (Y-Y) results of the last time step.

AVE - 42

The theoretical stress results and comparative analytical stress results at various time-instants are given below in
tabular form. The results demonstrate the accuracy and effectiveness of the visco-elastic power creep capability of
the MES with Nonlinear Material Models stress analysis processor.

Table 42-1. Comparison of Results

Time Instant (hours) Tm iﬁ;mum :r::;;(sp(ssl)yy) % Difference
t =200 973.78 973.10 0.07
t =400 951.73 951.16 0.06
t =600 932.76 932.26 0.05
t =800 916.15 915.72 0.05
t =1000 901.42 901.03 0.04
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AVE - 43 Deflection Analysis of a Helical Spring Under Compressive
Loading

Reference

Popov, E. P., Introduction to Mechanics of Solids, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968, p. 274.
Problem Description

A closely coiled solid helical spring of circular cross-section is subjected to a compressive load F. The diameter of
the spring is d and the coil radius is T (distance from the axis of the spring to the centroid of the spring's cross-
sectional area).

For modeling simplicity, only a single complete turn of the spring is analyzed (i.e., N = 1).

Theoretical Solution

For a helical spring, the deflection A under compressive load F is defined by the relation:
_ 64 Fr’N

Gd*
Where:

A

F = 1.0 Ib (Compressive load)

I =3.0in (Coil radius)

d = 0.5 in (Spring diameter)

G = 1.154E7 psi (Shear modulus)
N = 1 (Number of turns)

ke

Figure 43-1. A light-shaded display of the model shows the helical spring turn with rigid elements for axial
loading.
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Autodesk Simulation Solution

A total of 9600 brick elements were generated for the analysis. The forces and boundary conditions to simulate the
compressive loading on the turn of the spring were applied to the ends of rigid elements, each extending from the
axis of the spring to the respective end circles of the spring mesh. The lower rigid elements were fully fixed on one
end. The upper rigid elements were fixed in all directions on one end except for Tz. To transmit the forces and
moments into the spring, each rigid element was connected to every node on the face of the spring coil, for a total of
242 rigid elements.

The theoretical and analytical solutions are given below in tabular form.

Displacement
Z Component
Absolute Value
in
0.002468
0.002221
0.001975
0.001728
0.001481
0.001234
0.0009873
0.0007405
0.0004936
0.0002468

2.563e-014

Load Case: 1of1

Maximum Value: 0.00246821 in
Y
Minimum Value: 2.5626e-014 in

1 < Design Scenario 1 >

Figure 43-2. The Z displacement results in absolute value format is shows the commpressed shape of the
helical spring model.

Table 43-1. Comparison of Results

Deflection, A (in)
Theory | Analysis
0.002396 | 0.002468 3.01

% Difference
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AVE - 44 Nonlinear Radiation Heat Transfer Analysis of a Cylindrical Disk
with Internal Heat Generation

Reference
Holman, J. P., Heat Transfer, Fifth Edition, McGraw-Hill Book Company, New York, 1981, p 13.
Problem Description

A hollow cylindrical disk with an external radius of 1.5 inches and an inner radius of 0.5 inches is exposed to a
radiation environment (T..q = 70°F, F,.q = 0.26). It has internal heat generation elements along the inner edge. We
want to compute the radiation surface temperature.

Theoretical Solution
An ideal radiator, or blackbody, emits energy at a rate proportional to the fourth power of the absolute temperature
of the body. Therefore:
q=FoA(T,"*- T,")
Where:
e g/Vol. =388 BTU/sec in

. q=Vol.x (%OI j — 7](0.55) — (0.5 |0.1)x 388 = 6.3994 BTUIsec

(where the heat generation is assigned to the inner 0.05 inches of the radius)
e T, =T70°F (radiation temperature at the inner radius)
e r=1.5in (external radius of the cylindrical disk)
¢ h=0.1in (height of the cylindrical disk)
e A=15x0.1x2r=0.9425 in? (radiation area)
e o =3.3E-15 BTU/sec R* in? (Stephen-Boltzman constant)
e F =0.26 (radiation emissivity function)

Solving for radiation surface temperature we get:

T,=9431.8 R =8971.8 °F (theory) where 460 °F was used for the conversion from °F to R.
Autodesk Simulation Solution
Due to the circular symmetry, only one quarter of the cylinder was modeled. In order to determine which solid
element type can provide accurate results with the most efficient use of computing resources, the problem was
analyzed using brick elements, and tetrahedral elements with and without midside nodes. The same surface mesh

size (0.1 in) was used to create the brick mesh and the tetrahedral mesh.

The steady-state heat transfer analyses are independent of the thermal conductivity, but the models used a value of
1.887e-3 BTU/(sec-in-°F).
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The analyses were performed using the nonlinear iterations specified on the Advanced tab. Using a default nodal
temperature setting of 9000°F (initial guess), the analysis converged to the final solution within 20 iterations for the
brick model and the tetrahedral models with a relaxation parameter of 0.25 and a corrective tolerance of 0.01.

Temperature
°F
14695
14123
13551
12979
12406
11834
11262
10690
10118
9545.7
8973.6

Load Case: 1 of 1

Maximum Value: 14695 °F

Minimum Value: 8973.56 °F 'Lx

1 < Brick Elements >

Figure 44-1. The 1/4 section model of the cylindrical disk was meshed and analyzed using three different
element types. Here the temperature results from brick elements are shown.

Temperature
°F
14713
14139
13565
12991
12417
11842
11268
10694
10120
9546.3
8972.2

Y
00208
Vit
p? "gb'

/'1
i

i

N
Y
t

)
Wb
MY
S

1

]
i

(

4
Ay,
Wav,
i

N

Ot
7 'Y
vm ‘
TAVAY
VAVAYY
Y,

4
dl

Load Case: 1 of 1

Maximum Value: 14712.7 °F

Y
Minimum Value: 8972.2 °F k

2 < Tetrahedra elements (midside nodes not included) >

Figure 44-2. Tetrahedra elements without midside nodes. (2 mirror planes were activated to show the full
model)
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Temperature
°F
14647
14080
13512
12945
12377
11810
11243
10675
10108
9540.7
8973.3

Load Case: 1 of 1

Maximum Value: 14646.9 °F

Minimum Value: 8973.32 °F

3 < Tetrahedra elements (midside nodes included) >

AVE - 44

Figure 44-3. Tetrahedra elements with midside nodes. (2 mirror planes were activated to show the full model)

Comparison of Element Types

The CAD model was created in Autodesk Inventor 2011. The results demonstrate that brick elements provided
accurate results with the fewest elements.

Obtaining similar results with tetrahedral elements required more elements and computing resources.
tetrahedral elements provided a useful comparison to analysis results using brick elements.

demonstrate the accuracy of the Steady-State Heat Transfer analysis processor.

Table 44-1. Comparison of Results

Brick Tetrahec_j ra Tetrahedr_a
Theory elements elements without elements with
midside nodes midside nodes
Number of Elements NA 180 1648 1648
Radiation 89718 | 8973.56 8972.2 8973.32
Temperature (°F)
% Difference NA 0.02 0.00 0.02
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AVE - 45 Shear Force and Bending Moment Analysis of a Beam under
Distributed Loading

Reference

Popov, E. P., Introduction to Mechanics of Solids, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968, p. 39.
Problem Description

Shear force and bending moment analysis of a beam under distributed loading. The beam is loaded as shown in the
figure below. The problem involves computation of shear and bending-moment diagrams for the beam under
distributed loading using the summation procedure. It demonstrates the Result’s environment shear force and

bending moment diagram display capability.

Theoretical Solution

25 Ibfin
T Ifin
o T 1]
E ‘o Yy
A o C £ FoG
e T N N R

Figure 45-1. Loading of beam.

We compute the reactions first. Using >M = 0 the vertical reactions at B and D are computed as 12 Ibs. and 18 Ibs.,
respectively. With reactions known, the summation of the forces gives the shear force diagram. The total
downward force from A to B is 6 Ibs., which is the positive ordinate of the shear diagram.

At B, an upward reaction of 12 Ibs. moves the ordinate of shear diagram upward to +6 Ibs. No forces are applied to
the beam between B and C, hence there is no change in the value of shear. At C, the 20 Ibs. downward component
of the concentrated load lowers the value of shear to -14 Ibs.

Between E and F, a uniformly distributed load acts downward. An increase in shear takes place at a constant rate of
1 Ib/in. At F, shear becomes zero (final check). Next, we get the moment at different points by integrating shear
areas. Therefore we get:

Mg =-2/3*6* 6 =-24 Ibs.-in.

Mc = Mg + 6 * (6) = 12 Ibs.-in.

e Mp=Mc-14*(2)=-16 Ibs.-in.

Mg = Mp + 4 * (2) = -8 Ibs.-in.

o Me=Mg+1/2*4*(4)=0 Ibs.-in.
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+6 o +6 1o

+4 o
A B C D E F G

Xellle

—-141b

Figure 45-2. Shear force diagram.

+ 12 lb-in
B Cyv D E FooG
A
- 8 lb-in
16 Ib-in

- 24 lb-in
Figure 45-3. Bending moment diagram.

Autodesk Simulation Solution

The beam has pinned boundary conditions (TxyzRxy) at B and is simply supported at D (TyzRxy). A triangular
distributed loading (2 to 0 Ib/in) is applied from A to B. A linearly distributed loading (1 Ib/in) is applied from E to
F. A nodal force of magnitude 25 Ibs. is applied at point C at a gradient of 4/3. Six beam elements were used.

The following geometric and material properties for the beam are necessary for the FEA model even though they are
not required for shear and bending moments calculations.

e E =3E7 psi (Young's modulus)

e A =1in*(Beam cross-sectional area)
e L =22in (Length of the beam)

e 1=0.0833in* (Moment of inertia)
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Local 2 Force
Ibf

12
10
8

Load Case: 10of1
Maximum Value: 14 |bf

Minimum Value: -6 Ibf

1 < Design Scenario 1 >

Figure 45-4. Shear force diagram and Local 2 direction force results.

Local 3 Moment
Ibf in

Load Case: 1of 1 g

Maximum Value: 12 Ibf in

Minimum Value: -24 |bf in l

1 < Design Scenario 1 >

Figure 45-5. Bending moment diagram and Local 3 direction moment results

Table 45-1. Comparison of Results

Bendl(r;g_m;)ment Theory | Analysis | % Difference
Mg -24.00 -24.00 0.0
Mc +12.00 +12.00 0.0
Mp -16.00 -16.00 0.0
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The theoretical and analytical solutions are given below in tabular form. The results demonstrate the accuracy of the
Linear Static Stress analysis processor.
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AVE - 46 Thermal Stress Analysis of a Thick-walled Cylindrical Vessel
Under Temperature Gradient

Reference

Roark, R.J. and Young, W.C., Roark's Formulas for Stress and Strain, Fifth Edition, McGraw-Hill, New York,
1975, p. 585, problem 16.

Problem Description

In this example, we analyze a hollow cylinder with thick walls. There is a temperature difference (AT) between the
outside and inside surfaces. The same geometry was analyzed in AVE - 12 using brick elements.

The solution is valid away from the ends of the cylinder. The steady-state temperature distribution is logarithmic
through the thickness; that is, a steady-state temperature distribution. For this example, an outside radius of 2" and
an inside radius of 1" was considered with a temperature difference of 10°F.

Theoretical Solution

Outer surface tangential stress (tension):

_ ATeE o2t (e
ct—z(l_v)loge(%){l cz—bzl ge(/b):|

Inner surface tangential stress (compression):

_ ATaE _2¢ (e
Gt—z(l_v)loge(%){l Cz_bzl ge(/b):|

Where:

e AT = 10°F (temperature difference, hotter on the inside than outside)
e o = 6E-6/°F (coefficient of thermal expansion)

e ¢ =2" (outside radius)

e b =1"(inside radius)

e v =0.3 (Poisson's ratio)

e E =30E+6 (Young's modulus)
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Autodesk Simulation Solution

The cylindrical vessel was modeled using 2-D axisymmetric elements. Care was taken to get a smooth mesh with
smaller elements at the inside radius where the high stresses were expected. The resulting mesh had 528 nodes and
480 elements. Symmetry boundary conditions of Tz were applied along the nodes z = 0.

The model was analyzed with the Steady-State Heat Transfer analysis processor. Nodal temperatures were then
transferred to the Linear Static Stress analysis processor. The theoretical and analytical results are shown in the
table below.

Stress
Local 3-3
Ibf/(in"2)
1065.5
794.84
524.18
253.52
-17.14
-287.8
-558.46
-829.11
-1099.8
-1370.4
-1641.1

Load Case: 10of1

Maximum Value: 1065.49 Ibf/(in*2)
Minimum Value: -1641.09 Ibf/(in*2)

2 < Linear stress using thermal nodal temperatures >

Figure 46-1. Stress contours (Local 3-3) for the model of the thick-walled cylinder.

Table 46-1. Comparison of Results

Theory | Analysis | % Difference
o33 Outer Surface (psi) | 997.75 1007 0.93
o33 Inner Surface (psi) | -1573.68 -1582 0.53
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AVE - 47 Elastic Stability of a Flat Plate under a Pure Axial Load

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, McGraw-Hill, New York,
1975, p. 550.

Problem Description

The verification problem involves determining the critical load at which a flat plate under a pure axial load will
become elastically unstable (i.e., when buckling will occur). The square plate is subjected to compressive axial
forces uniformly distributed along facing edges, which are simply supported. The plate measures 20" x 20" x 0.5".

Theoretical Solution

The critical load at which the plate will become unstable is defined as:

, E (t) _
o=xK E = 67,788 psi

e 1=0.50" (plate thickness)

o a=20"(length of plate)

e b =20" (width of plate)

e E =30E6 psi (Young's modulus)
e v =0.3(Poisson's ratio)

k = 3.29 (parameter from Roark and Young table for a/b = 1)

Autodesk Simulation Solution

One quarter of the plate was modeled with 400 3-D plate/shell elements using simply supported boundary conditions
(Tx) at all exterior edges. Symmetry boundary conditions Tz Rxy and Ty Rxz were applied at the symmetry edges.
The plate elements were 0.50 inches thick.

The Linear Critical Buckling Load analysis type was used. The plate elements were loaded along the edge using
nodal forces based on a 1 Ib compressive axial nodal load (giving 4 psi axial stress, which is multiplied by the
buckling load multiplier to give the critical compressive stress c').

* Analyzed Critical Compressive stress:
=4 psi x 16964.7
= 67,858 psi
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Mode: 1 of 1
Buckling Load Multiplier: 16964.7
Maximum Value: Not Available

Minimum Value: Not Available

1 < Design Scenario 1 >

AVE - 47

Figure 47-1. Displaced shape for the quarter-symmetry model of the flat plate under a pure axial load.

The theoretical and analysis solutions are provided in the following table.

Table 47-1. Comparison of Results

¢’ (sigma x BLM) psi

Theory

Analysis

% Difference

67,788

67,858

0.10

Note: The use of symmetry in a buckling analysis to reduce problem size is not recommended unless the
buckling mode is known to have the exact same symmetry as used in the geometry and loading. For this
model and this loading, using symmetry led to the right answer, but in general it can be a risky shortcut to
assume the shape of the answer before performing the analysis.
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AVE - 48 Concrete Frame Structure Subjected to Distributed Loading

Reference

Wang, Chu-Kia, Introductory Structural Analysis, Prentice-Hall, New York, 1973, p. 356.

Problem Description

A concrete frame structure measuring 20 ft across and 16 ft high is subjected to a distributed loading. The
dimensions and loadings for the frame are shown in the drawing below. We will analyze the concrete frame's
bending moment.

ﬂaomo
A B C =
5 | yi=l 2z =860
{m- % 8
- I
0.5 N ~
Kipf[—"] - 16 ft
b S
Dl v
E -
L 12 ft |
I il i i

Figure 48-1. Loadings and dimensions.

Theoretical Solution

The theoretical results are obtained using the force method: consistent deformation using reactions as redundant.
The values used for the computation are:

o W, = 0.5 kips/ft (uniform distributed loading as shown above)
E = 710310 psi (modulus of elasticity for concrete)

v = 0.2 (Poisson's ratio for concrete)

A =10 in? (beam cross-sectional area)

P =40 kips (force applied at the top beam)
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1138.851
13808

Ed ¥l
147,52) 147.52]
47,5 47.5]
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Figure 48-2. The bending moment diagram (ft-kips) for the concrete frame. The theoretical values are in
parentheses; the converted results are below.

Autodesk Simulation Solution

Four beam elements were used to model each column.
simulate the simply supported boundary conditions at one end of the beam, Txyz Rxy is fixed. At the other end,

Txyz Rxyz is fixed.
Simulation.

Five elements were used to model the cross-beam. To

This problem demonstrates the uniformly distributed loading capability of Autodesk

kip ft
138.1
117.9
97.73
77.56
57.39
37.23
17.06
-3.102
2327
-43.43
636

Local 2 Moment

LTI T

(4757 il M,%,LBL T --',‘ufé%sﬁ%o

—]

—

| Y
47,91 I—bx

Figure 48-3. The Bending moment diagram and local 2 Moment for the concrete frame model.

The table below shows theoretical and analysis results from the Linear Static Stress Analysis processor. Note that
the dimensions, properties of the model use inches as the unit of length and pounds as the unit of force, while the
theoretical results and the figure abve and the table below use feet and kips.
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Table 48-1. Comparison of Results

Bending Moment (ft-kips) .
Location | Theory | Analysis % Difference
A 47,52 47,51 0.02
B 138.05 138.06 0.01
C 63.60 63.60 0.00
D 47.92 47.91 0.02
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AVE - 49 Solid Aluminum Cylinder Exposed to a Convection Environment
and Allowed to Cool

Reference
Holman, J. P., Heat Transfer, Fifth Edition, McGraw Hill, Inc., New York, page 129.

Problem Description

A long, solid aluminum cylinder 5 cm in diameter and initially at a temperature of 200° C is suddenly exposed to a
convection environment of 70° C and allowed to cool with a convection coefficient of 525 W/m?*°C. Find the
temperature at a radius of 1.25 cm after 1 minute.

Theoretical Solution

The following parameters were used:

e T =70 °C (ambient convection temperature)

e h =525 W/(m?*°C) (convection coefficient)

e k=215 W/(m*°C) (conduction coefficient)

e p = 2700 kg/m? (density)

e ¢, =900 J/(kg*°C) (specific heat)

e Tinie = 200 °C (initial temperature)

e o = 8.4x10° m?/s (thermal expansion coefficient)

The Heisler charts discussed in the reference were used to first determine the temperature along the axis of the
cylinder and then compute the temperature for a radius of 1.25 cm (r/ro = 0.5):
e 0o/ 6; = 0.38 (from fig. 4-10, Holman)
6/6, = 0.98 (from fig. 4-13, Holman)
0/6; = (04/6;)(6/6,) = (0.38)(0.98) = 0.372
e =T-T,=0.3720; = 0.372(200-70) = 48.4
T=70+48.4=118.4°C
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Autodesk Simulation Solution

The cylindrical rod was modeled using a 40 x 40 mesh of 2-D axisymmetric thermal elements. The long cylindrical
rod was represented by specifying no boundary condition on the ends of the rod (i.e., insulated rod ends).

Convection was applied to the outer surface of the cylinder. An event end time of 60 seconds and 6 total steps were
requested from the processor. The Transient Thermal Analysis processor calculated the temperature and heat flux
values at every time step.

Temperature
°C

1214
1212
1211
120.9
120.8
120.6
120.5
120.3
120.2
120

119.9

Time: 60 s

Time Step: 6 of 6

Maximum Value: 121.385 °C

Minimum Value: 119.851 °C k

1 < Design Scenario 1 >

Figure 49-1. Temperature distribution for the axisymmetric model of a cylinder at a time of 60 seconds.

Table 49-1. Comparison of Results

Temperature (°C)
Theory | Analysis
1184 121 2.2

% Difference
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AVE - 50 Linear Mode Shape with Load Stiffening Analysis on a Simply
Supported Continuous Beam

Reference

Timoshenko, S., Weaver, W. and Young, D. H., Vibration Problems in Engineering, New York: Wiley, 1974, pp.
454-455,

Problem Description

In this problem, we perform a linear mode shape with load stiffening analysis on a simply supported continuous
beam. The problem utilizes a 2" x 8" x 200" steel beam which is simply supported under compressive axial loading
of 20,000 Ibs.

Theoretical Solution

The theoretical solutions were derived using a FORTRAN program developed from the reference. The theoretical
problem formulation is as follows:

The frequency equation is given by:

2,2 2
N (E1) 1= ),
21 12 \(pA)\ " iEln?

Where:

i =(1,2,3...) for different mode shapes
I =200 in (length of the beam)
E = 30E6 psi (modulus of elasticity)
| = bh*12 in* (area moment of inertia)
=85.3 in* for bending in the XY plane
=5.33 in* for bending in the XZ plane
p = 7.324E-4 Ib(s%)/in* (mass density)
A =16 in’ (cross-sectional area)
S = 20,000 Ib (axial load)
+/- = denotes tensile or compressive load, respectively

z
A
Z &
A 200" 2"| ;Y l
=X | (200001b
Txyz Rx Tyz

Figure 50-1. Line drawing shows the beam orientation and dimensions.
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Autodesk Simulation Solution

The geometry was modeled with 20 beam elements. The analysis results were obtained using the Linear Mode
Shapes and Natural Frequencies with Load Stiffening analysis processor.

- — -
N \ RN

N N . \

k k k

Figure 50-2. Three example mode shapes of the simply supported continuous beam. The gray line is the non-
deflected beam

The theoretical and computed frequencies for vibrations in the XY and XZ planes are shown in the table below.

Table 50-1. Comparison of Results

Analysis Frequency (Hz)
Mode Modal Plane Theory | Analysis % Difference

Number
1 XZ 3.2211 3.2211 0.00
2 XZ 17.147 17.147 0.00
3 XY 18.058 18.058 0.00
4 XZ 40.105 40.104 0.00
5 XZ 72.223 72.215 0.01
6 XY 73.113 73.113 0.00
7 XZ 113.51 113.48 0.03
8 XZ 163.97 163.86 0.07
9 XY 164.87 164.86 0.01
10 XZ 223.61 223.31 0.13
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AVE - 51 Thick-walled Spherical Shell Subjected to Uniform Internal
Pressure of Gradually Increasing Magnitude

Reference
Chakrabarty, J., Theory of Plasticity, McGraw-Hill, New York, 1987, pages 307-311.
Problem Description

A thick-walled spherical shell is subjected to uniform internal pressure of gradually increasing magnitude.

7>

Figure 51-1. A thick-walled spherical shell, whose internal and external radii are a and b respectively, is
subjected to uniform internal pressure p of gradually increasing magnitude.

Plastic Elastic

DX

Figure 51-2. The shell is axisymmetric. The material of the shell is assumed to behave in an elastic-perfectly
plastic manner. Von Mises yield criterion with the associated flow rule is used to model the plastic flow.
Plasticity spreads from the inside surface to the outer surface as shown.
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Theoretical Solution

Theoretical solutions for the two limit cases, as plasticity progresses from the inside surface to the outside surface,
are considered: Case 1 (the beginning) in which the shell just turns plastic (i.e., the inside surface just becomes
plastic); and Case 2 (the end) in which the shell turns completely plastic (i.e., the outside surface just becomes
plastic). Two variables are considered: the displacement (radial) of the inside surface and the pressure.

Case 1 just plastic:

ya a’
u, =3—E{(1+ v)+2(1- ZV)F} = 0.001116

2y(, a°
=—|1—— | =21000
P 3[ b3j

Case 2 fully plastic:

3
u, =22 {(1— v)z—3 —2(1-2v)log, [gj} = 0.0122346

E

p=2y Ioge(Ej = 49906.6
a

Where:

e y =36,000 psi (yield stress of material)
E =30 x 10° psi (Young's modulus)
v =0.29 (Poisson's ratio)
Strain hardening modulus = 96,171 psi
a =2 in (internal radius of shell)
b =4 in (external radius of shell)
u; = inside surface radial displacement
p = pressure applied (psi)

Autodesk Simulation Solution

One radian of half of the shell was modeled using axisymmetric elements. Mild steel material properties were used.
Pressure was applied. The dimensions and material properties are shown above.

The analysis results were obtained using the MES nonlinear stress analysis processor. A simple ramp loading curve
and a Total Lagrangian analysis formulation were used.

The theoretical and computed results are compared in the table below.
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Stress Displacement
von Mises Y Component
Ibf/(in~2) in

36000 0.0011349

32861 0.0010214

28723 0.00090795

26585 0.00079445

23447 0.00068096

20308 0.00056747

17170 : 0.00045397

14032 2 0.00034048

10893 57 0.00022699 T

77551 0.00011349

4616.9 0

35000
30000

Time: 0.412 s 25000 Time: 0.412 s
Time Step: 412 of 1000 20000 Time Step: 412 of 1000

- 15000 z ) ) 0.001135 z
Maximum Value: 35999.7 Ibf/(in*2) 10000 Maximum Value: 0.00113494 in
Minimum Value: 4616.85 Ibfi(in*2) mz N I—bv Minimum Value: 0 in Ly

1 |, U I U !

1 < Design Scenario 1> b0 M M 1 < Design Scenaric 1>

Figure 51-3. A von Mises stress contour and Displacement (Y component) of the thick-walled spherical shell
when it is half-plastic. (Time = 0.412 s)

Stress Displacement
wvon Mises Y Component
Ibff(in*2) in
36122 0.012337
35997 0.011103
35871 0.0098694
35746 0.0086357
35620 0.0074021
35495 0.0061684
35370 - 0.0049347
35244 8 0.003701 2
35119 0.0024674 X
34993 0.0012337
34868 0
35000
30000
Time: 0.972 s 25000 Time: 0.972 s
Time Step: 972 of 1000 20000 Time Step: 972 of 1000
15000
Maximum Value: 36122.3 Ibf/(in*2) 10000 i Maximum Value: 0.0123368 in 0.012337 z
Minimum Value: 34867.8 Ibfi(in~2) " — o I—bv Minimum Value: 0 in I—;v
o ] U 1 | U I
1 < Design Scenario 1 > S 1 < Design Scenario 1 >

Figure 51-4. A von Mises stress contour and Displacement (Y component) of the thick-walled spherical shell

when it is fully-plastic (Time = 0.972 s)

Table 51-1. Comparison of Results

Just Plastic (Case 1) Fully Plastic (Case 2)
Theory Analysis | % Difference Theory Analysis % Difference
Pressure (psi) 21000 21424 2.02 49906.6 50544 1.28
Displacement (in) | 0.001116 | 0.001135 1.70 0.0122346 | 0.0123368 0.84
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AVE - 52 Nonlinear Heat Flow Analysis of a Solid Cylinder

Reference
Holman, J. P., Heat Transfer, Fifth Edition, New York: McGraw-Hill Book Company, 1981, p. 31.

Problem Description

A solid cylinder is exposed to a convection temperature T, along the top surface and T, along the bottom surface.
The outside wall is insulated. The thermal conductivity of the cylinder material is known to vary with temperature
according to the given function: K(T) = C, + C,T. Find the temperature distribution in the cylinder for two cases:

1) K = constant (i.e., C; = 0)

2) K=K(T)
Theoretical Solution

The heat transfer process may be represented by the resistance network as shown in Figure 52-1 below.

T
— h=0.03 Rl
| f ’
qn A2
J/ A 1r T3
h=0.06
e A3
T4

Figure 52-1. The resistance network and dimensions for the axisymmetric solid cylinder model.

The overall heat transfer by convection is expressed in terms of an overall heat-transfer coefficient U, defined by the
relation:

g =UAAT
Where:
B 1 _ 1
SRR, 4R, 1 Ax 1
1 K 2
Where:

e h; =0.03 BTU/min*in?*°F (convection coefficient of the top surface)

e h,=0.06 BTU/min*in®*°F (convection coefficient of the bottom surface)
e Ax =3.0in (height of the cylinder)

e d=12in (diameter of the cylinder)

e A=nd%4=113.10 in? (surface area)

e T, =2000°F (convection temperature of the top surface)

e T, =200°F (convection temperature of the bottom surface)

e K = Average thermal conductivity of the cylinder in BTU/min*in*°F
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Autodesk Simulation Solution

A 1/2-section of the cylinder was modeled using 225 2-D axisymmetric elements. The top and bottom surfaces were
made to have different surface numbers for convenient specification of the different convection coefficients and
temperatures in the surface data definition screens. The results demonstrate the accuracy of the Steady-State Heat
Transfer Analysis processor.

Case 1l
e K =0.02 BTU/min*in*°F (constant)

e R;=1/h; = 33.33 (convection resistance)

e R, =Ax/K =150 (conduction resistance)

e R3=1/h, =16.67 (convection resistance)

e Ry=R;+R;+R3=200

e U=1/Ry=1/200

e T,=T;-[(R/Ry)* AT] = 1700°F (theory) (temperature of cylinder top surface)

o  T3=T;-[(Ry+ Ry)/Rr]* AT = 350°F (theory) (temperature of cylinder bottom surface)
e q=UAAT =1017.9 BTU/min (theory)

A temperature contour for Case 1 is shown below.

Temperature

485
350

Load Case: 1of 1

Maximum Value: 1700 °F z
Minimum Value: 350 °F LY
1<Case1>

Figure 52-2. Temperature results for Case 2.

The following table shows the results for Case 1, generated by the Steady-State Heat Transfer Analysis processor
after four iterations.

Table 52-1. Comparison of Results for Case 1

Theory | Analysis | % Difference
T, (°F) 1700 1700 0.0
T (°F) 350 350 0.0
g (BTU/min) | 1017.9 1017.9 0.0
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Case 2

K =0.02 + T/200,000 BTU/min*in*°F (nonlinear conduction coefficient)

For this case, the function from T, to T, is integrated to compute the heat rate:

T, T,
q=[UAdT=A [udT

T T

After performing the necessary integration we get:

2000
A T
=—|T-1200 In|1+—— || =1211.68 BTU .
| 50[ ( 1600)} i

200
e R;=168.01
e T,=T,-[(R/Ry)* AT] = 1642.91°F (theory)

o T3=T;- [{(Rs +Ry)/Rr}¥* AT] = 378.60°F (theory)

AVE - 52

Autodesk Simulation provides values for element heat flux, element heat rate, and overall heat rate through a surface

(0). A temperature contour for Case 2 is shown below.

Temperature

Load Case: 1of1
Maximum Value: 1646.48 °F
Minimum Value: 376.761 °F

2<Case2>

Figure 52-3. Temperature results for Case 2.

The following table shows the results for Case 2, generated by the Steady-State Heat Transfer Analysis processor

after four iterations.

Table 52-2. Comparison of Results for Case 2

Theory | Analysis | % Difference
T, (°F) 1642.91 | 1646.48 0.22
T5 (°F) 378.60 376.76 0.49
g (BTU/min) | 1211.68 | 1199.46 1.01
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AVE - 53 Response Spectrum Analysis of a Simple Beam

AVE - 53

Reference

Weaver, W., Timoshenko, S. P. and Young, D. H., Vibration Problems in Engineering, New York: John Wiley &

Sons, Inc., 1990.

Problem Description

A cantilever beam with mass at the end (see Figure 53-1 below) is excited by ground motion, characterized by a
response spectrum. A response spectrum is a plot of the maximum response (i.e., maximum acceleration, velocity,

or displacement) to a specified dynamic ground motion on all possible single degree-of-freedom systems.

4"

[

AR AN

Figure 53-1. The cantilever beam with mass at end subjected to response spectrum input.

Theoretical Solution

Natural Frequency

The theoretical solution for natural frequencies is as follows:

3EI 3(30><10 )
L3

f, = 1/6510 41667 =35.699 hertz (natural frequency)
27: M 2= 0.1294

(agrees with the Linear Mode Shapes and Natural Frequencies Analysis Processor)

Otatic = W__%0 _ 0.768x107% = 0.00768 (static deflection)
K 6510.4

K=

=6510.41667 Ib/in (spring constant of beam)

Where:

o fis=35.699 Hz (natural frequency)
e E =30x10°psi (Young's modulus)
e 1=1.00in* (moment of inertia)

e S$=0.5in?(section modulus)

e L =24in (length)

e W =50 Ib (weight)

e g =386.4in/sec? (gravity)

e M=W/g=0.1294 Ibm (mass)
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\

Frequency: 35.6992 cycles/s

Mode: 1of 1

Maximum Value: Not Available Y

Minimum Value: Not Available LX

1 < Natural Frequency >

Figure 53-2. Results display of natural frequency for the cantilever beam with mass at end.

Table 53-1. Comparison of Results

Frequency (Hz) on i
Theory | Analysis /6 Difference
35.699 35.699 0.0

Response Spectrum

At 5% critical damping, find the steady-state response. First, check the eigenvector, @ (mode shape) and the modal
participation factor, T.

{(I)}T [M]{(D} =1 for mass normalization

0.1294 0 0
[M]=| 0 01294 0
0 0  0.1294

@, is the displacement of the mass in the Z direction. For the X and Y directions, @ = 0.

For Z, (DEM =1

®, = ‘/L =2.7799
0.1294

(agrees with the Linear Mode Shapes and Natural Frequencies Analysis Processor)

I" is the participation factor in the Z direction.
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r=®M _ 435072

oM
(agrees with the Linear Response Spectrum Analysis Processor)

Table 53-2. Comparison of Results

Theory | Analysis | % Difference
Normalized Modal Y Displacement (in) | 2.7799 2.7799 0.0
Maximum Displacement Response (in) | 0.0768 0.0768 0.0
Participation Factor Y Direction 0.35972 | 0.35972 0.0
Magnification factor = i = ; =10
2¢  2(0.05)

The peak of the response spectrum output is 10.0 g for a 1 g input. The theoretical maximum response is:
1084 = 0.0768"

The Linear Response Spectrum Analysis Processor result is 0.0768" with displacement input, and 0.076790" with
acceleration input.

The difference with displacement input is 0%, and the difference with acceleration input is 0.013%.

Moments, Stresses and Forces

A check of moments, stresses and forces gives the following:
Theory:
e M =(50)(24)(10) = 12000 Ibf-in

e Force = (50)(10) =500 Ibf
e R, =500 Ibf

e  Stress = M/S = 12000/0.5 = 24000 psi
Table 53-3. Comparison of Results

Theory | Analysis | % Difference
Moment (Ibf-in) 12000 12000 0.0
Shear Force (R,) (Ibf) 500 500 0.0
Stress (psi) 24000 24000 0.0
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Bending Stress About Local 2 Axis
Ibfi(in"2)
0
-2400
-4800

7200
-9600 /
~12000

-14400
-16800
-19200 x
-21600

-24000 F

Load Case: 10of1
Frequency: 35.6992 cycles/s
Maximum Value: -2.08333e-006 |bf/(in"2) Y

Minimum Value: -24000 Ibf/(in*2) g

2 < Response Spectrum >

Figure 53-3. Results display of bending stress in the cantilever beam with mass at end subjected to response
spectrum input.
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AVE - 54 Cantilever Beam with a Gap at the Tip

Reference
Vanderbilt, M. Daniel, Matrix Structural Analysis, New York: Quantum Publishers, Inc., 1974.
Problem Description

A 100-inch long cantilever beam is subjected to a concentrated load of 810.0 Ib at the tip, as shown in Figure 54-1
below. An elastic support with a stiffness of 202.5 Ib/inch is 0.5 inch below the tip.

100" 810Ib.

LS 5SS T —

105"
k=202.5 Ib/in

rrrry

Figure 54-1. Diagram of the cantilever beam with loading and boundary conditions.

The problem parameters are:

e E=230.0x 10° psi (Young's modulus)
e Area=9.0in? (cross-sectional area)
e ly=1z=6.75in* (moment of inertia)
e Sy=Sz=45in?(section modulus)

e d=0.5inch (gap)

Find:
o The deflection at the tip of the beam
o The reaction of the elastic support

Theoretical Solution

The analytic solution can be found as follows:
3xExIxd P
R=———

4x 3 4
R 3x30E6x6.75x0.5 810
4x100° 4
R = -126.5625 Ib
Def =—0.5— 126.5625 _ —1.125in
202.5
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Autodesk Simulation Solution

AVE - 54

For Linear Static Stress Analysis with gap elements, a compression with gap element with 0.5-inch initial gap space
was used to model the gap and spring. Ten beam elements were used to model the cantilever beam. The theoretical

and analysis results are given in the table below.

Reaction Force
Y Component
Ibf

810
660.7
511.3
362
2126
63.28
-86.06
-235.4
-384.7
-534.1
-683.4

Maximum Value: 810 Ibf

Minimum Value: -683.437 Ibf

1 < Design Scenario 1 >

Load Case: 1 of 1
'-126.5625

Y

o

Figure 54-2. Results display of tyhe reaction force in the gap element.

Displacement
Y Component
in

0
-0.1125
-0.225
-0.3375
-0.45

-0.9
-1.012
-1.125

Load Case: 1 of 1
Maximum Value: 0 in
Minimum Value: -1.125 in

1 < Design Scenario 1 >

05625
0675 ) ]
-0.7875 — > S — - B i -

Y

L.

Figure 54-3. Results display of displacements in the cantilever beam model.

Table 54-1. Comparison of Results

Theory Analysis | % Difference

R(Ib) | -126.5625 | -126.563 0.0

Def (in) | -1.125 -1.125 0.0
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AVE - 55 Transient Thermal Analysis of a Solid Wall with Internal Heat
Generation

Reference
Gebhart, B., Heat Transfer, Third Edition, New York: McGraw-Hill.

Problem Description

This example involves a transient thermal analysis of a solid wall with internal heat generation. A long wall is
initially at a temperature of 0°F. A uniform internal heat generation is applied to the entire wall. The two sides of
the wall are held at a temperature of 0°F. The temperature at the center of the wall is computed as a function of

time.

This problem was analyzed first with 2-D thermal elements (case one), and then with thermal brick elements (case
two).

Tmr

Figure 55-1. Diagram of the thermal FE model of the wall with internal heat generation.

Theoretical Solution

The analytic solution is an infinite series, which converges within 20 terms for the transient under consideration
here.

The solution is:

TG e (1)) AL 5 L (g )

S 2K (L L Krn® ,4%sn
Where:
P02
e o =diffusivity = K =0.01 n_ for p=0.01 I_bT
pc, sec in

e L =10 inches (thickness of wall)

e K =1.4x10°BTU/sec*in*°F (thermal conductivity)

e " =0.0001 BTU/sec*in® (volumetric heat generation rate)
e T =temperature at x into the wall at time, ©

e x =distance into the wall (inches)

e 1 =time (seconds)
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Autodesk Simulation Solution

The results were computed using 1000 time steps with 10-second intervals between time steps. The results were
output every 100 time steps and are shown in the table below.

Note: The heat input is applied as a steady-state load of heat generation on the part, even though it is a
transient analysis. The results reported in the table below are maximum temperatures for each time step
from the Results environment within Autodesk Simulation. The analytic values were computed using a
sperate FORTRAN program.

Temperature

Time: 5000 s

Time Step: 50f 10

Maximum Value: 81.176 °F z

Minimum Value: 7.74136e-005 °F l

1<Case1:2D>

Figure 55-2. Results display of temperature contours for case one at 5000 seconds.

Temperature
°F
81.18
73.06
64.94
56.82
48.71
40.59
32.47
24.35
16.24
8.118

3.871e-005

Time: 5000 s

Time Step: 50of 10

Maximum Value: 81.176 °F z

Y,
Minimum Value: 3.87066e-005 °F v

2 < Case 2: Brick >

Figure 55-3. Results display of temperature contours for case two at 5000 seconds.
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Table 55-1. Comparison of Results

Midplane Temperatures vs. Time

Case One: 2-D Elements | Case Two: Brick Elements
Time Analytic Analysis % Analysis %
(sec) | Solution (°F) | Solution (°F) | Difference | Solution (°F) | Difference
1000 32.78 32.66 0.37 32.66 0.37
2000 54.58 54.43 0.27 54.43 0.27
3000 67.99 67.85 0.21 67.85 0.21
4000 76.21 76.10 0.14 76.10 0.14
5000 81.26 81.18 0.10 81.18 0.10
6000 84.36 84.30 0.07 84.30 0.07
7000 86.26 86.22 0.05 86.22 0.05
8000 87.43 87.40 0.03 87.40 0.03
9000 88.15 88.13 0.02 88.13 0.02
10000 88.59 88.57 0.02 88.57 0.02
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AVE - 56 Steady-State Heat Transfer Analysis of a Fin Immersed in a
Cooling Fluid

Reference

Holman, J. P., Heat Transfer, Third Edition, New York: McGraw-Hill, 1981.

Problem Description

In this problem, a fin with one end held at a temperature of 1070°F is immersed in a fluid, which is at a temperature
of 70°F. The other end of the fin is completely insulated. We want to find the steady state temperature along the

fin.

The fin is considered to be much wider than it is thick. This way, only one slice of the fin needs to be analyzed.

b—— 93
.,
ID_Q
Insulated
End

Figure 56-1. Dimensions of the fin that is immersed in a fluid.

Theoretical Solution

This problem has a closed form solution, which is reported in J.P. Holman's "Heat Transfer.” The following is the
analytical solution:

( [ e™
T, =(T,-T + +T
y 0 a 1+ e—ZmI 1+ e2m| a

Where:

. m=. P
KA

e A =0.9in’ (area of the cross section)

e h=0.1 (surface convection film coefficient)
e K =5.0 (thermal conductivity of the fin)

e 1=9.8in (length of the fin)

e p=2.0in (convection perimeter of the fin)
e t=1in (depth of the model)

e  T,=70° (fluid temperature)

e To=1070°F

e y=distance along the length
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Autodesk Simulation Solution

The model was built using temperature boundary elements, which provided the capability to hold the high-
temperature end at 1070°F.
fn
T T N
1070 t

TR RRA AR
AT TR AT

Figure 56-2. 2-D finite element mesh with temperature boundaries.

Notice that the elements are in a fine mesh along the length of the fin. This is because the temperature drops
exponentially along the length of the fin. A highly accurate analysis requires the use of this fine mesh when a high
temperature gradient occurs. The analysis results are compared to the theoretical solution in the following table.
Notice that the results are in close agreement even in the region next to the hot wall, where the temperature changes
greatly in a short distance.

@ Temperalure (°F) (Load Case 1)

1100 -f

X
N

1000 -+ \
[ AN

200

-
-

fr
Ve

800

700

L e

600

500

L
/

400

L o e
f

Distance (in)

Figure 56-3. Path-plot of temperature contours in the fin model.

Table 56-1. Comparison of Results

Temperature (°F)
Distance Z (in) | Theoretical | Analysis (avg. of 4 nodes | % Difference
along the thickness)
0 1070.00 1069.98 0.00
1 886.63 886.32 0.04
2 739.69 739.64 0.01
3 622.63 622.77 0.03
4 530.21 530.48 0.05
5 458.33 458.69 0.08
6 403.77 404.18 0.10
7 364.10 364.55 0.12
8 337.55 338.02 0.14
9 322.93 323.41 0.15
9.8 319.37 319.86 0.15
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AVE - 57 Nonlinear Radiation Heat Transfer Analysis of a Cylinder with
Internal Heat Generation

Reference

Holman, J. P., Heat Transfer, Fifth Edition, New York: McGraw-Hill Book Company, 1981.

Problem Description

A cylinder with internal heat generation is exposed to a radiation environment (T 4= 70°F, F = 0.26). It has internal
heat generation elements along the inner edge, where there is a tiny hole along the axis of the cylinder. We want to
find the radiation surface temperature along the outer edge. Note that the same problem was analyzed in AVE - 45
with slightly different dimentions using 3D elements.

r=0_724461 in.
= givol = 388 BTU sec ind

I 3

2 E |L=0.320593 in.
[ . (73]

L =

(1

0021161 in. T=70°F
0003127 in. F=0 26

Axisymmetric model of hollow cylinder with internal
heat generation and internal radiation

Figure 57-1. Diagram of the axisymmetric FE model of the cylinder with dimensions and thermal properties.

Theoretical Solution

The axisymmetric model for the heat transfer process is shown in the figure above. Since an ideal radiator, or
blackbody, emits energy at a rate proportional to the fourth power of the absolute temperature of the body:

q=FcA (T T
Where:

. q_sBTU

Volume secxin?®

x 388

q j_ 7(0.021161) — (0.003127) {0.320593)
Volume ) 2n

e (= Volumex(

e Q= 0.027242ﬂ (per radian)
sec

e T,=70° (radiation temperature)

o 1 =0.724461 in (radius of the cylinder)

e L =0.320593 in (height of the cylinder)

, radiation area
radian

e A=rxL=0.724461 x 0.320593 = 0.232257 in
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BTU

secxn“*°F

(Stephen-Boltzman constant)

e F =0.26 (radiation emissivity function)

BT
e k=0.0018866 —U (conduction coefficient)
secxIn *°F

Solving for radiation surface temperature yields:
T1=2959.842°F (theory)

Autodesk Simulation Solution

The cylinder was modeled with 320 2-D axisymmetric elements. The inner layer of elements was defined using a
different part number from the rest of the model for convenient specification of internal heat generation. The outer
surface was defined using a unique surface number for specifying ambient temperature and radiation function.

Analysis was performed after setting the nonlinear analysis options on the "Advanced” tab of the "Analysis
Parameters” screen. Without setting any prior nodal temperature (that is, as an initial guess), the analysis converged
to the final solution within 17 iterations with a relaxation parameter o = 0.25.

Temperature
°F
3141.38
3123.22
3105.05
3086.89
3068.72
3050.56
3032.39
3014.23
2996.06
2977.89
2959.73

Load Case: 1 of 1

Maximum Value: 3141.38 °F z

k¥

Figure 57-2. Results display of temperature contours in the axisymmetric model of a cylinder with internal
heat generation in a radiation environment.

Minimum Value: 2959.73 “F

1 < Design Scenario 1 >

The table below compares the theoretical and analysis results. The results demonstrate the accuracy of the Steady-
State Heat Transfer Analysis Processor.

Table 57-1. Comparison of Results

Radiation Temperature (°F)
Theory Analysis
2959.842 2959.73 0.004

% Difference
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AVE - 58 Continuous Beam, Simply Supported at the Ends, Under a
Uniformly Distributed Load

Reference

Pytel, A. and Singer, F. L., Strength of Materials, New York: Harper & Row Publishers, 1987.
Manual of Steel Construction, Ninth Edition, Chicago, American Institute of Steel Construction, Inc., 1989.

Problem Description

A three-span continuous beam, 360 inches long, is subjected to a uniformly distributed load of 100 Ib/inch. The
following are the material and area properties:

E = 30 x 10° psi

Poisson's ratio = 0.3

Weight density = 0.2836 Ib/in®
Cross section=21inx 5 in

100 1bin Fi

i |e,131“7;gﬂﬁ'

|
[T o R 5 L

Figure 58-1. This diagram illustrates the characteristics of the three-span continuous beam with loading and
boundary conditions.

Find the reactions at the supports and the maximum moment of the beam.
Theoretical Solution

The analytical solutions can be obtained from the reference given above.

Where:

e ®=100 Ib/inch
e |=120inches
Then,

° RDZRA=O40)|:4800|b

e Rc=Rg=11®1=132001Ib

e Mg=0.025® I = 36,000 Ib-in

e Mg=Mc=-0.1®I?>=144,000 Ib-in

. M.=M, =(mx)(§

2
= @(;‘) ~115,200 in-Ib

x=48
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Autodesk Simulation Solution

The beam is divided into 6 beam elements with unequal span. The end points of each beam element are intentionally
set at the points where the maximum moments in each span occur (A - G). Each beam element is loaded with a
uniformly distributed load of 100 Ib/inch over the entire element length. FEA Editor was used to create the model
for analysis by the Linear Stress Analysis Processor.

Local 2 Moment
Ibf in

144000
118080
92160
66240
40320
14400
-11520
-37440
-63360
-89280
-115200

Load Case: 1 of 1
Maximum Value: 144000 Ibf in Y
Minimum Value: -115200 Ibf in

1 < Design Scenario 1 >

Figure 58-2. Results display of moments in the continuous beam with simple supports at the ends. The
displaced and original shapes are shown as well.

The tables below compare the results:

Table 58-1. Comparison of Results for Support Reactions

Location Theory (Ib) Analysis (Ib) | % Difference
A D 4800 4800 0.0
B,C 13200 13200 0.0

Table 58-2. Comparison of Results for Moments

Location Theory (Ib-in) Analysis (Ib-in) | % Difference
B,C 144000 144000 0.0
E, G 115200 115200 0.0
F 36000 36000 0.0
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AVE - 59 Design Spectrum with a Specified Maximum Ground
Acceleration

Reference
Paz, Mario, Structural Dynamics - Theory and Computation, New York: Van Nostrand Reinhold Company, 1980.
Problem Description

A structure is modeled as a single mass system with a natural period of T = 1 sec. Using the response spectrum
analysis method, determine the maximum relative displacement for a design spectrum with a maximum ground
acceleration equal to 0.32 g.

Theoretical Solution

In the reference, the following results are calculated from a basic design spectra with a frequency ( f) of 1 cycle per
second and 10% critical damping. The results were adjusted to the 0.32-g maximum ground acceleration.

Sp=9.5x0.32=3.04in
S,=60x0.32=19.2 in/sec
S2=0.95x0.329g=0.304 g

Autodesk Simulation Solution

A model was constructed along the Y axis with the bottom node fully fixed and TxRyz boundary conditions applied
to all other nodes. A lump mass was specified in force units at the top node.

The following values were used:

f = 1 Hz (frequency)

T =1 sec (period)

W = 1000 Ibs at top (weight)

| =42 in (length)

E = 30 x 10° psi (Young's modulus)
| =0.08333 in* (moment of inertia)
g = 386.4 in/sec’ (gravity)

A linear mode shapes and natural frequencies analysis was run, which gave the natural frequency for the model.
Then a restart analysis was prepared using a Linear Response Spectrum analysis. The following data was specified
in the "Response Spectrum Analysis Input"” table.

Period (sec)|Amplitude (g)
0.5 0.304
15 0.304
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Displacement
Magnitude
in

3.003
2.703
2.402
2.102
1.802
1.502
1.201
0.9009
0.6006
0.3003
0

Load Case: 1 of 1

Maximum Value: 3.00304 in
Minimum Value: 0 in

2 < Response Spectrum >

Frequency: 0.895394 cycles/s

Figure 59-1. Maximum displacement from the Linear Response Spectrum analysis.

The theoretical results and analysis results are compared in the table below.

Table 59-1. Comparison of Results

Maximum Displacement (inches)

Theory

Analysis

% Difference

3.04

3.003

1.22
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AVE - 60 Slab with Internal Charge Density Distribution

Reference

Holman, J. P., Heat Transfer, Fifth Edition, New York: McGraw-Hill Book Company, 1981.

Problem Description

This accuracy verification is an electrostatic "field and volt" analysis of a slab with an internal charge density
distribution. A plane slab 40 millimeters thick has a distributed charge density of 1E-9 coulomb / mm®. The voltage

distribution inside the wall is desired. The dielectric constant of the material is 56470 (unit less). The external
voltage is held at 70 volts.

N
e

Figure 60-1. Diagram of the slab with internal charge density distribution.

Theoretical Solution

V, =470 volts (maximum voltage)
V., = 70 volts (external voltage)

o 370 270 170
Sy,
i

1T

120 J20 220 120

Figure 60-2. VVoltage distribution.

Autodesk Simulation Solution

Taking advantage of symmetry, only half the thickness of the slab needs to be analyzed. At the center, the derivative
of voltage with respect to thickness is 0, which means that the midplane can be treated as an insulated surface. The
voltage boundary element is used to maintain a voltage of 70 volts at the outside of the slab. A voltage boundary
element stiffness of 1e10 A/V is used. (This is equivalent to the stiffness of a boundary element in a stress analysis.)

It can readily be shown that the voltage is a parabolic function of distance and that the maximum voltage is at the

midplane. This maximum voltage has a value of 470 volts. This is exactly the value computed by the Electrostatic
Analysis processor.
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Voltage

V
470
430
390
350
310
270
230
190
150
110
70

Maximum Value: 470.003 V

Minimum Value: 70 V k:

1 < Design Scenario 1 >

AVE - 60

Figure 60-3. Results display of the voltage field in the symmetrical model of the slab with an internal charge

density distribution. Y-Z Mirror Plane is activated to show the full model.

Volts V)
500 @ Voltage (V) ()

450

400+

350

300 -

250+

200

150

100 -

sodl L L L L )
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Distance (m)

Figure 60-4. VVoltage distribution across 5 nodes through the thickness of the symmetrical model. Zero

distance, shown on the X axis of this graph, represents the symmetry plane.

Table 60-1. Comparison of Results

Maximum Voltage (Vol_ts) % Difference
Theory Analysis
470 470 0.0
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AVE - 61 Thermal Deflection Analysis of a Plate with One End Fixed and
the Other End Guided

Reference

Young, Warren C., Roark's Formulas for Stress and Strain, McGraw-Hill Book Company, Sixth Edition, 1989, case
6b, p. 111.

Problem Description

A 6-inch long, by 0.375-inch wide, by 0.25-inch thick plate, with the left end guided and the right end fixed, is
subjected to uniform temperatures of 270°F on the bottom and 135°F on the top over half its length as shown in
Figure 61-1. The change in temperature throughout the thickness for the remaining length is 0°F. The moments at
both ends and the deflection at the left end are required.

My Faz3£—->|

S ;
%y .E\G" %fo.ws

X

Figure 61-1. Diagram of the plate model.

Th% plate is made out of steel with a Young's modulus of 30 x 10° psi and a coefficient of thermal expansion of 6.5 x
10°in/(in-°F).

Theoretical Solution

The solution for this problem is given by Roark on page 111, Reference No. 6b in Table 3 of Article 7.1. Because
the Roark solution is based on conventional beam element theory, there is no rotational constraint about the X axis
for this mode. Furthermore, the Roark solution ignores the Poisson's ratio effects, therefore, a Poisson's ratio of 0.0
is used in the analysis.

—El
MA =TY(T2—T1)(|—a)

a
Zp = %(TZ—T1X|— a)

Where:

E = 30 x 10° psi (Young's modulus)

| = Moment of inertia, which for this plate is bis = M =4.883x10*in*
12 12

I =6 in (length of plate)

vy = 6.5 x 10°in/(in-°F) (thermal expansion coefficient)

t = 0.25 in (thickness)

T, = 270°F (temperature on bottom)

T, = 135°F (temperature on top)
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a = 3 in (length of plate subjected to dT/dh)

The calculated results are Ma= Mg= -25.7 in-lbs and z,= 0.0158 in. The total moment of 25.7 in-lbs can be
converted into the moment per unit width by dividing by 0.375 in., which yields -68.6 in-Ibs/in.

Autodesk Simulation Solution
The model shown in Figure 61-2 was created in FEA Editor. For the plate elements, the value of the thermal

gradient, dT/dh, and a point, PP (PPx, PPy, PPz) are required to define the local 3 axis of the plate element to orient
dT/dh correctly.

9]

k

Figure 61-2. The model created in FEA Editor.

When point PP is placed on the cooler side, dT/dh is positive. For this problem, we need a positive thermal gradient
in the -Z direction; therefore, the orientation point, PP, was chosen as 3,3,1. The temperature gradient through the
thickness of the plate, dT/dh, is equal to (270-135)/(0.25) or 540°F/in.

The material properties, the plate thickness of 0.25 and the temperature gradient, dT/dh were defined using the

Element Data Control window. The temperature gradient was only applied to the part 2 (red) elements, since only
half the plate is subjected to the temperature gradient.
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A linear static stress analysis was performed. The displacement calculated by the software is 0.0158 in, as shown in
Figure 61-3. The moment per unit width calculated at the ends is 68.6 in-lbs/in as shown in Figure 61.4. These
values are exactly the same as those calculated for the Roark solution. However, there is a discontinuity in the
moments in the isotropic plate solution, where the dT/dh changes from 540°F/in to 0°F/in. This discontinuity can be
eliminated by using an orthotropic plate with a coefficient of thermal expansion of 0 in the width direction (0.375
in). The shear modulus was calculated for the orthotropic plate element to be 15 x 10° psi, by using G=E/(2*(1+v)),
with v = 0. The results from the orthotropic plate model are shown in Figure 61-5.

Displacement
Z Component
in
0.015795
0.014215
0.012636
0.011056
0.009477
0.0078975
0.006318
0.0047385
0.003159
0.0015795

0

Load Case: 1of1

Maximum Value: 0.015795 in
\ ¢
Minimum Value: 0 in k

1 < Othotropic >

Figure 61-3. Displacement results in the Z direction.

Bending Moment Tensor
Local 1-1
Absolute Value
Ibf infin

78.529
76.534
74.539
72.544
70.55
68.555
66.56
64.565 ¥
62.57
60.575
58.58

Load Case: 10f1

Maximum Value: 78.5292 Ibf infin 4

Minimum Value: 58.5802 Ibf infin k‘:

2 < |sotropic >

Figure 61-4. The moment results using isotropic plate elements.
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Bending Moment Tensor
Local 1-1
Ibf infin
68.555
54.844
41.133
27.422
13.711
0
-13.711
-27.422
-41.133
-54.844
-68.555

Load Case: 1 of 1
Maximum Value: 68.5547 Ibf in/in

Minimum Value: -68.5547 Ibf infin

1 < Design Scenario 1 >

k

Figure 61-5. The moment results using orthotropic plate elements.

Table 61-1. Comparison of Results

Theory | Analysis | % Difference
Displacement in Z Direction (in) 0.0158 0.0158 0.0
Moment per Unit Width (in-Ibs/in) 68.6 68.6 0.0
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AVE - 62 Torsion of an Elastic Beam with a Channel Cross-Section

Reference

Blodgett, Omer W., Design of Welded Structures, Chapter 2.10, Cleveland: James F. Lincoln Arc Welding
Foundation, 1966.

Problem Description

The problem of torsion of an elastic beam with a channel cross-section has been analyzed utilizing the software. The
material is steel with a Young's modulus of 30,000 ksi, and a Poisson's ratio of 0.3. That material is considered to be
isotropic. Therefore, the shear modulus is G = 30,000/[2(1 + 0.30)] = 11,540 ksi.

The beam span (L) is 72 inches, the web of the channel is h=36 inches and its flanges (b) are 10 inches deep. The
thickness (t) of both the web and the flanges is one inch. The beam is restrained against torsion on one end and free
to twist on the other. Two opposing forces with a magnitude of 4,000 pounds are applied to the intersections of the
web and the flanges at the free end. These forces are perpendicular to the axis of the beam and to the web of the
channel, and produce a torsional moment (T) of 4,000 x 36 = 144,000 Ib-in or 144 Kip-in.

M

36" %

_*1Il

[
L)

—un T
Figure 62-1. Diagram of the beam with channel cross-section.

Theoretical Solution

The formulas for calculating torsional stiffness properties and rotations in thin-walled open cross-sections presented
in Tables 21 and 22 of the reference text have been used for the purpose of comparison with closed form solutions.

The flanges of the channel were not included. In this case, the reference gives the following formula for the torsional
rotation,0:

0 = TL/(KG)
T, L and G have been previously defined, and K is the torsional stiffness constant.
For this case, we have K = ht*/3 (i.e., K = 36 x 1%/3 = 12 in“).

Therefore, 0 = 144 x 72/(12 x 11,540) = 0.0749 radians = 4.291 degrees.
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Autodesk Simulation Solution

The model shown above was built using 32 plate elements. A linear static stress analysis was performed to
determine displacements. The results are compared to theoretical results in the table below.

Nodal Rotation
X Component
° (angle)
429
3.861
3.432
3.003
2574
2145
1716
1.287
0.8579
0.429

o]

Load Case: 1 of 1

Maximum Value: 4.28974 ° (angle) Y

Minimum Value: 0 © (angle) Q

1 < Design Scenario 1>

Figure 62-2. Nodal rotation (X component) of the channel without flanges. 3D visualization is active.

Table 62-1. Comparison of Results

Theoretical | Analysis %
Difference
0 (degrees) 4.291 4.290 0.02
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AVE - 63 Multidimensional Transient Heat Transfer Analysis

Reference

Incropera, Frank and DeWitt, David, Introduction to Heat Transfer, John Wiley & Sons, New York, 1990, pp.
266-270.

Problem Description

A stainless steel cylinder (AISI 304), initially at 600K, is quenched by submersion in an oil bath maintained at 300K
with a convection coefficient of h = 500 W/m?K. The length of the cylinder is 60 mm and the diameter is 80 mm.
We must determine the temperatures at the center of the cylinder, at the center of a circular face, and at the mid-
height of the side at three minutes into the cooling process.

Theoretical Solution

The following material properties for stainless steel (AlSI 304) were used in Introduction to Heat Transfer.

e density = 7900 kg/m?
e conduction coefficient = 17.4 W/m K
o specific heat = 526 J/kg K

Autodesk Simulation Solution

FEA Editor was used to create a model of the cylinder cross-section. Because the cylinder is axially symmetrical,
only one quarter of the cross-section was modeled. 2-D axisymmetric elements were used.

The model was created in the Y-Z plane with the lower left corner (actually, the exact center of the cylinder) located
at the origin (0,0,0). Orientation in the Y-Z plane is a modeling requirement when using 2-D axisymmetric elements.

The unit system was specified as Metric mks (SI). First, a rectangle was added with the appropriate dimensions in
meters (DY = 0.040, DZ = 0.030).

Next, a dense mesh was constructed using the four corners of the rectangle. A coarse mesh is not recommended for
heat transfer analysis. The next step was to change the surface humber of the lines which form the top and right
sides. (Note: this surface number was used later in the Surface Control window to indicate the elements exposed to
the convection conditions.) In this case, the entire mesh was surface 1 (green), but the top and right sides were
updated to surface 2 (red).

A line was added in the upper right corner of the model. The purpose of this operation was to divide the single
corner quadrilateral element into two individual triangular elements. The heat transfer analysis software does not
permit boundary conditions to be applied to more than one side of a 2-D element.

Additional model data were specified, including the element type, material properties (mass density, thermal
conductivity and specific heat), and convection properties of the external surfaces. In the "Analysis Parameters"
screen, the number of time steps and the time step size were specified for analysis. On the "Multipliers" tab, the
convection multiplier was activated. On the "Options" tab, the default nodal temperature was set to 600K. A load
curve was set up for times 0 to 180 with factors of 1, indicating a constant loading.
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Results obtained from the analysis agree very closely with the reference, indicating the accuracy of the Transient

Heat Transfer Analysis processor.

Temperature
K
404.07
398.05
392.04
386.02
380.01
373.99
367.98
361.96
355.95
349.93
343.91

371.75

Time: 180 s

Time Step: 180 of 180
Maximum Value: 404.068 K

Minimum Value: 343.915 K

1 < Desigh Scenario 1 >

=«

Ao I

363.54

Figure 63-1. Results display of temperature contours in the 2-D axisymmetric model of the stainless steel
cylinder. Results for the final time step of the analysis are shown.

The following table compares results from the reference and the analysis.

Table 63-1. Comparison of Results

Temperature at 3 minutes (K)

Theoretical | Analysis % Difference
Center of Cylinder 405 404.07 0.23
Center of Top Circular Face 372 371.75 0.07
Mid-height of Side 366 363.54 0.67
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AVE - 64 Fundamental Frequency and Static Lateral Deflections of a
Loaded Shaft

Reference
Thomson, William T., Mechanical Vibrations, Second Edition, Prentice-Hall, Inc., New Jersey, 1953, p. 202.
Problem Description

The shaft in Figure 64-1 is simply supported on both ends. Determine the fundamental frequency of the shaft when
300- and 500-pound masses are clamped to it. Also determine the static lateral deflections of the shaft under the
action of the transverse loads (300- and 500-pound weights).

500 Ib. 300 Ib.

1" dia. 3 2o l 1" dia,

Figure 64-1. Diagram of the shaft with varying diameter and two mass loadings.

Theoretical Solution

The following values where obtained in Mechanical Vibrations.
o Displacement at 500-Ib. Load = 0.0256 in.

o Displacement at 300-Ib. Load = 0.0159 in.

o First Natural Frequency = 1240 c.p.m. = 20.7 Hz

Autodesk Simulation Solution
FEA Editor was used to model the shaft in 1-inch segments. The 1-inch diameter section was defined on layer 1
(green) and the 1.25-inch diameter section was defined on layer 2 (red). Boundary conditions were added to the end

nodes to simulate simple support (TxyzRxy). The beam element type was specified. Sectional properties were
added to the beams as shown in below table

Table 64-1. Sectional properties of beams

Layer # | Diameter Area Torsional Constant | Moment of Inertia | Sectional Modulus
(inches) (in%) (in*) (in%) (in%)
1 1 0.785398 .098175 .049087 .098175
2 1.25 1.227185 .239864 119842 191748

Lumped masses were added in the FEA Editor. These were input as 500 Ibf and 300 Ibf, respectively.

Note: Ibm stands for pounds mass, which is the unit for mass in the English unit system.
The following material properties were specified:
e E =29 x 10° psi (Young's modulus)

e v =0.3 (Poisson's ratio)
e p =0.283 Ibs/in® (mass density, input as 0.283/386.4 = 7.324 x 10 to include gravity)
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Shear deformations were not enabled. A Linear Mode Shapes and Natural Frequencies analysis was performed on
the model. Figure 64-2 shows the first natural frequency of 20.5 Hz.

Mode: 1 of 1
Frequency: 20.5146 cycles/s

Maximum Value: Not Available Y

Minimum Value: Not Available Lx

1 < Modal with Load Stiffening >

Figure 64-2. Results display of the first mode shape at 20.5 Hz.

Thomson also calculated the static deflection at the points of load. In FEA Editor, nodal forces of 500 and 300

pounds were added to the model for a Linear Static Stress analysis. Note that shear deformation was not enabled
(shear area = 0).

Displacement
Magnitude
in

0.026371
0.023734
0.021097
0.01846
0.015822

0013185 A—f
0.010548 —_— ]

0.0079112 0.02569 0.01600
0.0052742 <

0.0026371
0

Load Case: 1 of 1

Maximum Value: 0.0263708 in Y

Minimum Value: 0 in Lx

2 < Static Stress >

Figure 64-3. Results display of deflections in the shaft model. Probes are added to the 2 loading points.
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The following table compares analysis results to the referenced solution. The results compare extremely well with

the results calculated by Thomson.

Table 64-2. Comparison of Results

(Hertz)

Theoretical Analysis % Difference
Displacement at 500-1b. 0.0256 0.0257 0.39
Load (inches)
Displacement at 300-1b. 0.0159 0.0160 0.63
Load (inches)
First Natural Frequency 20.7 20.5 0.97

Accuracy Verification Examples Manual, Version 2014

214



AVE - 65

AVE - 65 Annular Plate with a Uniformly Distributed Pressure

Reference

Young, W. C., Roark's Formulas for Stress & Strain, Sixth Edition, McGraw-Hill, New York, 1989, Case 2b, page
405.

Problem Description

The sixth edition of Roark’s Formulas for Stress & Strain was used to verify the displacements and stresses
predicted by the two-dimensional axisymmetric elements, plate elements and brick elements.

The model chosen for this accuracy verification example was an annular plate with a uniformly distributed pressure
(q) of 10 psi over the entire plate. The outer edge of the plate was simply supported and the inner edge is guided
(fixed against rotation, but free to translate).

The plate has an outside radius of 5 inches, an inside radius of 2.5 inches and a thickness of 0.25 inches. Young’s
modulus was set to 30 x 10° psi and the Poisson’s ratio was set to 0.3.

FJZEZ,H

Figure 65-1. A diagram of the annular plate with a uniformly distributed pressure.

Theoretical Solution

Outside radius, a = 5in.

Inside radius, b = 2.5in.
Young’s Modulus, E= 30 x 10° psi
Thickness, t = 0.251in.
Poisson’s ratio, V = 0.3
Pressure, q = 10 psi

Et’
Plat tant, D = =42,926
date constan ﬂm

At b/a=0.5 then:

Kyp = 100103
Kb = 0.1223
Moment, M = Kwro 0@°
2 2
Stress, s = GIZ/I = 6(K M ga ): 6(0'1223)(120)(5) = 2,935psi (ox at inner edge)
t t (0.25)
(K, )oa _ -0.0103(10)* _

Displacement, y =

—0.0015 in (at inner edge of plate)
D 42,926
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Autodesk Simulation Solution

AVE - 65

Using the two-dimensional elements, a displacement of 0.0015135 in, and a stress of 2,935 psi were predicted.

Displacement
Z Component
in

0
-0.00015135
-0.0003027
-0.00045405
-0.00060539
-0.00075674
-0.00090809
-0.0010594
-0.0012108
-0.0013621
-0.0015135

Load Case: 1 of 1

L
Maximum Value: 0 in

'\
Minimum Value: -0.00151349 in

1<2D>

Figure 65-2. Vertical displacement results for the 2-D model.

Stress
Tensor Y-Y
Absolute Value
Ibf/(in*2)

2935
2641.6
2348.1
2054.7
1761.2
1467.8
1174.3
880.87
587.43
293.98
0.53007

Load Case: 10f 1
Maximum Value: 2935.01 Ibf/(in"2)

\ 4
Minimum Value: 0.530075 [bf/(in*2) k

1<2D>

Figure 65-3. Stress results (absolute value) for the 2-D model.

The plate elements predicted a similar displacement value but a slightly lower stress value of 2,880.4 psi (due to the

large stress gradient at the edge) as shown in Figures below.
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Displacement
Z Component
in

0
-0.00015034
-0.00030067
-0.00045101
-0.00060135
-0.00075168
-0.00090202
-0.0010524
-0.0012027
-0.001353
-0.0015034

Load Case: 1o0of 1
Maximum Value: 0 in

Minimum Value: -0.00150337 in

2 < Plate »

Figure 65-4. Vertical displacement results for the plate model.

Stress
Tensor R-R
Absolute Value
Local-1
Ibf/(in*2)
2880.4
2594.3
2308.3
2022.2
1736.1

1450
1164
877.9
591.83
305.75
19.683

Load Case: 1o0f 1
Maximum Value: 2880.4 1bf/(in*2)
Minimum Value: 19.6832 Ibff(in*2)

2 < Plate >

Figure 65-5. Stress results (absolute value) for the plate model.

A brick element model, shown in Figures below, was created by using the "Modify:Copy..." command with the
"Join All Copies" option active to extrude the plate model mesh and create two brick elements through the thickness.
The brick element produced acceptable results (deflection of 0.0015133 in, stress of 2912.3 psi), which illustrate that
a planar mesh can easily be converted into an acceptable brick mesh.
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Displacement
Z Component
in

0
-0.00015133
-0.00030267
-0.000454
-0.00060533
-0.00075667
-0.000908
-0.0010593
-0.0012107
-0.001362
-0.0015133

Load Case: 1of 1

Maximum Value: 0 in

Minimum Value: -0.00151333 in

3 < Brick >

Figure 65-6. Vertical displacement results for the brick model.

Stress
Tensor R-R
Absolute Value
Local-1
Ibff(in*2)
2912.3
2621.3
2330.2
2039.2
1748.2
1457 1
1166.1
875.04

584
292.96
1.9147

Load Case: 1of 1

Maximum Value: 2912.32 |bf/(in*2)
Minimum Value: 1.91465 [bf/(in*2)

3 < Brick >

Figure 65-7. Stress results (absolute value) for the brick model.

Table 65-1. Comparison of Results

AVE - 65

Theoretical Analysis % Analysis % Analysis %

(2-D) Difference (Plate) Difference (Brick) Difference
D(?;'gﬁgsc;” 1.5E-3 | -1.5135E-3 0.90 -1.5034E-3 0.23 -1.5133E-3 0.89
Stress (psi) 2,935 2,935 0.00 2,880.4 1.86 2,912.3 0.77
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AVE - 66 Nonlinear Static Analysis of a Simply Supported Plate

Reference

Timeshenko and Woinowsky-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, Inc., 1959, page
116.

Problem Description

A square plate with simply supported edges is subjected to a uniform pressure load of 1.0 psi. Determine the
maximum deflection of the plate.

Theoretical Solution

The analytic result of Wy = 4.4335 * 10°* t° was obtained using the equation Wys = o * p * a*P

Where:

D ={E* t}/ {12(1- V})}

p = 1.0 psi

a=1.0

E=1 x 10" psi (Young's modulus)
v=0.3 (Poisson's Ratio)

o = 0.00406 (From Timoshenko, et. al.)
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AVE - 66

The plate was modeled using two different mesh densities (16 x 16 and 32 x 32) and thicknesses (0.01 and 0.001).
The boundary conditions used were simply supported along all edges (T,y,). The transverse pressure loading of 1.0

psi was defined.

The nonlinear plate/shell element model was analyzed using the MES Nonlinear Static Analysis Processor to
investigate accuracy for various thicknesses and mesh densities.

Displacement
X Component
Absolute Value
in
0.0044501
0.0040051
0.0035601
0.0031151
0.0026701
0.0022251
0.0017801

0.001335
0.00089003
0.00044501
0

Time: 1s
Time Step: 1 0of 1
Maximum Value: 0.00445014 in

Minimum Value: 0 in

1 <t=0.01 (16x16 mesh) >

k

Figure 66-1. The center of the plate was where the maximum displacement occurred after the pressure load

was applied.

Comparison of the analysis results using the nonlinear plate/shell element model for 0.01- and 0.001-inch thick
plates are shown in the following table. Two mesh densities were used, both utilizing the 8-node nonlinear
plate/shell element (shell elements with midside nodes). The plate dimensions, boundary conditions and loadings
were the same in both cases.

Table 66-1. Comparison of Results

Design . Theoretical Analysis .
Scene{qrio Thickness X-Displacement (in) X-Displace)r/nent (in) % Difference
1 t=0.01 (16x16 mesh) 0.0044335 0.0044501 0.37
2 t=0.001 (16x16 mesh) 4.4335 4.42579 0.17
3 t=0.01 (32x32 mesh) 0.0044335 0.0044633 0.67
4 t=0.001 (32x32 mesh) 4.4335 4.4351 0.04
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AVE - 67 A Combined Beam/Plate Model

References
American Institute of Steel Construction (AISC), Steel Construction Manual, Eighth Edition.

Beer, Ferdinand P. and Johnston, Jr., E. Russel, Vector Mechanics for Engineers, Statics, Third Edition, pp. 359-
364.

Popov, E. P., Mechanics of Materials, Second Edition, pp. 125-126.
Problem Description

This problem uses classical equations to calculate the moment of inertia and section modulus of a combined
beam/plate model. The moment of inertia and section modulus are then used to calculate the stress of a simply
supported beam made from the combined model.

g 10in
] 1i Areaof

E mF Plate = 10in?

g 4'5i"l f 7= 1684n

-5}

a2 Areaof
‘|‘ — e = 19.7in

b4

I =272t

Figure 67-1. Beam/plate model which consists of a W8 x 67-inch wide flange beam with a 10-inch wide by
one-inch thick plate attached to the top flange.

Theoretical Solution

The following properties for a W8 x 67-inch wide flange beam are taken from the American Institute of Steel
Construction (AISC), Steel Construction Manual, Eighth Edition:

e Area(A)=19.7 in’

e Moment of inertia about the X-X axis = 272 in” (1)
e X-X axis section modulus = 60.4 in® (S)

e Moment of inertia about the Y-Y axis = 88.6 in” (I,)
e Y-Y axis section modulus = 21.4 in® (I,)

e Torsional constant = 5.06 in* (J,)

o Depth of the beam = 9 in (in the y direction)

Accuracy Verification Examples Manual, Version 2014 221



AVE - 67

Using the parallel-axis theorem from Vector Mechanics for Engineers, Statics, Third Edition, Beer, Ferdinand P. and
Johnston, Jr., E. Russel, pages 359 to 364, the combined moment of inertia is calculated as follows:

0x19.7 +10(4.5+.5)

=1.684 in
(19.7 +10)

y:

| = % (10)1)’ + 272 +10(5-1.684)" +19.7(1.684)" = 438.7 in*

Note that the section modulus and moments of inertia are given relative to the center of gravity of the I-beam.

The beam was simply supported on both ends, which were set 240 inches apart. A uniform load of 100 pounds per
inch was applied along the span of the beam. The maximum moment, as calculated from the AISC manual, for a
simply supported beam for a uniformly distributed load is found on page 2-114 of the AISC, Steel Construction
Manual and is

w(l)’ _ 100(240)°
8

M=

= 720,000 inch-pounds

The flexure formula from Mechanics of Materials, Second Edition, Popov, E. P., pages 125 to 126 is used to
calculate the normal stress for the combined section.

_My
|

)

Autodesk Simulation Solution

Both plate and beam elements were generated in FEA Editor. The plate model has the beam model as its centerline
and has 2400 1 x 1 inch elements. It was decoded with the same material properties as the beam and has a thickness
of 1 inch. Boundary conditions were added to the left end (TxTyTzRx) and the right end (TyTz) of the beam
element. These constraints simulate a simply supported beam. A beam offset of 5 inches and a distributed load of
100 Ib/in in the -Y direction was applied.

The stress at the top of the combined section was obtained by looking at the stress tensor in the X direction on the
front surface of the plate elements as shown in figure below.
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Stress
Tensor X-X
Ibf/(in"2)
7.1186
-620.97
-1249.1
-1877.1
-2505.2
-3133.3
-3761.4
-4389.5
-5017.6
-5645.7
-6273.8

Bending/Memrane
@ Total Stress /Shain

O Bending Stiess/Strain
O Membrane Stress/Stiain

TuaSided Display

Load Case: 1 of 1 O Boh3ides

" . © Tap Side Ony
Maximum Value: 7.11857 Ibf/(in"2) O Bottom Sice Orly
Minimum Value: -6273.77 Ibf/(in"2) i

1 < Design Scenario 1 >

Figure 67-2. Stress tensor X-X for Plate elements (top side only).

The stress at the bottom of the plate elements was obtained by looking at the back side stresses of the plate elements
as shown in figure below.

Stress
Tensor X-X
Ibf/(in"2)

14.847
-449.62
-914.09
-13786

-1843

-23075
-2772

-3236.4
-3700.9
-4165.4
-4629.8

Bending/Merbrane
@ Total Stess/Shain

O Bending Stiess/Strain
O Menbrane Stress/Shain

Two-Sided Display

Load Case: 1 of 1 O Boh 3ides

i o O Top Side Only
Maximum Value: 14.8469 |bf/(in"2) ORI
Minimum Value: -4629.84 Ibf/(in"2) i

1 < Design Scenario 1 >

Figure 67-3. Stress tensor X-X for Plate elements (bottom side only).

The stress at the bottom of the combined section can be obtained by looking at the worst stress in the beam elements
as shown in figure below. Worst Stress is the combination of axial stress, bending stress about axis 2, and bending
stress about axis 3. Positive (+) indicates the beam is in axial tension, and negative (-) indicates the beam is in axial
compression.
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Worst Stress

Ibf/{(in"2)
10157
9148

8138.8
7129.6
6120.4
5111.2
4102

3092.7
2083.5
1074.3
65.105

Load Case: 1 of 1

1 < Design Scenario 1 >

Maximum Value: 10157.3 Ibf/(in"2)

Minimum Value: 65.1052 Ibf/(in*2)

A,

Figure 67-4. Worst stress in the beam elements.

AVE - 67

The normal stresses were calculated at the following locations using the moment of inertia of 438.7 in* calculated
above. These calculated results were compared to the analysis results.

Table 67-1. Comparison of Results

Location y (_in) (refer to Theoreticgl Analysis_ _ %
Figure 67-1) Stress (psi) | Stress (psi) | Difference
'Top of Combined Section (5.5-1.684) = 3.816 6263 6273.8 0.17
'Top of Beam Bottom of Plate | (4.5-1.684) = 2.816 4622 4629.84 0.17
Bottom of Beam (4.5+1.684) = 6.184 10149 10157.3 0.08
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AVE - 68 Creep Analysis of a Thick-walled Cylinder

Reference

Odquist, F. K. G., Mathematical Theory of Creep and Creep Rupture, Oxford Mathematical Monographs, 1966.
Problem Description

Determine the stationary state stress distribution in a thick-walled cylinder made of a Norton Power Creep Law

material when loaded by internal pressure.

C,+C
SC = C1C5 21%3  (Norton Power Creep Law)

Theoretical Solution

Ohoop - q{_(l_zjr%_k b%j|
P n

Where:

a = inside radius

b = outside radius

p = internal pressure

n = creep rate stress exponent
r = radius at point of interest

Autodesk Simulation Solution

r=1" r=2"
o — —

LB

p = 1,000 Ib/in* «—— 100 elements through thickness—

Figure 68-1. Diagram of the creep analysis problem.

Due to the symmetry of the loading and geometry, a 2D axisymmetric analysis was run instead of modeling the
entire 3D cylinder. A thin, horizontal slice through the cylinder was modeled, and to model a state of plane strain in
the cylinder, translation in the vertical direction (Tz) was constrained on all nodes. The mesh that was used for the
analysis had 100 elements through the thickness of the cylinder to better capture the stress gradient.
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The constants in the Norton Power Creep Law that were used for this verification example were:

5 x 10 in/in/hour
n = 2.0 in/hour
1.

0 in/hour

Cl
CZ
CS

For this analysis, the creep error ratio was set to 0.10.

The cylinder was made out of material with the following properties:

E = 30 x 10° psi (Young's modulus)
v = 0.3 (Poisson's ratio)

A small displacement, constant pressure solution was obtained for a duration of 10,000 hours, divided into 200 time
steps of 50 hours each. It was observed that at a time of approximately 2400 hours, the stresses in the cylinder had
come to a state of equilibrium. Figure 68-2 plots the predicted stresses through the thickness of the cylinder with the
theoretical stresses at the time of 2400 hours.

Stress Variation through Thick Cylinder Wall

15
1 B
2 05 —5— Radial Stress/Pressure (Theory)
E —+— Radizal Stress/Pressure (Analysis)
5 —&— Hoop StressiPressure (Theory)
g —— Hoop Stress/Pressure (Analysis)
@
E 0 T T T £ T
172 Em
0.5 1 15 2 25
=l
-0.5 A &
cf
&
Vi
1 &
Radius (in)

Figure 68-2. Stress variation through the thickness of the thick cylinder at t=2400 hours.

The table below outlines the stress components at r = 1.5 inches at t = 2400 hours, compared to the theoretical
stationary state values. From t=2400 hours to the end of the analysis, stress results change by only a very small
amount, and at no time after t=2400 hours do the stress results deviate by more than 1% from the theoretical
stationary state solution.

Table 68-1. Comparison of Results

Theoretical (psi) | Analysis (psi) | % Difference
Gradial -333.33 -333.18 0.05
Ghoop 1000.00 1000.33 0.03
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AVE - 69 Shear Flow in a Simply Supported Beam

Reference

Popov, E. P., Mechanics of Materials, 2nd Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976, Section 6-3.
Problem Description

A simply supported beam has a rectangular cross section of 1 inch high by 0.5 inches wide. The beam is 10 inches
long. A load of 80 pounds is applied at the center of the beam. This causes a constant shear on the end of the beam

as shown in the following shear diagram.

20

Ty.Tx+ 4Tz D 1 inch

I+ o D.5iach
10 inches
401bs
40 1bs

Figure 69-1. Shear diagram of the simply supported beam problem.

Theoretical Solution

Equation 6-5 of Popov predicts the shear flow as follows:

VAGY VQ
T T

The shear flow has units of pounds per inch and is for a unit width. To calculate the actual shear, q is divided by the
width.

e Qs the first or statical moment of area fghi around the neutral axis (as shown in Figure 69-2 below).
e Y isthe distance from the neutral axis to the centroid of Asp;.

e | is the moment of inertia of the entire cross section.
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7P ik

e el o e . i F

Mentral
axis

=|

b I

Figure 69-2. The first or statical moment of area fghi around the neutral axis

For this example, V is constant across half the beam and is 40 pounds. The moment of inertia of this cross section is:
bh*12 = (0.5)(1)%12 = 0.04167 in*

Q varies depending upon the vertical location at which the shear flow is desired. For the shear flow at the center of
the section,

Q = (0.5)(0.5)(0.25) = 0.0625 in®.

The shear flow is then VQ/I or (40)(0.0625)/(0.04167) = 60 pounds per inch. Dividing by the width of 0.5, the shear
stress at the center is 120 psi.
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Autodesk Simulation Solution

The model consists of 16,000 2-D plane stress elements. The model is a rectangle 10 inches long by 1 inch deep.
The thickness of the model was specified as 0.5 inches on the "Element Definition" screen. The model was
constructed using a uniform mesh with 200 elements along the length and 80 elements through the depth. Fewer
elements could have been used to obtain the same level of accuracy if the mesh had been proportioned with more
elements towards the outside fibers, since the shear stress is parabolic and varies more rapidly at the outside fibers
than at the center.

Stress
Tensor Y-Z
Ibf/(in*2)
5419
433.5
325.2
216.8
108.4

-0.0009155
-108.4
-216.8
-325.2
-433.6
-541.9

Load Case: 1 of 1

Maximum Value: 541.937 |bf/(in"2) z

Y
Minimum Value: -541 938 Ibff(in*2) k’

1 < Design Scenario 1 >

Figure 69-3. Stress tensor results in the entire model (Probe location: Y=2.75, Z=0.7). 3D-Visualization

The shear stress is calculated for various vertical locations and compared to the analysis results in the following
table.

Table 69-1. Comparison of Results at Y=2.75

IY;;:;?:} Area| Y Q | Shear flow q i Shear Str_ess
) ) . 3 .
(in) (in%) | (in) | (in") (Ibfin) TheE);:i'[)lcal Ar(lsl)i/)ms % Difference
0.5 0.5 [0.25]0.125 60.0 120.0 120.0 0.00
0.6 0.4 [0.30]0.120 57.6 115.2 115.2 0.00
0.7 0.3 [0.35]0.105 50.4 100.8 100.8 0.00
0.8 0.2 |0.40 | 0.080 38.4 76.8 76.8 0.00
0.9 0.1 |0.45]0.045 21.6 43.2 43.2 0.00

The results at y = 2.75 are shown in the above table. The analysis results match the theoretical results with 0.0
percent error. At the point of application of the concentrated load and at the reaction points, there are some edge
effects, because the load and reaction were applied as point loads. Away from these edge effects, the shear results
are uniform as expected.
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AVE - 70 Dynamic Analysis of a Beam Model

Reference
McCormac, Jack C., Structural Analysis, Third Edition, pages 565-568.
Problem Description

A propped cantilever beam (that is, a cantilever beam with an added simple support at the outboard end) has two
concentrated loads as shown in Figure 70-1 (a). Design was performed by the elastic procedure for the 30K Ibs. and
50K Ibs. loads shown. A W 24 x 84 (S; = 196 in®) beam was selected. We wish to determine the ultimate values of
the two concentrated loads (when the yield stress is reached and collapse of the beam structure begins). The loads
are increased such that they remain in the same proportion to each other. In Figure 70-1 (b), the larger load at the
beginning of collapse is equal to P, and the smaller is equal to 0.6P,,.

Elastic Sizing Shear Loadings at Collapse for SS Beam
HIE 06 F, R,
b—10ft 10 ft—ap—~10 ft—! gl i
R ? L 22 7777
4 {a) 4R, 26
2, E2 {22,
Simply Supported Bending Moment Diagram Bending Moment Diagram with M, Added at Left Side
2207, HB0R 208 — M,
u L T
o s V/’?(GE’; \
- \ / } 30 - ()
EM 4 d___._,__-""""
{c) 1 |53% y
Simple bearn moment diagram & ey : Tp

Figure 70-1. A propped cantilever beam with two concentrated loads.

As the loads are increased, the left (built-in) end will reach the plastic moment first. After this plastic hinge forms,
the structure will remain statically determinate since the right end is simply supported. The loads may be increased
until another plastic hinge forms in the span at one of the two concentrated loads. From the diagram shown in
Figure 70-1 (d), which is qualitatively to scale, it is clear that the greater moment will occur at the concentrated load
P., on the right. Therefore, the second plastic hinge will occur at P,

Theoretical Solution

The second plastic hinge will form at the point of application of P,. The values of M, and P, would be as follows:

M
M+ Mo _ 260P,
330
Mp = 6.5 Py
M
P, =—
"7 65
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The numerical value of P, and the plastic factor of safety can now be calculated.

- (36 K)(196)

Mp =0, S3=""2 050 = 672K (RIbs.)
588 K

Pu = W = 90.46 K (le)

Factor of safety = 90.46 / 50 = 1.81

Autodesk Simulation Solution

Because the subject beam is relatively narrow and is weak in the lateral bending direction (axis-2), collapse can occur
due to geometric instability. To prevent this premature collapse, all degrees of freedom at the simply supported end of
the beam are constrained with the exception of X-translation and Y-rotation. This constraint prevents twisting and
lateral bending of the beam while allowing the expected motion at the simple support.

The nonlinear analysis was run using a load curve that ramps up linearly from zero to a multiplier of 2 in 20 seconds.
In this way, it is easy to determine the safety factor. Simply divide by 10 the time at which the yield strength is first
reached. For example, if the yield stress is reached at time = 18 seconds, then the safety factor is 1.8 (18/10).

The simulation event was divided into three intervals with a total duration of 19 seconds, as detailed below:

Interval 1 | 15 seconds | 15 time steps (during this interval, the entire beam is in the elastic state)

Interval 2: | 3.5 seconds | 35 time steps (during this interval, the plastic moment is reached only at the
left end of the beam)

Interval 3 | 0.5 second | 50 time steps (at some point during this |_nterval, the plastic moment is
reached at the second location)

So, there are a total 100 time steps in this nonlinear mechanical event simulation. The yield stress is reached at the
second location at 18.83 seconds. Therefore, the load factor (which is also the plastic safety factor) is 1.83. This
result is approximately 1.09% greater than the theoretical plastic safety factor of 1.81.

Bending Stress About Local 3 Axis =@ =
Ibfiin2)

287E3.09
2158497
1438685
T188 72T
-0.394133 /]
ST207 515

- 14405 64
-21603 76
-28801 .85
-36000

Time: 18.82 5 z
Time Step: B2 of 100 I IY
Maximum alle: 35981.2 It(n2)

0.000 42875 in a7.7451 1465626
[ I I ]
L I 1 ]

1 < Design Scenario 1 >

Figure 70-2. Bending Stress about the weak axis (Time Step 82).
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Figure 70-2 (preceding page) shows the bending stress about axis 3, the strong bending axis, at the time step
immediately before the plastic stress is reached at the second location. Notice that the stress at the application point
of the larger force is within 19 psi of the material’s yield strength. In the very next time step, this stress has reached
36,000 psi, as shown in Figure 70-3 below. In reality, plasticity is achieved sometime between 1.82 and 1.83
seconds, but a smaller time step size would be required to capture the time with greater precision.

Bending Stress About Local 3 Axis =@ %

Infin*2)

Time: 18.83 5

Time Step: 83 of 145
Maximum “alue: 36000 Ibfiin®2) | lY
Minimum Value: -38000 Ibf/(in*2)

0.000 42875 in a7.751 145,626
[ I I ]

1 < Design Scenario 1 = I T T 1

Figure 70-3. Bending Stress about the weak axis (Time Step 83).

Table 70-1. Comparison of Results

Theoretical | Analysis | % Difference
Load Factor at Collapse 1.81 1.83 1.09
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AVE - 71 Thermal Stress Analysis of a Pinned Beam/Truss Structure

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russell, Mechanics of Materials, McGraw-Hill, Inc., 1981, sample problem
2.4, page 58.

Problem Description
The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-diameter brass cylinder BD. A 22-mm-
diameter steel rod AC passes through a hole in the bar and is secured by a nut which is snugly fitted when the

temperature of the entire assembly is 20°C. The temperature of the brass cylinder is raised to 50°C while the steel
rod remains at 20°C. Assuming that no stresses were present before the temperature change, determine the stress in

the cylinder.
0.45 0.3
e o,

0.9m

Figure 71-1. Diagram of the pinned beam/truss structure.

Properties of Steel Rod AC | Properties of Brass Cylinder BD
E =200 GPa E =105 GPa
o =12 X 10°°C o =18.8 X 10°/°C
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Theoretical Solution

¢ E
- >k
7 YE,
B
A R,

+— 0 45 m—»—03 m-*

Figure 71-2. Diagram showing R and Rg

Statics

Considering the free body of the entire assembly, Beer and Johnston write:

+TY Mg = 0:

Ra (0.75m) -Rg (0.3 m) =0

Ra=0.4Rp

Deformations

The method of superposition was used, considering Rg as redundant. With Rg removed, the temperature rise of the
cylinder causes point B to move down through 8. The reaction Rg causes a deflection 8, of the same magnitude as
87 so that the final deflection of point B will be zero (as shown in Figure 71-3, below).

Deflection &7

Due to a temperature rise of 50° - 20° = 30°C, the length of the brass cylinder increases by &+

81 = L(AT)a. = (0.3 m)(30°C)(18.8 % 10°%/°C) = 169.2 X 10° mi
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Figure 71-3. Diagram of deflections.

Deflection §,

From Figure 71-3, we note that 6p = 0.4 6¢ and that 8; = 6p + dgp.

_R,L RA(0.9m)

5
© AE 1/7(0.022m) (200 GPa)

=11.84x10°R, T

8p = 0.4 8¢ = 0.4(11.84 x 10°R,) = 4.74 x 10°R,T

s _Rel _ R5(0.3m)
*" AE 1 7(0.03m) (105 GPa)

=4.04x10°R, T

Giventhat R,=0.4Rg :

81 = 8p + 8 = [4.74 (0.4 Rg) + 4.04 Rg]10° = 5.94 x 10°RsT
But 61 =9, :

169.2 x 10° m = 5.94 x 10°Rg

Rg = 28.5 kN

Stress in Cylinder

_Rg _ 285kN

A La(009y

op = 40.324254 Mpa

Op
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Autodesk Simulation Solution

The software was used to model and analyze the thermal stress interactions in the pinned beam/truss structure,
which consists of a brass cylinder and a steel rod pinned to a rigid linkage bar. The goal of the analysis was to
thermally load the brass cylinder and find the resultant deflections and stresses. All units were in Sl.

The brass cylinder (E = 105 GPa, o = 18.8 x 10°®/°C , diameter = 30 mm) was subjected to a 30°C thermal
expansion. The steel rod (E = 200 GPa, o. = 12 x 10°/°C, diameter = 22 mm) was held at a constant temperature.
(This was implemented by specifying the stress free reference temperature as -30°C for the brass cylinder and as
0°C for the steel rod.) The cylinder and rod were modeled with truss elements. The rigid bar was represented by two
beam elements with artificially stiff properties (area = 1 x 10°, i =1 x 10%, s =1 x 10°%, E = 1 x 10%).

The entire model was held in the x direction to force all deflections to remain in the yz plane. Additionally, the
trusses were held against translations at their bottom. The rigid bar itself was constrained against movement in the x
direction as well as the y and z rotations at all nodes. The pivot node was fully constrained except for the x direction
rotation.

During the linear static stress analysis, the temperature of the brass cylinder was raised, which caused the material to
expand axially. The steel rod remained at the same temperature and resisted expansion. The analysis results
indicated maximum stress in the brass cylinder of 40.34 MPa, a 0.05% difference from the theoretical solution.

Worst Stress
Absolute Value
Nf(m"2)
40344404
36309964
32275523
28241083
24206642
20172202
16137762
12103321
8068880.8
4034440.4

o]

Load Case: 1of 1

Maximum Value: 4.03444e+007 N{(m”2) z
Minimum Value: 1.43051e-006 NAm“2) Lv

1 < Design Scenario 1 > A

Figure 71-4. Stress results in the model.

Table 71-1. Comparison of Results

Theoretical (Pa) | Analysis (Pa) | % Difference
Stress in Cylinder 40,324,254 40,344,404 0.05
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AVE - 72 Dynamic Nonlinear Analysis of a Beam Model with a Gravity
Load

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russell, Vector Mechanics for Engineers, Third Edition, McGraw-Hill, Inc.,
1977, sample problem 17.5, p. 790.

Problem Description

Each of two slender rods, as shown in Figure 72-1, is 0.75 m long and has a mass of 6 kg. If the system is released
from rest when 3 = 60°, determine the velocity of point D when 3 = 20°.

Theoretical Solution

Figure 72-2. Diagram of the hinged rods system with = 20°.

Since V3 is perpendicular to the rod AB and Vjp, is horizontal, the instantaneous center of rotation of the rod BD is
located at C. Considering the geometry of Figure 72-2, we obtain

BC=0.75m

CD = 2(0.75m) sin 20° = 0.513 m
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{;AB =0.375®m GBD =0.522®

Figure 72-3. Diagram of angular velocities.

Applying the law of cosines to the triangle CDE, where E is located at the mass center of rod BD, we find EC =
0.522 m. Denoting by ® the angular velocity of the rod AB, we have:

EAB = (0375 m) [0}

?AB =0.3750 ™
LV = (075 m) [0}
vg = 0.75m ™

Since rod BD seems to rotate about point C, then:
vg = (BC) wgp

(0.75m) ® = (0.75 M) wgp

WBp = (0‘}

Vs = (EC)wgp = (0.522 )0

?BD = 05220)\!
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Figure 72-4. Diagram of position 1.

Potential Energy

Choosing the datum as shown, and observing that W = (6 kg)(9.81 m/s?) = 58.9 N, we have:

V; =2W.F, = 2(58.9 N)(0.325 m) = 38.3J
Kinetic Energy

Since the system is at rest, T; = 0.

FPosstion 2

Figure 72-5. Diagram of position 2.

Potential Energy
V, = 2W.¥,=2(58.9 N)(0.128 m) = 15.1 J

Kinetic Energy

Fae = oo = Yml? = Y1,(6 kg)(0.75 m)® = 0.281 kg m?
T2

1/zm ﬁzAB + 1/2-'f‘ABCO2AE; + 1/2m 62BD + 1/2£BD(DZBD
11,(6)(0.3750)% + */,(0.281) 0 ? + '/,(6)(0.5220)* + /,(0.281)w 2
1.5200°
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Conservation of Energy

T +V,=T,+Vy
0+38.3J)=1.5200"+15.11J
o =3.91 rad/s

mpg = 3.91 rad/s 2

Velocity of Point D

vp = (CD)w = (0.513 m)(3.91 rad/s) = 2.01 m/s
Vp =2.01 m/s—>
Autodesk Simulation Solution

The problem stated above was solved using the MES nonlinear stress analysis software. The two rods were modeled
using linear 2-D elements. The mesh was modified to ensure that the rods shared only one coincident node (at point
B).

At the bottom of the left rod, the pivot node was fully constrained. On the bottom of the right rod, the pivot node
was constrained in all directions except the Y direction, since it is the velocity in the Y direction that we are trying to
discover. Additionally, this model employed an impact plane to represent the rod hitting the ground. Since this was a
theoretical solution to the body forces of the rods, no damping was used.

The analysis duration was set to 0.75 seconds and a capture rate of 100 results per second was used. Figure 72-6
shows the "Custom Result" graph. Beta is 20degrees between time 0.57 and 0.58 seconds. The following equation
was used in the results environment to achieve this custom result. The variable "AB1" was set to the Displacement
Y component. this equation outputs the Beta in degrees when one inquires on node # 38 which is the node that
exists at point D in Figure 72-1.

acos(((0.75+AB1)"2)/(2%0.75%(0.75+AB1)))*180/3.1415926

Angie Beta (36)

o
=
y

w
&
I

o
&
I

0 I O O S |
01 0.2 03 0.4 0.5 0.6 07
Time (s)

Figure 72-6. The angle Beta over time.
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0.1 02 03

04
Time (s)

06 0.7

Figure 72-7. Graph of velocity at Point D

Displacement
Y Component
m

0.68611
0.61415
0.54219
0.47023
0.39827
0.32632
0.25436
0.1824
0.11044
0.038484

-0.033474

Time: 0.57 s

Time Step: 57 of 75
Maximum Value: 0.686107 m
Minimum Value: -0.0334738 m

1 < Design Scenario 1>

Figure 72-8. Displacement Y component at time = 0.57 seconds

Table 72-1. Comparison of Results

Theoretical

Analysis*

% Difference

Velocity 2.01 m/s

1.978 m/s

1.59

* Based on velocity of Point D at time = 0.57 seconds
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AVE - 73 Linear Stress Analysis of a Beam Model

Reference
McCormac, Jack C., Structural Analysis, Third Edition, 1975, pages 388-390.
Problem Description

Given the continuous beam shown in Figure below, find the reactions.

P, = 50" P, = an* P, = 40"
A l B v [ 4 ¥ D
10 h"L‘I[Ift 10— 10— 101t 20 it -
5 20 gt 201t e W0 >

Figure 73-1. Diagram of the beam model.

E =29 x 10° psi
| = 8147.6 in*

Theoretical Solution

The shear and moment diagrams are drawn in the reference as shown in Figure 73-2 and Figure 73-3, below.
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T M diagram for load P, T
9,295 ft'-k 5,720 fi'-k
sas™
457" &
T M diagram for load P, T
12,570 11,340
poe 571"

M diagram for load P,

8,570 11,430
14.3™ 86"
rf; diagrarm for unft load ar O |
TEE Z14
P 17.1"
| T disgram for unit load at © I
286 313

Figure 73-2. Moment diagrams.

8s = (5720)(50) - (1/2)(50)(357.5)(16.67) + (12,570 + 8570)(20) - (1/2)(20)(457 + 228)(6.67)
85 = 514,350

8¢ = (5720 + 11,440)(30) - (1/2)(30)(214.5 + 515)(10) + (8570)(40) - (1/2)(40)(457)(13.33)
8¢ = 625,300

S = (20)(286) - (1/2)(20)(14.3)(6.67) = 4,765

8¢ = (30)(313) - (1/2)(30)(17.1)(10) = 6,820

Seb = Sbe = (20)(286) - (1/2)(20)(8.6)(6.67) = 5,140
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K L} I
V, =187 ¥, =492 V. = 54.4 v,=17"
32.3"
18.7" 17.8" ;
+* +
= - |
s 7.7%
22.1%
31.3"
13?”‘ 154'“"

Figure 73-3. Reaction forces and shear and moment diagrams.

By writing the deflection equations,

Og + Vgdpp + VO = 0
514,350 + 4,765V + 5,140V = 0
OS¢ + Vpdep + Vb = 0
625,300 + 5,140V + 6,820V =0

1)

@)

Simultaneous solution of equations (1) and (2) gives Vg and V; values of V, and Vp are found by statics.
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Autodesk Simulation Solution

AVE - 73

The beam was modeled using seven beam elements, each 240 inches (10 feet) long. Results are shown in

comparison with theoretical results in the table below.

Reaction Force
Magnitude
Ibf
54327
48895
43462
38029

32596
27164 @H
21731 18662 49276” 54327 [T 734

el =T
16298

10865
5432.7
1.4552e-011

Load Case: 1 of 1

Maximum Value: 54327.5 |bf Y

Minimum Value: 1.45519e-011 Ibf LX

1 < Design Scenario 1 >

Figure 73-4. Reaction forces and Shear diagram

Table 73-1. Comparison of Results

Theoretical | Analysis | % Difference
Va 18.7 18.7¢ 0.0
A 49.2% 49.3¢ 0.2
Ve 54.4 54.3 0.2
Vp 7.7% 7.7 0.0
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AVE - 74 Two Cylindrical Shells with Internal Pressure Loading

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Sixth Edition, New York: McGraw-Hill,
1989, Table 31, 1a.

Problem Description

Two cylindrical shells of different thicknesses are subjected to an internal pressure loading. Our goal is to find the
radial deflection at the common circumference between the two shells.

1
 — ﬁ 1
O, 4?2 1] I:I'I I}' Ry by VIA‘l'WA

| |

Figure 74-1. Diagram of two cylindrical shells with internal pressure loading (general case, where by # b,).

Theoretical Solution

According to Roark and Young, the radial deflection of the common circumference, AR,, is given by the following
equation, which is accurate if R/t > 5.

R 2
AR, = Cé_tl Kra
11
Where:
Thickness (larger O.D. cylinder) = b = 2.0inches
Thickness (smaller O.D. cylinder) = 4 = 1.0inches
Modulus of Elasticity (same for both cylinders) = E;=E, = 3x10 psi
Inner Radius (same for both cylinders) = by=b, = 19.5inches
Radius to midplane of small cylinder = R = 20inches
Poisson's Ratio (same for both cylinders) = V=V = 03
Internal Pressure = q = 100 psi
Value from Roark's Table 31, 1a corresponding to = Kura = 0.6857

Ri/ty = 20"/1" = 20 and t/t; = 2"/1" =2

_gR? _100psi(20in)*

AR, = =LK, =
ARG M (3x207 psifL0in)

(6857)=9.142667 x10~*

(radial deflection at common interface)
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Autodesk Simulation Solution

; oty &
Ry—
by=tigs Y
By —

> b€

Figure 74-2. Diagram of the 2-D model.

The model was created and meshed in FEA Editor using 2-D axisymmetric linear elements. Boundary conditions
were placed at the ends of the model to constrain translation in the z direction on the top and bottom surfaces. The
dimensions and parameters defined above for the theoretical solution were used. A comparison between theoretical
and analysis solutions may be found in the table below.

Displacement
Y Component
n
0.001243
0.001175
0.001108

0.00104

0.0009727
0.0009051
0.0008375
0.0007699
0.0007023
0.0006347
0.0005671

Load Case: 1of 1
Maximum Value: 0.00124309 in

Minimum Value: 0.000567072 in

1 < Design Scenario 1 >

Figure 74-3. Results display of displacement contours with a probe on the node of common circumference.

Table 74-1. Comparison of Results

Theoretical Analysis % Difference
9.142667 x 10" | 9.121334 x 10" 0.23

Radial Deflection at
Common Circumference
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AVE - 75 Spring and Collar Slide Down Vertical Rod

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russell, Vector Mechanics for Engineers, Dynamics, Third Edition, sample
problem 13.6, page 570.

Problem Description

| 8in.

<Fq-
.

Figure 75-1. Diagram of the spring, collar and rod mechanism.

A 20-Ib collar slides without friction along a vertical rod as shown in Figure 75-1. The spring attached to the collar
has an undeformed length of 4 in. and a constant of 3 Ib/in. If the collar is released from rest in position 1, determine
its velocity after it has moved 6 in. to position 2.

Theoretical Solution

Figure 75-2. Diagram showing datum and velocity.

The elongation of the spring in position 1 is x; = 8 in. - 4 in. = 4 in. Therefore, to calculate the potential energy in
position 1, we begin by writing

Ve = Yokx;” = ¥(3 Ib/in.)(4 in.)* = 24 in-Ib
Choosing the datum as shown, we have V= 0. Therefore,
Vi=Ve+Vg=24in-lb=2ftlb

Since the velocity in position 1 is zero, T; = 0, T; being the kinetic energy at the initial position.
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The elongation of the spring in position 2 is x,= 10 in. - 4 in. = 6 in. Therefore, to calculate the potential energy in
position 2, we begin by writing
V. = %kx,? = %(3 Ib/in.)(6 in.)2 = 54 in-Ib
Vg =Wy = (20 Ib)(-6 in.) =-120 in-Ib
Therefore the potential energy at position 2 is,
V=V, +Vy=54-120=-66 in-Ib = -5.5 ft-Ib
To calculate the kinetic energy at position 2 , we write
T, = Yamv,? = (%)(20/32.2)v,% = 0.311v,°
Applying the principle of conservation of energy between positions 1 and 2, we write,
Ti+Vi=T+V,

0+ 2 ft:lb=0.311v,>- 5.5 ft-Ib

v, = +4.91 ft/s
v, = 4.91 ft/sl
F
-
23
Fy
o
e — %, = 4in —
e = Bin, ——

Figure 75-3. Graph of F versus x.

Autodesk Simulation Solution

This problem was modeled in FEA Editor. The collar was drawn in part 1 as a 2 in. x 2 in. square in the YZ plane
with its center at the origin. Because only vertical motion is allowed, all nodes were constrained in Ty. The spring
was drawn in part 2 as a line between (y=0,z=0) and (y=-8,z=0).

Collar Parameters

linear 2-D element

mass density = 0.01294

Young's modulus = 30 x 10°

Poisson's ratio = 0.3

thickness = 1 in. (given the 4 in. cubic volume)
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Spring Parameters

e linear truss element

Properties were determined as follows:

_P_AE_
AL

k 3

area, A=1in’

length, L = 8 in.

Young's modulus, E = 24 psi

initial axial strain = 0.5 (Initial strain is defined as AL/(L, + AL) where L, = natural length. Since the spring is
stretched from 4 in. at time 0, its initial strain is 50%.)

e density=0

Other parameters for the spring were defined the same as for the collar.

Global Parameters

e Duration =0.2 sec.
o Capture rate = 1000 steps per sec.

On the "Load Curves" tab, a constant load curve multiplier of 1 was specified for the duration of the analysis. On
the "Acceleration/Gravity" tab, the gravitational constant of 386.4 was set in the -Z direction.

Since the orientation of the truss is changing with time, Mechanical Event Simulation was used to solve this
problem.

Results

At a time of 0.185 seconds, the displacement at the center node was 5.997 in. in the -Z direction.

Displacement
Z Component
in

0
-0.5997
-1.199
-1.799
-2.399
-2.999
-3.598
-4.198
-4.798
-5.398
-5.997

Time: 0.185 s
Time Step: 185 of 200

Maximum Value: 0 in

Minimum Value: -5.99729 in

1 < Design Scenario 1 >

Figure 75-4. Displacement results (Z component)
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Velocity result at time 0.185 seconds was 57.969 in./sec. which corresponds closely to the results from Beer and
Johnston. The graphing capability was used to graph the displacement and velocity simultaneously.

Displacement Magnitude {13} (in)

A Derivative of Displacement Magnitude (13)

60 —

554

50 4

45 4

40

354

30 4

25 4

20 4

0.02 0.04

0.06

0.08 0.1
Time (s)

Figure 75-5. Displacement and velocity graph for the node at the center

Table 75-1. Comparison of Results

Velocity at Position 2

Theory

Analysis

% Difference

4.91 ft/s

4.83075 ft/s

1.61

Accuracy Verification Examples Manual, Version 2014

251




AVE - 76

AVE - 76 Slender Pivoting Rod and Compressed Spring

Reference

Beer Ferdinand P. and Johnston, Jr., E. Russell, Vector Mechanics for Engineers, Dynamics, Third Edition, sample
problem 17.4, Page 789.

Problem Description

A 30-1b slender rod AB is 5 ft long and is pivoted about a point O which is 1 ft from the end B. The other end is
pressed against a spring of constant k = 1800 Ib/in until the spring is compressed 1 in. The rod is then in a horizontal
position. If the rod is released from this position, determine its angular velocity and the reaction at the pivot O as the
rod passes through a vertical position.

» il
Fogtion 2 1
= 1l
'
[ |
¥ 1l
|
'
'
'
1 lwz
g
g
Position 1 e ¥
o= 1 |
L 1.5t 1¥
0 3::' I
I:|J|_= o
Damm
RN
& \*# [
[ |
30 1b, III—
51, LB

Figure 76-1. Diagram of the pivoting rod and compressed spring system.

Theoretical Solution

Since the spring is compressed 1 inch when in position 1, we have x; = 1 in. Therefore, to calculate the potential
energy, we begin by writing:

Ve = Yokx,® = %(1800 Ib/in)(1 in)? = 900 in-Ib
Choosing the datum as shown, we have V, = 0; therefore,
V1=V, +Vg=900in-1b =75 ft-Ib

Since the velocity in position 1 is zero, the kinetic energy, T;, also is zero.
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The elongation of the spring in position 2 is zero, and we have V, = 0. Since the center of gravity of the rod is now
1.5 ft above the datum, the potential energy is calculated thus:

Vg = (30 Ib)(+1.5 ft) = 45 ft Ib
Vo=V, +V, =45 ftIb

Denoting by w, the angular velocity of the rod in position 2, we note that the rod rotates about O and write t%, =¥,
= 1.5wm,. To determine the kinetic energy in position 2, we write:

1 ._1 30

(5 ft)’ =1.941 Ib- ft- s

12 123221
1 1- 1 30 1
T, = Emv§+E lo? = E@(1.5%)2 +§(1.941)0)§ =2.01903

From the conservation of energy in position 2, we write:

_ 2
Ti+Vi=To+ Vy 0+75 ft-1b = 2.0190 2 +45 ft-1b
®, = 3.86 rad/s«

Since w, = 3.86 rad/s, the components of the acceleration of G as the rod passes through position 2 are

@ _
&, = Fol = (L5 ft)(3.86 radls)?=22.3 ft/s® o = 223 ftis*)
a = Fa = ro—

We express that the system of external forces is equivalent to the system of effective forces represented by the
vector of components ma; and ma,, attached at G and the couple fa.

+33ZM, = S(Mo)efr: 0=To+m(ro)F a=0
BYF, = S(Ferr R, = m(Fo) Ry=0
+TFy = Z(F)err Ry-301Ib=-ma,
R,-301b= —%(22.3 ft/s?)
Ry=+9.221b

R=9.221bT
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Autodesk Simulation Solution

The model consisted of three parts:

e part 1 —the slender rod (between points A and B)
e part 2 —the spring (at point A)

e  part 3 —the pivot (at point O)

Setup

Part 1 consisted of 80 2-D linear elements (1.5 in by 1.5 in) used to represent the 5-ft long slender rod. The origin in
FEA Editor was chosen to be point A. A height of 3 in and a thickness of 1 in were arbitrarily chosen to approximate
the slenderness of the rod. The mass density was calculated to be 4.313 x 10 to give the correct weight of 30 Ib.
The Young’s modulus was chosen to be 30 x 10° to cause the rod to behave as a rigid body.

Part 2 consisted of a single truss element with small displacement. This part was used to represent the spring. The
length of the truss was drawn as 3 inches in FEA Editor; therefore, in order to simulate an initial compression of 1
inch, an initial strain of -0.33333333 was used. Since the spring stiffness was specified to be 1800 Ib/in, the
following equation was solved for the Young's modulus of elasticity, E (5400 psi) by setting the area to 1 square in.

P_ % =1800 Ib/in

The density was set to 0. Since the spring is no longer active after it uncompresses, the following nonlinear stress-
strain curve was used.

Table 76-1. Stress vs Strain

Strain (in/in) | Stress (psi)
-1 -5400
0 0
1000 0

The node at point O was restrained in the Z and Y directions by a translational boundary condition.

On the "Analysis Parameters" screen, the "Duration” was set to 0.35 sec and the "Capture rate” was set to 10000
steps per second. On the "Load Curves" tab, a constant load curve multiplier of 1 was specified for the duration of
the analysis. On the "Accel/Gravity" tab, the gravitational constant of 386.4 in/sec® was set in the -Z direction.

Comparison of Results

In the mechanical event simulation, the rod reached position 2 at 0.3422 sec. The analysis predicted a velocity of
69.26 in/s in the Y direction at the center of mass. The results from Beer and Johnston of 3.86 rad/s multiplied by 18
inches gives 69.48. The analysis predicted a reaction of 8.93 Ib at point O compared to the Beer and Johnston result
of 9.22 Ib.
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Displacement
Y Component
in

49.51

43.21

36.91

30.6

243

18

1.7

5.401

-0.9 T
-7.201
-135

Time: 0.3422 s

Time Step: 3422 of 3500

Maximum Value: 49.507 in z

Minimum Value: -13.5018 in I;.y

1 < Design Scenario 1 >

Figure 76-2. Y displacement.

Derivative of Displacement Y Component (62)

N T ey Ty |
0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (s)

Figure 76-3. Graph of velocity results.

Table 76-2. Comparison of Results

Theory | Analysis | Difference
Velocity (in/s) | 69.48 69.26 0.3%
Reaction (Ib) 9.22 8.93 3.1%

Note: Due to size considerations, results for this AVE are not included with the supplied model archive. You can
use the archive file to run the analysis on your own.
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AVE - 77 Dynamic Analysis of an 8-kg Body Using Damping and a Dashpot

Reference

Meriam, J. L. and Kraige, L. G., Engineering Mechanics Volume 2: Dynamics, Fourth Edition, New York: John
Wiley & Sons, Inc., 1997, sample problem 8/2, page 610.

Problem Description
An 8-kg body is moved 0.2 m to the right of the equilibrium position and released from rest at time t = 0. Determine

its displacement at time t = 2 sec, given a viscous damping coefficient ¢ = 20 N'sec/m, and a spring stiffness k = 32
N/m.

'
= I
[ |
Equilibrium — ¢X = 20X ¢ ¥
position Iox = 39% ¢

|

N
Figure 77-1. Diagram of the 8-kg body system.

Theoretical Solution

In order to determine whether the system is underdamped, critically damped or overdamped, we compute the
damping ratio C.

o, :\/%:\/%:ﬂad/sec

(= c 20
2me, 208)Q2)

0.625

Since ¢ < 1, the system is underdamped. The damped natural frequency is

0, =0, 1-¢% =2,/1-(0.625)? =1.561 rad/sec
The motion is given by the equation

X = Ce *'sin(w t+ )
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Therefore,
X = Ce **sin(1.561t+ )

The velocity is then

x = -1.25Ce**sin(1.561t+ ) +1.561Ce " **cos(1.561t+ )
Evaluating the displacement and velocity at time t = 0 gives
X, = Csiny =0.2

x0=-1.25Csiny+1.561Ccosy =0

Solving the two equations for C and v yields C = 0.256 m. and y = 0.896 rad. Therefore, the displacement in
meters is

x = 0.256e %" sin (1.561t + 0.896)
Evaluation for time t = 2 sec. gives x, =-0.0162 m

(The reference text notes here that the exponential factor e%"is 0.082 at t = 2 sec. Hence, { = 0.625 represents
severe damping, although the motion is still oscillatory.)

Autodesk Simulation Solution

Using FEA Editor, a 1-m square 2-D element was drawn in the YZ plane to represent the 8-kg body. Four 0.2-m
prescribed displacements were applied in the positive Y direction, one at each node. Tz constraints were added to
the bottom 2 nodes. The square and prescribed displacements were assigned to Part 1.

In Part 2, a 1-m long, general contact element was drawn to perform both the function of the spring and viscous
damper. The general contact element is fully constrained on one end and attaches to the 2-D element on the other.

In the general contact data entry screen, under "Unlocked Material Properties”, a value of 32 N/m? was entered for
both the Tensile Young’s Modulus and the Compressed Young’s Modulus. Under "Damping Parameters", the
"Dashpot Coefficient" was set to 20 N'sec/m. The "Cross Sectional Area" was defined as 1.

The 2-D element was defined as a 1-m thick, linear element for Updated Lagrangian Analysis. To give the 1-m
cube 8 kg of mass, the density of the 2-D element was defined as 8 kg/m®. Poisson’s ratio was defined as 0.3 and
the Young’s Modulus as 1 x 10°.

The capture rate was defined as 100 steps/sec and the duration was set to 4 sec.

Whereas the reference problem defines t = 0 as the moment when the mass is released, an event simulation using
prescribed displacements must allow time for displacement to occur. Therefore, the Mechanical Event Simulation
was set up to begin 0.2 sec. before the release of the mass. The load curve was defined to apply the 0.2-m prescribed
displacements over 0.1 sec and hold the displacements for another 0.1 sec. At time t = 0.2 sec, the mass is released
to respond to the extended spring. This is accomplished by defining the active range for the prescribed displacement
between 0.0 and 0.2 sec (birth = 0 sec and death = 0.2 sec).
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The Mechanical Event Simulation yielded a displacement of -0.0162 m at 2 sec after the prescribed displacement is
released (2.2 sec). Compared to the value obtained from the reference calculations, 0.0162 m, this value matches the

reference solution precisely (0.0 % difference).

Displacement
Y Component
m

0
-0.001617
-0.003234
-0.00485
+-0.006467
-0.008084
-0.008701
-0.01132
-0.01293
-0.01455
-0.01617

Time:22s
Time Step: 220 of 400
Maximum Value: 0 m

Minimum Value: -0.0161681 m

1 < Design Scenario 1 >

L.

Figure 77-2. Display of displacement results at 2 seconds after the prescribed displacement is released.

Dispracement ¥ Component (1] (m)

15 2
Time (s)

Figure 77-3. Graph of displacement results over time.

Table 77-1. Comparison of Results

Theoretical

Analysis

% Difference

Displacement (m)

-0.0162

-0.0162

0
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AVE - 78 Transient Heat Transfer Analysis of a Semi-Infinite Pressure
Loading

Reference

Holman, J. P., Heat Transfer, Fifth Edition, McGraw-Hill Book Co., New York, 1981, pp. 132-134.

Problem Description

A semi-infinite, aluminum cylinder initially at 200°C is subjected to a convection at 70°C with h = 525 W/m.*°C.
That is, the convection occurs on one end of the cylinder and around the perimeter. The cylinder is 5 centimeters

(cm) in diameter. We must determine the temperatures at:

a) T, = the center of the cylinder, and
b) T, =the surface,

both at a distance (x) of 10 cm. from the end and 1 minute after being exposed to the environment.
Theoretical Solution

The following conductivity (k) and thermal diffusivity (o) material properties for aluminum were used in the
theoretical solution:

k =215 W/m.°C
a = 8.4 x10° m?/sec.

Heisler charts were used to combine the temperature solutions for an infinite cylinder and a semi-infinite slab.

For the slab the chart parameters are:

hvor _ (525)B.4x10°Y6O)” _
Kk 215
01 =0.704

2Jor  (2)fB.4x10° \60)]"

From the Heisler chart:

KEJ =1-0.036 = 0.964 = S(X)
semi—infiniteslab

For the infinite cylinder, we calculate both the axis- and surface-temperature ratios. The axis-temperature ratio is:

=
=

r, =2.5cm L =16.38 —-=8.064 -2-0.38
hr, ry 0,
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To find the surface-temperature ratio:

" _10 9 097
0

I‘0 0
Thus, from the Heisler charts
0 0.38 atr=0
C(0)= [—j ={
0 ) -(038)097)=0369 atr=r,
The combined solution for the semi-infinite slab and the infinite cylinder is

(o], ~COS)-

cylinder

{ (0.38)(0.964)=0.366 atr=0
(0.369)0.964)=0.356 atr=r,

T, =70 + 0.366 (200 - 70) = 117.6
T, =70 +0.356 (200 - 70) = 116.3

Autodesk Simulation Solution

FEA Editor was used to create the 2-D cross-section of the cylinder in the Y-Z plane with the centerline of the
cylinder and a point 10 cm. from the free end located at the origin. (This makes it easy during post processing to find
the nodes of interest.) Finer divisions were used near the surfaces where the thermal gradient will be higher.

After creating the mesh in centimeters, the mesh was scaled to set the units of length to meters (m). The other units
used in the analysis were Joule (J), kg., Celsius and seconds (sec), yielding Watts as the units of power.

The top right corner element was split into two triangular elements so that convection conditions could be applied to
both the top and side of the cross-section's outside corner. The next step was to change the surface number of the
lines that form the top and right sides; that is, the surface of the cylinder. In this case, the entire mesh was created as
1 surface, but the top and right sides were updated to a secondary surface number.

The 3-D, 90° sector of the cylinder was completed by revolving 10 copies of the 2-D model using "Rotate:Copy"
with the "Join" switch active.

The 3-D brick element type was selected. Material properties, such as density, specific heat and conduction
coefficient, and boundary conditions were assigned.

To derive the specific heat, c,, the following relationship was used: o = k/(p c,) where the density, p, of aluminum is
approximately 2700 kg./m®. This yields a value for Cc, 0f 947.97 J./(kg. C°)

The convection coefficient and an ambient temperature were applied to Surface 2. The "Load Curve" was set to "0"
since a loading does not change over time

The initial temperature of the model was defined to be 200°C. The solution time step was set to 0.5 seconds, the
final solution time was 70 seconds, and the solutions were output every other time step (resulting in output at every
second).

To confirm that the extra 30 cm. of cylinder is sufficient to simulate an infinite cylinder, the temperatures of the

bottom nodes were checked. Since the temperatures were found not to change axially at the bottom end, we can
safely conclude that the extra 30 cm. length is sufficient.
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Temperature
°C
1201
119.13
118.16
117.19
116.23
115.26
114.29
113.32
112.35
111.38
110.42

Time: 60 s
Time Step: 60 of 70
Maximum Value: 120.1 °C

Minimum Value: 110.416 °C

1 < Design Scenario 1 >

Figure 78-1. Temperature results at T1 and T2, 60 seconds into the analysis.

Temperature
°C
1201
119.77
119.44
119.12
118.79
118.46
118.13
117.8
117.47 118.27
117.15
116.82

Time: 60 s

Time Step: 60 of 70

Maximum Value: 120.1 °C

Minimum Value: 116.818 °C

1 < Design Scenario 1 >

Figure 78-2. Temperature results at T1 and T2, 60 seconds into the analysis. The ""Hide Elements' capability
was used to show a cross-section of the model at 10 cm.

Table 78-1. Comparison of Results

Temperature at 1 Minute
Initial T1 (0,0,0), T2 (0,0.025,0),
Temperature | Center of the Cylinder | Surface of the Cylinder
Theory (°C) 200 117.6 116.3
Analysis (°C) 200 118.3 116.8
% Difference 0.0 0.6 0.4
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AVE - 79 Mechanical Event Simulation of a Slider-Crank Mechanism

Reference

Meriam, J. L. and Kraige, L. G., Engineering Mechanics Volume 2: Dynamics, Third Edition, New York: John
Wiley & Sons, Inc., 1992, sample problem 5/9, page 351.

Problem Description
The common configuration of a reciprocating engine is that of the slider-crank mechanism shown below. At 6

seconds (sec), the rotational velocity (®) of the crank BC is 0.05 rad./sec. and at the position shown below. The
crank arm BC is 5 inches (in) and AB is 14 in. Determine the velocity of the piston A at 6 seconds.

Figure 79-1. Diagram of the slider-crank mechanism.

Theoretical Solution

The velocity of the crank pin B as a point on AB is easily found, so that B will be used as the reference point for
determining the velocity of A at 6 seconds. The relative-velocity equation may now be written:

Va=Vg + Vap
The velocity at the pivot point that is common to the two connecting rods (B) was computed using the following:
vg = ro =5 in. (0.05 rad./sec.) = 0.25 in./sec.

and is normal to BC. The direction of v, is along the horizontal cylinder axis. The direction of v,g must be
perpendicular to the line AB as indicated on the diagram, where the reference point B is shown as fixed.

Position at t = 8 sec. B 0 B

<

_ tan_l[4.3755)

1.1089

c . 77.1864 °

UAIB

Figure 79-2. Diagram showing velocity.
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We obtain this direction by computing the angle g from the law of sines, which gives:

5 14
sinf sin 77.1864

B =20.38024

We now complete the sketch of the velocity triangle where the angle between v, and vag is
90° - B = 90° - 20.38024° = 69.61976°

The second and third angles are

90° - 6 =90° - 77.1864° = 12.8136°

180° - 12.8136° - 69.61976° = 97.56664°

A
a0% - o L Varn
a0° - f

Uy

Figure 79-3. Diagram of the velocity triangle.

Solving for v, by the law of sines gives

Vi B 0.25

sin 97.56664°  sin 69.61976°

Vs = 0.2644 in/sec
Autodesk Simulation Solution

The connecting rod assembly consisted of two rods, each created using solid elements, and connected at the center
so as to form a pivot. The model of the connecting rod assembly was generated in FEA Editor, meshed in 2-D using
the "Automatic Mesh" commands and then extruded to generate a 3-D solid model, containing 76 solid elements.
The left end (A) was constrained to move only in the Y-direction. The right pivot point (C) had all translational
degrees of freedom constrained.

Motion was generated using a prescribed rotation about the connecting rod pivot location (C). This rotational
velocity was input using a prescribed rotation about the X-axis. The motion was transferred into the connecting rod
by means of an arrangement of beam elements.

The analysis was processed using Mechanical Event Simulation. While the analysis was processing, the velocity of
the left pivot location was continually viewed. The velocity was displayed by performing the first derivative
operation with respect to time on the displacement curve.

The results were obtained at a time of 6 seconds into the analysis.
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Displacement
Magnitude
in

1.588
1.429
1.27
1112
0.9528
0.794
0.6352
0.4764
0.3176
0.1588
0

Time:6s =
Time Step: 300 of 300
Maximum Value: 1.58799 in

Minimum Value: 0 in

1 < Design Scenario 1 >

Figure 79-4. This Result display shows the initial and final position of the connecting rod assembly.

——— Derivative of Displacement Magnitude (3)

0283+
02625-5
0262
02615 f- --------------------------
0261
0.2605 -

0.26 4

0.2595

0.250 4

0.2585

0258 4

0.2575

AERRRRRE

0257+

25 3 35 4 45 5 55
Time (s)

Figure 79-5. Velocity of the piston A.

Table 79-1. Comparison of Results

Theory (in./sec)

Analysis (in./sec) | %o Difference

Velocity of A at 6 Seconds

0.2644

0.2618 0.98
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AVE - 80 Mechanical Event Simulation of a Lunar Lander

Reference

Meriam, J. L. and Kraige, L. G. Engineering Mechanics Volume 2: Dynamics, Third Edition, New York: John Wiley
& Sons, Inc., 1992, sample problem 3/185, page 199.

Problem Description

A 200-kg. lunar lander is descending onto the moon's surface with a velocity of 6 m./sec. when its retro-engine is
fired. The engine produces a thrust T for 4 sec. that varies with the time as shown in Figure 80-1 and then cuts off.
Calculate the velocity of the lander when t = 5 sec, assuming that it has not yet landed. Gravitational acceleration at
the moon's surface is 1.62 m/sec’.

Figure 80-1. Diagram of the lunar lander problem.

Theoretical Solution

The velocity of the lander must be calculated for each of three stages. From 0 to 2 sec. (stage 1), the thrust is ramped
up to 800 N. From 2 to 4 sec. (stage 2), the thrust remains constant at 800 N. From 4 to 5 sec. (stage 3), there is no
thrust and the lander descends due to a gravitational acceleration of 1.62 m/sec.
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For each of the three stages, equation 3/23 from the reference is applicable:

I:Zth:GZ—Gl

Where:

t; = initial time
t, = final time
G=M"V

V = velocity

Stage 1: The area under the thrust-time curve from 0 to 2 sec. = 1/2bh, where b = 2 sec. and h = 800 N.
>F = F+ - Fg, where F+ is the force due to thrust and Fg is the force due to gravity. Thus,

1/2(2 sec)(800 N) - (200 kg)(1.62 m/sec®)(2 sec) = G, - G,

800 N'sec-648 N sec=M V,-M V;

152 N'sec=M"V,-M"V;

152N'sec+ M V,=M"V,

152 N sec + (200 kg)(-6 m/sec) = (200 kg)(V)

-1048 N sec = (200 kg)(V2)

-5.24 m/ sec =V,

At the end of stage 1 the velocity is -5.24 m/sec.

Stage 2: The area under the thrust-time curve from 2 to 4 sec. = bh, where b = 2 sec. and h =800 N. Thus,
(2 sec)(800 N) - (200 kg)(1.62 m/sec?)(2 sec) = G, - G,

1600 N sec - 648 N'sec=M V,-M "V,

952 N'sec=M V,-M 'V,

952 Nsec+M V=MV,

952 N sec + (200 kg)(-5.24 m/sec) = (200 kg)(V>)

-96 N sec = 200 kg.(V>)

-0.48 m/sec = V,

At the end of stage 2 the velocity is -0.48 m/sec
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Stage 3: There is no thrust. Thus,

(200 kg)(-1.62 m/sec?)(1 sec) = G, - G,

-324Nsec.=M " V,-M"V;

-324N'sec. +M V=MV,

-324 N sec. + (200 kg)(-0.48 m/sec) = (200 kg)(V-)

-420 N sec. = 200 kg.(V»)

-2.1m/ sec. =V,

At the end of stage 3 (t = 5 sec), the velocity is -2.1 m/sec.

Autodesk Simulation Solution

A model of a lunar lander was built using truss and 3-D solid elements in FEA Editor. Material properties for steel
were used. Using the volume determined by the Weight and Center of Gravity Calculator (5.9542 m®) and the mass
specified in the problem definition (200 kg), a mass density of 33.58973 kg/m*® was calculated. A negligible mass
density (0.0000001 kg/m?) was specified for the truss elements, which were given an area of 0.01 m?

The event was defined to last 5 seconds and capture 1000 steps per second. The Displacement Tolerance was
specified to be 1 x 10™* and the number of time steps between iterations was set as 5001. By setting this parameter to
one more than the total number of steps, we prevent the processor from iterating, thus speeding analysis in this
example for which stresses are not considered.

A force of 800 N. was applied to the center node on the bottom of the lander model in FEA Editor. The first load
curve was defined as shown to the right to simulate the thruster activity. Note that the thrust cuts out one time step

after 4 seconds (4.001 seconds.).

A second load case applies a constant gravity force (specified as 1.62 m/sec?) in the -Z direction.

First Load Case
Time | Multiplier

0 0
2 1
4 1
4.001 0
5 0

Second Load Case
Time | Multiplier
0 1
5 1

The analysis was processed using Mechanical Event Simulation. The velocity was displayed by performing the first
derivative operation with respect to time on the displacement curve.
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Figure 80-2. Lander’s velocity as it descends.

Displacement
Z Component E
m AN
Al A
0 / \

-1.958
-3.916
-5.873
-7.831
-9.789
-11.75
-13.7

-15.66
-17.62
-19.58

Time:5s
Time Step: 5000 of 5000

Maximum Value: -19.5771 m

Minimum Value: -19.6071 m A
1 < Design Scenario 1 >

Figure 80-3. Displacement in the model after 5 seconds.

Table 80-1. Comparison of Results

Velocity at 5 Seconds (m./sec.)
Theory -2.1
Analysis -2.097
% Difference 0.143

AVE - 80

Note: Due to size considerations, results for this AVE are not included with the supplied model archive.

You can use the model files to run the analysis on your own.
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AVE - 81 Mechanical Event Simulation of a Basketball Being Shot into a
Hoop

Reference
Lindeburg, M. R., Mechanical Engineering Reference Manual, 9th Edition, page 16-5.
Problem Description

The Mechanical Event Simulation (MES) under consideration determines the projectile motion of a basketball. The
basketball is shot from 20 ft. away and 3 ft. below the center of the basketball rim.

The initial velocity in the horizontal (Z) direction is = 180 in./sec.(v,), and the initial vertical (Y) velocity is 300
in./sec. (v,). The gravitational constant (g) is 386.4 in./sec.? in the -Y direction.

Neglecting air resistance, find the vertical and horizontal displacement of the ball after 1.32 sec.

197 i1s386.4 in/sec?

o\sec.»c a1
e

9‘\60 '\("\q>

o

oy 20 f1.

Figure 81-1. Diagram of the basketball shot problem.
Theoretical Solution
The equations for projectile motion are used as follows:
z(t) =v, t=(180in./sec.)(1.32 sec.) = 237.6 in. (or 19.8 ft.)

y(t) = vy "t - (1/2) g t* =300 in./sec. (1.32 sec.) - (0.5)(386.4 in./sec.?)(1.32 sec.)”
=396 in. - 336.63168 in. = 59.36832 in. (or 4.94736 ft.)
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Autodesk Simulation Solution

In FEA Editor, a basketball backboard and rim were modeled using 83 shell elements and 31 beam elements. A ball
was modeled using 180 3-D elements and placed 20 feet away from the center of the rim and three feet below it.
Initial velocities of 180 in./sec. in the Z-direction and 300 in./sec. in the Y-direction were specified for the ball.

The "MES with Nonlinear Material Models" analysis type was selected and the event was defined to last 1.5 sec.
and capture 500 steps/sec. The gravitational constant used was 386.4 in./sec.? in the -Y direction.

At a time of 1.32 seconds the ball was observed passing through the rim of the basket. Vertical and horizontal
displacements were obtained for the node at the center of the ball.

time = 0.8 sec
time =1 sec
time = 0.6 sec @ @
A time = 1.2 sec <
time = 0.4 sec
@ @ time=1.4sec
@ time=15sec
time = 0.2 sec
time = 0 sec
@ v

ls:
N:

Figure 81-2. Vertical displacement versus time for the center of the basketball.

Table 81-1. Comparison of Results

Displacement (inches) at time =1.32 sec
Horizontal Vertical
Analysis 237.6 59.8468
Theory 237.6 59.36832
Difference 0.00 0.81%
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AVE - 82 Heat Flux Transient Heat Transfer Analysis

Reference

Incropera, Frank P. and DeWitt, David P., Introduction to Heat Transfer, Second Edition, p. 605.

Problem Description

A block 0.1 m by 0.2 m is exposed to an environment such that a known heat flux is imposed on the surface as

shown in Figure 82-1. The mass density is 100 kg/m® and the specific heat changes as a function of temperature such
that ¢, = 0.15T + 7 J/kg/C®. Find the final bulk temperature after 5 minutes, if the block starts at 20°C.

; Figure 1 T
15] & P
- i i Zoned 514021
§ 1051 """"" “
5 e
L | § i Zone 2 (6/14)(0.2) r
E E% i
0 T 200 W~ Zonel |(F14)02w
Time {Seconds) !

H— 1 m—™

Figure 82-1. Diagram of heat flux.

Theoretical Solution

The total heat applied, Q, must equal the change in heat storage of the block. The total heat Q = mIcp dT where m is
the total mass, c, is the specific heat as a function of temperature, and dT is the change in temperature. The total heat
is summed in the table below.

Zone | Heat Flux (W/m?) | Surface Area (m®) | Total Heat Input to 600 Seconds (J)
1 15 0.0186 153.45
2 15 0.0171 115.425
3 10.5 0.0243 89.25

Total -- -- 358.125

The total mass will be based on a 0.1 m. thick slice. Integrating the function for c, gives the following:

358.125 J = (0.1 m)(0.1 m)(0.2 m)(100 J/kgC®)J(0.15 T +7) dT 358.125 J = 0.2 J(0.075T2 + 7°T)
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Evaluating the above equation between the initial temperature of 20°C and the final temperature T gives the
following quadratic equations:

358.125 J = 0.2 J{[0.075 T2 + 7T ] - [0.075/(20)? + 7:(20)]}

0=0.075T*+ 7T - 1960.625

Solution of the above equation gives two values, of which one is the correct physical result, namely:
T=121.62°C

Autodesk Simulation Solution

This example highlights two features that are easily handled with the user interface:
e The capability to use multiple load curves and different activation times.
e The capability to solve transient models with temperature dependent material properties.

A 7- by 2-element mesh was created in FEA Editor and material properties were assigned. 2-D orthotropic elements
were used in order to specify temperature-dependent material properties. Since the specific heat is a linear function
of temperature, two inputs that bracket the expected temperature range are sufficient, such as specific heats of 7 and
29.5 at 0° and 150°, respectively. A conductivity of 1 W/m'C° was used.

The "Loads" tab on the "Analysis Parameters" screen allows the heat flux to be assigned to the nodes on the
perimeter of the model. As seen in Figure 82-2, the "Scale" column can be used to scale the load curve, and the
"Activation Time" column indicates when the load curve is applied. Since the shape of the heat load for all three
zones is identical, see Figure 82-3, one load curve can be specified in the "Load Curve Input" screen. To account for
the temperature dependent material properties, the time steps for matrix reformulation must be set on the
"Advanced" tab. In this example, it was specified as "1" as seen in Figure 82-4.

Analysis Parameters - Transient Heat Transfer 3]
Desciiption of model
AVE-086
Event Load Curves Setup
[ addfon [ LosdCurves
Delete Alaw
Sot
Reset From Defauk
Muiplirs | Leads | Dptions | Electical] Soltion | Ourput | Restar | Advanced] Contact|
ing from the table.
Thermal Load Dt
Trder:_[Hode Number _[Load Curve _[Scale [Aoivation Tme | &
7 (E]
2 03 200
3 03200
1413 _[200
& 0525 | 200
8 4 0413|200
v
acdfiow | [DeleeRow | [ Sont | [ mpon. | [ Export

Figure 82-2. Heat flux is assigned to the nodes
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Load Curve Input

Load Curve Identification

5 New
1D 1 |Tife [Remped Hest Load [ pelte |
Load Curve Fom
@ Pieceuiss Linsar a0
o
0s
.
06 I
O Sinusaidal e !
04 I’
03 ]
0z I
ol
oo

I:I 0 100 300 300 400 S0 60O

( Insert Row ) DekteRon |

| |aMax| ||| oMax| | Import I Evport ]
[0 J [ Comeel | ooy [ Hep ]

Figure 82-3. One load curve is specified

Analysis Parameters - Transient Heat Transfer

Desciption of model
‘AVE—DBE ‘

Event Load Curves Setup

IEETIED b J: [ addhow | [ LosdCures. ]

Time (] [Stepr | Oulput Interval
[fo0 [e00 |1 Delete Row

Reset From Model
Fieset From Defaul

Mutiplirs | Losds| Dptions | Electical] Soltion | Duput | Restat  Advanced| Contact|

Non-Linear lterations

[ Perfom

Citteria Stop when relative nom < E2 [case 2) v
Masimum number of terations 15

Interval for mornioiing 5

Corrective tolerance 0.001

Relalive tolerance 0.001

Fislaxation parameter 1

Temperalue Dependent Propertiss

Number of e steps between matis reformulation

Figure 82-4. Time steps between matrix reformulation is set

From the results with a time step of 1 second, at the time step corresponding to a time of 600 seconds, there is a
temperature variation from 121.21°C to 122.07°C. The average of all of the nodal temperatures is 121.79°C.
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Temperature

Time: 600 s
Time Step: 600 of 600
Maximum Value: 122.697 °C

Minimum Value: 121.211 °C

1 < Design Scenario 1 >

S

L.

Figure 82-5. Temperature contours at the final time step.

Table 82-1. Comparison of Results

Average Temperature at 600
Seconds
Theory 121.62°C
Analysis 121.79°C
% Difference 0.17%

The % difference for this thermal model is calculated by

Theory T — Algor T

% difference =100-

Theory T —Initial T

where the initial temperature is 20°C.
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AVE - 83 Mechanical Event Simulation of a Grinder Shaft under Torsion

Reference

Juvinall, Robert C., Engineering Considerations of Stress, Strain, and Strength, New York: McGraw-Hill Book
Company, page 179. Model contributed by Bill DiMartino, Tandemloc, Inc., Havelock, North Carolina.

Problem Description

Figure 83-1 below shows a grinder with an abrasive wheel mounted at each end of the shaft and a belt-driven sheave
at the center. When turning at 2,400 rpm, the 6-inch wheel is accidentally jammed, causing it to stop "instantly."
Estimate the resulting maximum torsional stress and deflection of the shaft. The shaft is made of steel (G = 11.5 x
10° psi) ang its weight may be neglected. The grinding wheels may be considered as solid disks having a density of
0.07 Ib./in.

—————— 12 inches ————»

x E
; i
8 inch £ 6 inch
ter [ 1
iameter : 11 _— diameter
: diameter

—» —1inch
—» e— 34 inch

Figure 83-1. Diagram of the grinder shaft problem.

Theoretical Solution
It is the energy in the 8-inch wheel that must be absorbed by the shaft. For this wheel,

v (0.07)a6mY3,)16
2 2

386

l=m

=0.0547 Ib. in. sec.?

The kinetic energy can be found from the equation:

_ 2 2,400x2n 2 B .
U=Ylo* = %(0.0547)(T] =1,720in.-Ib.

The maximum shaft torsional stress can be found from:

6
5 [UG _, [1720(115x10°) _ 91,600 psi
AL (n/4)12
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The reference text goes on to describe how failure would probably occur in this scenario before calculating the
theoretical shaft torsional deflection if the shaft were not to fail. Combining the equations 6 =t L/JG and © = Tc/J
gives:

oIl _ (91,600)12)

Il = 0.191rad. =10.9°
G (0.5)11.5x10°) ra

Autodesk Simulation Solution

The model of the shaft and grinding wheel was built in FEA Editor using a total of 848 elements. The 800 elements
that comprise the shaft were assigned to part 1 and defined to have a density (p) of 0, since its weight was to be
neglected. The 48 elements that comprise the grinding wheel were assigned to part 2 and defined to have a mass

density (p) of 0.0001813 Ib. - sec.?/in.*, calculated by dividing the given density (0.07 Ib./in.?) by gravity (386.4
in./sec.?).

The shaft was assigned a Young’s modulus (E) of 30 x 10° psi and a v of 0.3043. Both parts were given an initial
rotational velocity about the X axis of 2,400 rpm. The end of the shaft that does not attach to the grinding wheel was
fixed with boundary conditions.

The known deflection is about 11 degrees. If the disk slows uniformly, then the average speed is 1,200 rpm. Thus, to
rotate 11 degrees requires 0.0015 sec. Therefore, the event was set to last 0.0025 sec. with a results capture rate of
20,000/sec.

The Mechanical Event Simulation yielded the following results at step number 24 (0.0012 sec.).

Stress

Tensor X-Y
Ibf/(in?2)

91609
73287
54965
36643
18322
-0.16211
-18322
-36644
-54965
-73287
-91609

Time: 0.0012 s

Time Step: 24 of 50

Maximum Value: 91608.7 Ibf/(in"2)

Y
Minimum Value: -91609 Ibf/(in"2) k,(

1 < Design Scenario 1 >

Figure 83-2. The maximum stress of the shaft

Table 83-1. Comparison of Results

Stress (psi) Deflection (degrees)
Theory 91,600 10.9
Analysis 91,609 (Sxy) 10.9
% Difference 0.01 0.0
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AVE - 84 Mechanical Event Simulation of a Chain with Weights at the
Hinges

Reference
Paul, Burton, Kinematics and Dynamics of Planar Machinery, Prentice-Hall, Inc., 1979, pp. 379-81.
Problem Description

Four weightless rods of equal length are hinged together to form a hanging chain as shown below.

Figure 84-1. Diagram of the hanging chain problem.

Find the angles 0, 6, 65 and 6, for this closed kinematic chain, given that the length of each rod is 5 inches and the
loads are as follows:

PA =5Ibs PB =2 lbs PC =3 Ibs.

As the text points out on page 381, it is difficult to write the explicit expressions of the configuration variables, 6,
but the load ratios may be solved directly given the configuration. Therefore, the analysis will be performed first
using the given loads. The results will then be verified solving for the load ratios, given the configuration that results
from the analysis.

Theoretical Solution

We now verify the solution by calculating the load ratios from the angles that result from the Mechanical Event
Simulation.

sin(0.—90
Q, = (Py+ P+ P, )cos, + W—GZ; P.cosf, =0

sin(1.5-358.77)

P.c0s(359.59) =0
sin(358.77 — 359.59) c00s( )

(P, + Py + P )cos(1.5) +
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P,+Pg+P.  3.328

= =3.329
P, 0.9997
Q, = (Py+ P, )cosh +MP cosh, =0
2 B C 2 Sin(94—63) C 3

sin(0.1364 —358.77)

P+ P 0.1364 P.c0s(359.59) =0
(Pe+ P Joos )+sin(358.77—359.59) co0s( )
Po+Pc 1666 _ .

P, 1.0

Autodesk Simulation Solution

A 3-D brick model was built to represent the four rods with 6-noded elements representing the hinges at either end
of each rod. Each end of the 88-element chain was fixed with boundary conditions. The bricks were 0.2 by 0.25
inches and assigned the properties of Steel ASTM A-36.

The analysis was processed using MES analysis. The event was defined to last 1 second with 500 steps per second --
a sufficient length for the system to reach equilibrium.
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Displacement Z at Point A

Displacement Z at Point B

Displacement Z at Point C

-0.04

-0.06

-0.08

-0.10

-0.12

T T T T T T A M B B B B B B B A B A B A O B O
00 01 02 0s 04 05 06 07 08 09 10
Time (s)

Figure 84-2. Display of displacement versus time for points A, B and C. Note that the forces were applied
gradually over 0.5 seconds and were kept constant between time =0.5 and time =1 sec.

The -Z-direction displacements at one second were 0.1309 inch at point A, 0.1428 inch at point B and 0.1071 inch at
point C. The angles were then calculated from the displacements as follows:

0, = tan‘{&sogj =1.500°

=0.1364°

o tam_l(o.1428—0.1309j
=

0, =360°—tan =359.59°

1[0.1428— o.1071]

=358.77°

0, =360°- tan‘l(%J

Table 84-1. Comparison of Results

Analysis | Theory | % Difference
P,+P, +P,
TERTe | 3333 | 3.329 0.12
Py + P
“p 1.667 1.666 0.06
C

The load ratios calculated match those used in the analysis almost exactly.
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AVE - 85 Transient Thermal Analysis of a Cooling Copper Wire

Reference

Lindeburg, Michael R., Mechanical Engineering Reference Manual for the PE Exam, Tenth Edition, p. 34-12.
Problem Description

A 0.03125-in diameter copper wire is heated by a short circuit to 300 °F before a slow-blow fuse burns out and all
heating ceases. The ambient temperature is 100 °F and the film coefficient on the wire is 1.65 Btu/hr-ft*-°F. Use the
following copper properties to determine how long it will take for the wire temperature to drop to 120 °F:
conductivity (k): 224 Btu-ft/hr-ft?.°F

specific heat (cy): 0.091 Btu/lom-°F

density (p): 558 Ibm/ft®

Theoretical Solution

If the Biot number (Bi) is less than approximately 0.1, the internal thermal resistance of a body is negligible in

comparison to the external thermal resistance. In that case, the lumped capacitance method can be used to
approximate the transient (time dependent) heat flow to a maximum error less than 7%.

T, =T, +(T,-T,)e ™™

=T, +(T,—T,)e "~

c,pV
Where R,C, =1 =
hA
Bi _ hL.
k
0.03125in 1ft

: r 2 121in

L for acylinder = — =
2 2

165 . itzqu ' 0.03125 in 112ft
Bi = ri- —— N o 4.8x10°
224

hr-ft*.°F
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Since the Biot number is less than 0.1, the lumped capacitance method can be used.

Btu lbm(0.03125in ) 1ft
0.091 558
c,pV ¢, pL, Cpp% ( Ibm-°F)( ft® j( (2)2) inn)
T= = — —

hA h h 165 oM
hr-ft°-°F

=0.0200 hr
T, =120°F=T, +(T,-T, )e V"

120 °F =100 °F+ (300 °F-100 °F)e "

In(0.0)= ——-
0.0200 hr

t=0.0461 hr

Autodesk Simulation Solution

The cross-section of the wire was modeled by meshing a circle and a square. This resulted in 432 two-dimensional
plane elements. The outer surface was placed on surface 2 to define the convection. The nodes were assigned an

initial temperature of 300 °F. Material properties were entered per the problem statement.

A transient heat transfer analysis was performed using a time step of 0.000461 hours. The results closest to the target
temperature are step 101 (120.002-120.003 °F)

Time = 101 steps (0.000461 hr/step) = 0.046561 hours

Temperature
°F
120.003
120.003
120.003
120.003
120.003
120.003
120.002
120.002
120.002
120.002
120.002

Time Step: 101 of 200

Maximum Value: 120.003 °F z

Minimum Value: 120.002 °F l v

1 < Design Scenario 1>

Figure 85-1. Temperature contours at step 101.
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e Temperature (1) (°F)

3001

280 —

260+

240 —

220+

200 —

180+

160 —

140 —

120 —

| e s l | e e e
0.01 002 0.03 004 0.05 0.06 007 008 0.09
Time (hr)

100 —

=t

Figure 85-2. Temperature versus time graph

Table 85-1. Comparison of Results

Analysis Theory Difference
Time, hours 0.046561 0.0461 0.99%

The difference is well within the accuracy of the lumped capacitance method used to solve the theoretical problem.
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AVE - 86 Heat Flux Loading on a Hollow Cylinder

Reference

Cameron, A. D., Casey, J. A. and Simpson, G. B., Benchmark Test for Thermal Analyses (Summary), Glasgow:
NAFEMS, test 15 (iii).

Problem Description

This axisymmetric steady-state heat transfer analysis considers a hollow cylinder. The temperature over the ends
and the outer surface of the cylinder is uniform. On the inner surface, a prescribed heat flux is applied to the central
part of the surface, while the ends of the inner surface are insulated. Boundary condition details are shown in
Figure 86-1 below.

T=0°C
A
z=0.14m N
Insulateds
z=01m T o %
£ 3
= 2
o T=0°C
X T
5 x >
z=004mT —° G
lnsulatedS
> 1
T=0°C

r=002m r=01m
Figure 86-1. Diagram of the hollow cylinder with heat flux loading.

Find the temperature at the point r = 0.04 m, z = 0.04 m given the following material properties:
e Density, p = 7,850 kg/m®

e  Specific Heat, C = 460 J/kg - °C

e  Thermal Conductivity, K =52 W/m - °C.

Theoretical Solution
The temperature at the point r = 0.04 m, z = 0.04 m, is given to be 59.82 °C in the reference text.
Autodesk Simulation Solution

The cylinder was drawn in FEA Editor using an 8 by 14 mesh, resulting in 2-D axisymmetric elements 0.01 m
square in the Metric mks unit system.

The elements on the central part of the inner surface were changed to surface number 2. A heat flux of 5 x 10° J/s/m?
(5 x 10 5 W/m?) was then applied as a surface-based load to surface number 2.
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"Nodal Applied Temperatures" were added to hold the specified edges at O degrees. The stiffness used was based on
the recommended value of 100,000 x conductivity/element diagonal length or 100,000 x 52 / 0.01 = 371,000. The

"Load case Multipliers™ were set as follows:

e Boundary temperature multiplier (for applied temperatures) = 1

e  Convection multiplier (for heat flux) =1
e Radiation multiplier =0
e Heat generation multiplier = 0.

The analysis was performed using the steady-state heat transfer processor. The resulting temperature was inquired

atr=0.04m,z=0.04m

Temperature
°C
203.1
182.8
162.5

1422

121.9

101.6

81.25
60.94
40.63

20.31
0

Load Case: 1 of 1

Maximum Value: 203.132 °C
Minimum Value: 6.54796e-006 °C

1 < Desigh Scenario 1 >

59.63

L.

Figure 86-2. Temperature results from the heat transfer analysis. The point of interest is indicated by the

probe.

Table 86-1. Comparison of Results

Theory

Analysis

Difference

Temperature 59.82C

59.63C

0.32%
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AVE - 87 Mechanical Event Simulation of a Cylinder Rolling inside a
Curved Surface

Reference

Beer, F. P. and Johnston, Jr., E. R., Vector Mechanics for Engineers, Third Edition, New York: McGraw-Hill Book
Company, sample problem 19.4.

Problem Description

Determine the period of small oscillations of a cylinder of radius r = 1 inch, which rolls without slipping inside a
curved surface of radius R = 5 inches.

109 R = 5 inches

Figure 87-1. Diagram of the cylinder rolling inside a curved surface problem.

Theoretical Solution

Using conservation of energy, the theoretical period is calculated by:

=0.783 sec

3 5inch—1inch
T=271_|— -
2 386.4 inch/sec?

Autodesk Simulation Solution

The 2-D model of the cylinder and curved surface were drawn in FEA Editor. The curved surface was assigned to
part 1 and the cylinder was assigned to part 2. The circumference of the cylinder mesh was created with 10-degree
divisions. The cylinder was offset 10 degrees from the vertical and 0.015 inch above the curved surface. The outer
surface of the cylinder and the inner curved surface were changed to surface 2.

Surface-to-surface contact was specified between surface 2 of part 1 and surface 2 of part 2. Static friction
coefficient and sliding friction coefficient were set to 0.20.
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The MES analysis processor was used to analyze the event. The times when the cylinder reaches the maximum
elevation are as follows:

R; =0.395 sec L; =0.785 sec

Lis «F
R, =1.195 sec

ball on ball on
left side right side

Figure 87-2. Times when the cylinder reaches the maximum elevation.

"= DiSplaCement Y Component (138} (in)
1.4

0.8

0.6

0.4+

02

00 L o
00 01 02 03 04 05 06 07 08 09 10 11 12
Time (s)

Figure 87-3. Graph of displacement in the Y direction for the center of the cylinder.

The period from R; to R, = (1.195 sec - 0.395 sec) / 1 cycles = 0.81 sec/cycle.

Table 87-1. Comparison of Results

Theory | Analysis | % Difference
Period (sec/cycle) 0.783 0.81 3.45
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AVE - 88 Mechanical Event Simulation of a Flyball-Governor

Reference

Shames, Irving H., Engineering Mechanics, v. 2: Dynamics, Third Edition, Prentice-Hall, 1980, Example 17.10.

Problem Description

A flyball-governor apparatus consists of four identical arms (solid cylindrical rods) each of weight 10 N and two
spheres of weight 18 N and radius of gyration 30 mm about a diameter. At the base, and rotating with the system, is
a cylinder B of weight 20 N and radius of gyration along its axis of 50 mm. Initially, the system is rotating at speed
; of 500 rpm for 6 = 45°. A force F at the base B maintains the configuration shown. If the force is changed so as to
decrease 6 from 45° to 30°, what is the angular velocity of the system?

X
F /=300 mm
Y 15 mm
0 0
A VWE G A
= C)col =

Figure 88-1. Diagram of the flyball-governor apparatus.

Theoretical Solution

Because no external moments act along the axis FH, we have conservation of angular momentum about this axis,
which coincides with the Z axis. Note how each body of the governor rotates about this axis. The solution of the
problem is obtained by equating the total angular momentum of the system when it has an angle 6 of 45° and an
angular velocity of 500 rpm to when it has an angle 6 of 30° and the unknown angular velocity. As a first step, we
calculate the rotational inertia of each body about the Z axis.
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Z G

Figure 88-2. Sketch of rod FG including relation between XYZ and &ng axes.
First consider the rod FG, which is shown in Figure 88-2. The axes &n are principal axes of inertia for the rod at F.
The n axis is collinear with the Y axis, and these are normal to the page. A rotation of angle 8 about the 1 axis

relates the &n{ axis with the XYZ axes. The following expression shows how I, I, and I, each contribute to the
rotational inertia of the rod FG about the Z axis, (Izz) FG

2 2
(12)ee :Ié{cos[g%) } +Im(cosgj +1, (cos0)’

:E%(o.so)2 sin’0 +B%(o.0075)2}cosze [a]

It should be noted that I, is given by ¥%Mr?, where M is the mass of the rod and r is its radius. The rotational inertia
about the other two principal axes is given by 1 /3 MI?, where | is the length of the rod. This value for I and I,,,
assumes that the rod is slender; which is the case in this example because I/r = 40.

For each sphere, we are given the mass, the radius of gyration and the location of its center relative to the end of the
rod, thus

(I %(0.03)2 +%[(O.30)sin 0+0.04] [b]

We are also given the mass and the radius of gyration of the cylinder, thus

20
(I 2z )cyl = E (0'05)2 [c]

Accuracy Verification Examples Manual, Version 2014 288



AVE - 88

Exploiting the symmetry of the apparatus, we can state that angular momentum along the Z axis is conserved if

01+ 20D+ 0] 2D a1, 200,0), 000, 22027

Substituting the results of equations [a] through [c] into the above conservation statement, and solving for w,, gives
®, =883 rpm.

It should be noted that this result was obtained assuming that the governor is composed of rigid parts.
Autodesk Simulation Solution

The event described by the problem statement was replicated using Mechanical Event Simulation. The flyball-
governor was modeled using beam elements. These elements allow us to obtain stresses within the rods. Stresses in
such slender structures are typically pivotal when designing moving mechanisms. Because we expect insignificant
stresses to exist within the spheres and the cylinder, they were not modeled. Instead we added lumped masses to
represent their weight and radius of gyration. Finally, truss elements were used to preserve the prescribed offset
when attaching the spheres to the ends of the rods; this offset is % of 80 mm or 0.04 m.

MES consists of three stages. At the onset of the first stage, all parts of the governor are given an initial axial
rotation of 500 rpm about the Z axis. This stage lasts 0.125 seconds, which is long enough to capture over one entire
revolution. This is because at 500 rpm a revolution lasts 0.120 seconds. During the first stage, a prescribed
displacement is used to maintain the bottom of the cylinder at a constant Z coordinate value. During the second
stage, which lasts 0.03 seconds, the prescribed displacement is utilized to linearly move the bottom of the cylinder
0.0956 m in the negative Z direction. This prescribed motion changes the angle 6 from 45° to 30°. The third stage is
characterized by the new faster rotation rate. Again, we simulate more than an entire period in order to accurately
determine this rotation rate.

Figure 88-3 depicts the displacement time traces of two points on the governor. The blue line corresponds to the
displacement of the cylinder in the Z direction. Note how this displacement is constant during stages 1 and 3, but
depends linearly on time during stage 2. The red line corresponds to the Y displacement of a node at the end of a rod
where a sphere is attached. This displacement is sinusoidal during stages 1 and 3. From the plot we obtain periods
for stages 1 and 3, respectively. The first revolution rate simply confirms the ability of MES to maintain nearly
constant motion of 500 rpm when no loads are applied. The second revolution rate compares well with the analytical
result of 883 rpm, and thus confirms the ability of MES to accurately model the motion of an assembly with moving
parts. Table 92-1 summarizes these results. It should be pointed out that this accurate solution also produced stresses
within the rods.
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"= Displacement Magnitude (3) () === Displacement Magniude (4) (m)

0.4

0.35

0.3

0.25

02

0.15

0.1

0.05 -

0 | | IR | L I
0.05 01 015 02 025
Time (s)

Figure 88-3. Graphical output for the displacement time traces of two nodes on the governor.

The displacement of the node at the end of the arm is used to measure the period of revolution during stages 1 and 3.

Displacement
Magnitude
m
0.0956
0.08604
0.07648
0.06692
0.05736 ' \
0.0478

0.03824 —d -
0.02868 =

0.01912
0.00956
0

Time: 0.271 s
Time Step: 271 of 280

Maximum Value: 0.0956 m
z

Minimum Value: 0 m I
X

1 < Design Scenario 1 >

Figure 88-4. Displacement contours at time 0.271 seconds. Note how the flyball-governor elongated.
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Figure 88-5. Nodal Rotational displacement about the Z axis.

AVE - 88

Autodesk Simulation calculates the nodal rotational results in degrees/time units. In this analysis the time units used

were seconds. In order to generate the graph shown in Figure 88-5, we used a multiplier if 0.167.

Conversion from [Degrees/second] to [RPM]

Multiplier = [60 sec/minute] / [360 degrees/rotation] = 0.167 (sec.rotation) / (min.deg)

Final rotation rate = 5131.7 degrees /sec x 0.167 (sec.rotation) / (min.deg)

Final rotation rate = 857 RPM

Table 88-1. Comparison of results

Analytical MES % Difference
(RPM) (RPM)
Final Rotation Rate 883 857 2.94
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AVE - 89 Steady-State Heat Transfer Analysis of a Pipe Buried in Earth

Reference

Holman, J. P., Heat Transfer, Seventh Edition, page 85, example 3-1.

Problem Description

A horizontal pipe 15 cm in diameter and 4 m long is buried in the earth at a depth of 20 cm. The pipe-wall
temperature is 75° C, and the earth surface temperature is 5° C. Assuming that the thermal conductivity of the earth
is 0.8 W/m-°C, calculate the heat lost by the pipe.

Theoretical Solution

Since D < 3rand L >>r, we may calculate the shape factor of this situation using the equation

2nL 2n(4)

= = =15.35
cosh™(D/r) cosh™(20/7.5) "

The heat flow is then calculated from
q = kSAT = (0.8)(15.35)(75 - 5) =859.6 W
Autodesk Simulation Solution

Because the pipe is much longer than it's diameter, a first approximation would be to ignore the heat loss from the
ends of the pipe and analyze the problem as a two-dimensional model. Whether the problem is solved as two-
dimensional or three-dimensional, one question that needs to be resolved is how large does the model need to be to
represent a semi-infinite solid.

As the first approximation, the semi-infinite solid is represented by a rectangle 1 m wide by 1 m deep. Due to
symmetry, only half of the pipe needs to be modeled. The pipe and ground temperatures can be specified by using
either the "Applied Temperatures” or surface-based convection. The convection option was chosen for these
analyses, and the specified temperature was obtained by entering a large (1E6) convection coefficient. Other than
the pipe wall and surface of the ground, no other heat loads were applied. The "Heat Flow Calculation" option under
the “Element Data" screen was set to "Linear Based on BC" so that the heat loss through the surface would be based
on the convection boundary condition.

A steady-state heat transfer analysis was performed to obtain the temperature distribution and heat fluxes. The
thickness of the 2-D model was set to 4 m to represent the entire length of the pipe. Although the thickness has no
effect on the temperature results, the heat flow results do take the thickness into account.

Since the only heat flow is from the pipe to the surface of the ground, the total flow can be summed either around
the perimeter of the pipe or on the surface of the ground. The results are given in the table on this page, along with
results of several additional models that are variations on the first. Note that all results were multiplied as necessary
to represent the full pipe. These models were created to investigate other widths and depths for the semi-infinite
ground by extruding the sides of the first mesh. As expected, the larger the domain, the more accurate the solution.
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Heat Flow Rate
Jis
23.04
17.85
12.66
7.477
229
-2.898
-8.085
-13.27
-18.46
-23.65
-28.84

[TTTT]

Load Case: 1 of 1
Maximum Value: 23.0398 J/s

Minimum Value: -28.8356 J/s

1< 2D mesh 1x1 >

Figure 89-1. For a 2-D version of the model, the heat loss from the pipe was inquired in the results interface
by selecting the surface where the pipe would contact the ground and summing the results. Due to half-
symmetry, the sum was multiplied by 2 for comparison to the theoretical solution.

Finally, the 1 m by 1 m two-dimensional model was extruded to create a 3-D brick model. Due to symmetry, only
one quarter of the model was created. The section of pipe modeled was 2 m long (half the length) with an additional
1 meter of ground extending beyond the end of the pipe. All loads and post-processing were identically applied to
the two-dimensional models.

Temperature
g &

Load Case: 1 of 1

Maximum Value: 75 °C

Minimum Value: 5.00001 °C

4 < 3D mesh 1x1 >

Figure 89-2. Temperature contours for the 3-D brick mesh version of the model.
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Jis

1.162
0.843 P
0.5238
0.2046 //
-0.1145
-0.4337
-0.7529
-1.072
-1.391
-1.71
-2.03

Load Case: 1of 1

Maximum Value: 1.16213 J/s

Minimum Value: -2.02951 J/s

4 < 3D mesh 1x1 >

\\.
\\ ~
/
\L/ /

AVE - 89

Figure 89-3. Heat flow contours for the 3-D brick mesh version of the model. (Smoothing is turned off)

For the 3-D model, the heat flow was summed on the surface of the ground to obtain heat loss. Due to quarter-
symmetry, the sum was multiplied by 4 for comparison to the theoretical solution.

Table 89-1. Comparison of Results

W(m) | D(m) | T (m) | Heat Flow (W) | % Difference
Theory 0 ) o0 859.6 -
o 2-D Mesh 1 1 - 831.04 3.32
2 2-D Mesh 2 1 - 845.16 1.68
g 2-D Mesh 2 2 - 852.96 0.77
< [73-D Brick Mesh 1 1 1 893.3 3.92
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AVE - 90 3-D Truss System under a Point Load and Uniform Temperature
Increase

Reference

Timoshenko, S. P. and Young, D. H., Theory of Structures, Second Edition, New York: McGraw-Hill, 1965.
Problem Description

This example is a simple model of a three-dimensional (3-D) truss system with 7 elements. Two load cases are
applied independently: a 1,000-Ib. point load and a uniform temperature increase of 50 degrees Fahrenheit. This

problem verifies the accuracy of the truss element.

Structure Load Case 1:
P =1000Ib

Structure Load Case 2:

P = 0, uniform temperature increase = 50 °F
Theoretical Solution

e A =1.0in*(cross sectional area)
e E=30x10°psi (Young's Modulus)
e a=6.5x10"°F (coefficient of thermal expansion)

Autodesk Simulation Solution

-
2 N
<
/. k

Figure 90-1. Element numbering

The only results given by the reference are the axial stresses in members 2 and 4.
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Axial Stress
Ibfl(in"2)
55.92

55.92

Load Case: 1 of 2

1 < Design Scenario 1 >

Maximum Value: 55.9212 Ibf/(in*2)

Minimum Value: 55.9212 Ibf/(in*2)

——55.9212

z

k;

Figure 90-2. Load case 1:axial stress at member 2. All other members are hidden.

Table 90-1. Comparison or Results, Member 2

Load Case | Theory | Analysis | % Difference
1 56 55.92 0.14
2 -1295 -1292 0.23

Forcein Truss3=P / (4/5) for case 1 from Sigma, =0

Where:

P =1000Ib

Table 90-2. Comparison or Results, Member 4

Load Case

Theory

Analysis

% Difference

1

-1250

-1250

0.00

Accuracy Verification Examples Manual, Version 2014

AVE - 90

296



AVE - 91

AVE - 91 Weight, Center of Gravity and Mass Moment of Inertia Analysis

of a Straight Bar

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russel, Vector Mechanics for Engineers: Dynamics, Third Edition, New

York: McGraw-Hill, 1977, pp. 937-938.

Problem Description

A straight, 10" long, steel bar of 1 in? cross sectional area oriented along the Y axis is analyzed for weight, center of

gravity and mass moment of inertia.

10"

B

Figure 91-1. Dimensions of the steel bar.

Theoretical Solution

The mass moment of inertia about a transverse axis through one end of the square cross section bar is given by:

2 |2
=1, =pa?l| L+
X Z p(l (12 3

Where:

e | =10.00" (length of beam)
e o =1.00" (side of square beam)
e p=7.3395E-4 (Ibs?*/in* (mass density)
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Autodesk Simulation Solution

AVE - 91

The bar is modeled with 10 truss elements, each of which is 1" long. This example verifies the accuracy of the Mass
Properties Analysis Processor for truss elements.

Weight and Center of Gravity

Maodel Information

“Wolume (iré]: 1.0000E +01

Center of Gravity [in]:
c: 0.0000E+00
“c: 5.0000E+00
Ze: 0.0000E+00

Weight (Ibf): 2.8350E-+00

Mass Moment of Inertia [Ibf*s*in]:

Mass Product of [nertia (IbFs*in]:

lix: 2 44B5E-01
Iyy: 0.0000E-+00
|2z 2 A4E5E-01

lxy: 0.0000E+00
Ixz: 0.0000E-+00
Iyz: 0.0000E+00

[ Part [ Wolume fir?) [ weightilbfl [ Xelml [ Yeim) [ Zciin)

[ I l6Fing [l ibFsing [ lzz (6Pl [ lay (bFein) [ sz (bFein) [ lyz (bFin |

1 < Unnamed > 1.0000E +01 2.83B0E+00 | 0.0000E+00 | 50000E-+00

(0.0000E +00

2. 44B5E-0

00000E+00 | 2.44E5E-01

0.0000E+00 | 0.0000E +00

0.0000E +00

Cloze

Figure 91-2. Weight, center of gravity and mass moment of inertia calculated by the software.

Table 91-1. Comparison of Results

Theory Analysis % Difference

Volume, V (in%) 10.00 10.00 0.00
Weight, W (Ib) 2.836 2.836 0.00
X (inch) 0.00 0.00 0.00
Y. (inch) 5.00 5.00 0.00
Z. (inch) 0.00 0.00 0.00
Mass Moment of Inertia X axis (in Ib s?) | 0.24526 0.24465 0.25
Mass Moment of Inertia Y axis (in Ib s°) - N/A -

Mass Moment of Inertia Z axis (in Ibs®) | 0.24526 0.24465 0.25

Note: Mass Properties Analysis Processor returns a value of 0.0 for the Y axis moment of inertia for this
problem because the truss element is a line element having no mass distribution about the axis of the beam.
This also accounts for the small difference in the moments of inertia about the other two axes.

See AVE 112 for an example using the brick element on the same problem that eliminates these errors.

(Using the slender bar formula of 1,=1,= p A I*/3 gives the same value calculated by the software.)
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AVE - 92 6-Story, 2-Bay Frame Structure under Uniformly Distributed
Loading

Reference

Toridis, T. G. and Khozeimeh, K., "Computer Analysis of Rigid Frames," Computers and Structures 1, 1971.

Problem Description

This example is a plane frame structure under a uniformly distributed loading.

Theoretical Solution

ik AR T T e D
. oo Theh E--'
" 3 o 1
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Figure 92-1. The frame and the applied loading from the reference.

The reference article converted the distributed loads to nodal loads and then applied these nodal loads to the

structure.

Autodesk Simulation Solution

This example verifies the accuracy of the beam element and illustrates the use of uniform distributed loads. The
solution used two structure load cases in solving this problem:

e Using distributed loads directly
e Using equivalent nodal loads (forces and moments)

The point load case is equivalent to the distributed load case to illustrate that equivalent results can be obtained by
different methods. With the beam element, distributed loads can be assigned directly to the elements.
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b 1]

Y

b
=
e S s s E B R

Figure 92-2. Element and node numbering.

Discussion of Results

The nodal deflections produced by both structural load cases are the same, and the beam forces and moments in the
columns are the same. The moments calculated by the second structural load case in all the columns and girders are
close to those given in the reference.

The beam moments calculated using distributed loads (structural load case 1) in the horizontal members are different
(and are more realistic) than those calculated by the reference article. Using nodal loads to emulate a distributed load
applies the correct loads to the rest of the model, but does not give the loads (or stresses) in the loaded beam due to
the load in that beam itself. Figure 92-3 shows the beam end moments calculated for elements 26 to 30 by the two

methods.

-333 M8 3207 15948
29 ¢ 0 >
‘1 333 "I 1083 “I 1948
26 7 28

Lond Cese 1: Oistributed Loed Monents

397 Y1H 43 -302
,:'_"‘— _
Ty o o
E=E| -1063 1944

Load Case 2: Eguivalent Hodal Load Moments

Figure 92-3. Distributed load and equivalent nodal load moments.

The arrow heads in the figure depend on the orientation of the beams. The signs of the moments in the figure are
those calculated by the stress processor.
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The fixed end moments for elements 29 and 30 are 720 and 2250 in-k respectively. To obtain the actual beam
moments, the fixed end moments must be added to the results computed by load case 2. When using the distributed
input (load case 1), The software adjusts these moments internally so that the corrected beam moments are output.

Local 3 Moment
kip in
5938

1068.572266
\1 138.392822 =

. 12206.965088

"

Load Case: 10f 2

Maximum Value: 5937.69 kip in

Y
Minimum Value: -2830.58 kip in k‘(

1 < Design Scenario 1 >

Figure 92-4. Deflected shape and original shape along with moments.
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AVE - 93 Earthquake Response of a 10-Story Plane Frame

Reference
No theoretical reference is needed for this problem. This problem is presented for illustrative purposes only.
Problem Description

A ten-story plane frame is subjected to a response spectrum load representing an earthquake. The analysis is
performed in two parts: a modal analysis to obtain mode shapes and frequencies, followed by a response spectrum
analysis to calculate stresses and deflections.

A 10-story plane frame, as shown in Figure 93-1, was analyzed. Beams of interest are 1, 7, 13, 19 and 25. This is an
application example and not a formal verification example. The results provided here are used to check the
precision of each new release of the software vs. the previous one.

e E=30x10%si
e v=03
e p=0.283Ib/in®

19

49T 6 0 @ =108
13| 24w B4

24w0d % 3

1 { ¥

fTTITiiiiiy
F—ag—l

Figure 93-1. FEA model of the 10-story frame.
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Autodesk Simulation Solution

AVE - 93

The problem is solved in two design scenarios: first the eigen-solution, then the response spectrum analysis with

dynamic restart. The response spectrum used represents the 1940 El Centro earthquake.

A theoretical result for this problem is not available. The following tables and figures show the response spectrum

results.

Displacement
Magnitude
in
10.716
9.6445
8.5729
7.5013
6.4297
5.3581
4.2864
3.2148
21432
1.0716

0

Load Case: Resultant of 5
Frequency: Resultant
Maximum Value: 10.7161 in
Minimum Value: O in

2 < Design Scenario 2 >

. '—\ﬂ{SGBO

A,

Figure 93-2. Displacement result at node 21. Resultant function is used.

Table 93-1. Nodal Displacements (X direction - Resultant)

Node Analysis
2 0.497
5 1.390
7 2.522
9 3.753
11 5.010
13 6.266
15 7.483
17 8.640
19 9.712
21 10.716
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AVE - 94 Frequency Response Analysis of a Two Degrees of Freedom
System

Reference

Thomson, W. T., Theory of Vibration with Applications, Second Edition, Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1981.

Problem Description

A two degrees of freedom system is subjected to a sinusoidal force applied at the second node. The critical damping
ratio for each mode is assumed to be 0.04. Find the steady-state displacement at each node.

mi

mi

ki

LEEEEE

Figure 94-1. FEA model of the two DOF system used for frequency analysis.

Theoretical Solution
Properties shown in Figure 94-1 are given as follows:

m1 = 150 (Ib sec?)/in

m2 = 80 (Ib sec?)/in

Lateral Stiffness (k) = 6E1/I?

k1 = 144000 Ib/in

k2 = 72000 Ib/in

Damping Ratio = 0.04

F(t) = 20000 x sin(25.13274t) Ib
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Autodesk Simulation Solution

AVE - 94

This example explores the different options that can be used to obtain the steady-state frequency response of a
structure, namely loads with the same frequency, multiple frequencies and the same frequency with different phase

angles.

Two beam elements with zero mass density were used. Two lumped masses of 150 (Ib sec?)/in and 80(lb sec?)/in
were applied at the two nodes.

The mode shapes and natural frequencies were calculated using the Linear Mode Shapes and Natural Frequencies
Processor first. Then, the analysis type was changed and the Linear Frequency Response (Modal Superposition)
Processor was used to find the steady-state displacements.

The steady-state X-displacements computed by the Linear Frequency Response Processor are compared to the

theoretical results in the fol

lowing table.

Displacement
X Component
in

0
-0.08808
-0.1762
-0.2643
-0.3523
-0.4404
-0.5285
-0.6166
-0.7047
-0.7928
-0.8808

Load Case: 1 of1

2 < Design Scena

Frequency: Not Available
Maximum Value: 0 in

Minimum Value: -0.880841 in

rio2 >

[-0.880841

Figure 94-2. Inquiring on the displacement result at node 3.

Table 94-1. Comparison of Results

Node Number

Displacement in X (inch)

% Difference

Theory Analysis
2 0.5402 0.5287 2.13
3 0.9130 0.8808 3.56
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AVE - 95 Weight, Center of Gravity and Mass Moment of Inertia Analysis
of a Square Beam

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russel, Vector Mechanics for Engineers: Dynamics, Third Edition, New
York: McGraw-Hill, 1977, pp. 937-938.

Problem Description

This AVE involves a weight, center of gravity, and mass moment of inertia analysis of a beam model using beam
elements. This example verifies the accuracy of the Mass Properties Analysis Processor for beam elements.

A straight 10" long steel beam of 1 in® cross-sectional area oriented along the Y axis is analyzed for weight, center
of gravity and mass moment of inertia. The problem is the same as AVE - 95 where truss elements were used.

1

10"

F

Figure 95-1. Dimensions of the square beam.

Theoretical Solution

The mass moment of inertia about a transverse axis through the centroid of the square cross-section at the end of the
bar is given by:

I =1, =1+my? = aZI£+E
T 278

Where:
e 1=10.00" (Iength of beam)

e o =1.00 (side of square beam)
e p=7.3395E-4 (Ibs*/in* (mass density)
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Autodesk Simulation Solution

The beam is modeled with 10 beam elements, each of which is 1" long. In FEA Editor, the "Weight and Center of
Gravity..." command was used to calculate the weight, center of gravity and mass moment of inertia for the model.

Weight and Center of Gravity

tadel Infarmation

“olume (ir); 1.0000E +01 ‘whsight [Ibf] 2. 3350E-+00
Center of Gravity [inl: Mass Moment of Inertia [Ibf*sinl: Mass Product of [nertia [IbEs"in]:
e 00NONE+00 s 2 A4FRE -1 I 1) O0N0E +010
i 5.0000E+00 Iyy: 0.0000E +00 42 0.0000E +00
Zc: 0.0000E+00 Iz 2.44B5E -1 Iyz: 0.0000E +00

[ Part | wolume firF] | wieightbfl | Welinl [ el | Felin) | b (bPing |l P | lzz bFein] | T IbPting | ez bPsEing | luz bPeing |
1 < Unnamed » 1 ODONE+01 | 2 B3ENE+00 | OOO00E+00 | SOOO0E+00 | OOOOOE+00 | 2 44FRE-1 | NOOODE+00 | 2 44BSE-01 | OO0OOE+00 | NOOODE+00 01 OO00E-00

Figure 95-2. Accessing the ""Weight and Center of Gravity Calculation™ screen.

Table 95-1. Comparison of Results

Theory Analysis % Difference

Volume, V (in®) 10.00 10.00 0.00
Weight, W (Ib) 2.836 2.836 0.00
X, (inch) 0.00 0.00 0.00
Y. (inch) 5.00 5.00 0.00
Z. (inch) 0.00 0.00 0.00
Mass Moment of Inertia X Axis (Ib in s%) 0.24526 0.24465 0.25
Mass Moment of Inertia Y Axis (Ib in s%) - Not Applicable -

Mass Moment of Inertia Z Axis (Ib in s°) 0.24526 0.24465 0.25

Note: The Mass Properties Analysis Processor returns a value of 0.0 for the Y axis moment of inertia for
this problem because the beam element is a line element having no mass distribution about the axis of the
beam. This also accounts for the small error in the moments of inertia about the other two axes. See
AVE 111 for an example using brick element on the same problem, which eliminates these errors. (Using
the slender bar formula of 1,=1,= p A I¥/3 gives the same value calculated by the software.)
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AVE -96 Torsion of a Box Beam

Reference
Pytel, A. and Singer, F. L., Strength of Materials, New York: Harper & Row, 1987.
Problem Description

A box beam is subjected to torsion using point loads. The torsion is produced by nodal loads at opposite edges of the
beam.

.25

Figure 96-1. Square box beam with loading and boundary conditions.

Theoretical Solution

T
T=

2a’t

T

o= 3

ta’G
0 =0l
Where:
e a=150in
e t=3in (thickness)
e 1=1500 in (length)
e T =2(1x150) =300 (torque)
e G =2.8846 (shear modulus)

This gives the following results:

= & =0.0022222
T 21507 (3)
(300)(1500)
0= 3 = 0.0154074 rad.
(3)150)°(2.8846)
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Autodesk Simulation Solution

Membrane elements were used for this application.

Load Case' 10t 1
Maimun Value: Not Availabie

Minimum Value: Not Availabie

1 < Design Scenario 1 >

Figure 96-2. Deflected shape superimposed over the original.

Displacement
Z Component
in
1.155
0.9242
0.6932
0.4621
0.2311

-8.604e-015
-0.2311
-0.4621
-0.6932
-0.9242
-1.155

Load Case: 1of 1
Maximum Value: 1.15529 in
Minimum Value: -1.15529 in

1 < Design Scenario 1 >

Figure 96-3. Inquiring on the displacement result at node 30.

Results (using displacements from node 30):

© = arctan(1.1553/(150/2)) = 0.0154028 rad.

Table 96-1. Comparison of Results

® (radians) oh O
Theory Analysis 6 Difference
0.0154074 | 0.0154028 -0.03
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AVE - 97 Weight, Center of Gravity and Mass Moment of Inertia Analysis
of a Circular Plate

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russel, Vector Mechanics for Engineers: Dynamics, Third Edition, New
York: McGraw-Hill, 1977, p. 936.

Problem Description

A 1" thick circular plate of 1" radius in the YZ plane is analyzed for weight, center of gravity and mass moment of
inertia. This problem is the same as AVE - 108 where 2-D elements were used.

Figure 97-1. Circular plate model.

Theoretical Solution
The following gives the mass moment of inertia equation for a circular plate:
_ptm d*
64
Where:
e d=2.0"(plate diameter)

e t=.1"(plate thickness)
2

e p=7.34E-4

—,— (mass density)
in

Accuracy Verification Examples Manual, Version 2014 310



AVE - 97

Autodesk Simulation Solution

The plate is modeled with 256 membrane elements. The theoretical moment of inertia for the axis perpendicular to
the plane of the disk is twice the above thin plate approximation moment of inertia. This example verifies the
accuracy of the Mass Properties Analysis Processor for membrane elements.

Weight and Center of Gravity

Mode! Informatiorn

Yolume [irf}: 3.1365E-01 "Weight [Ibf]: 28958 .02
Center of Gravity [in Mazs Moment of Inertia [Ibf*sin]: Mass Product of Inertia [I6Fs*in]:
¥c: 0.0000E+00 I 1.1433E-04 I1y: 0.0000E +00
Yc: -4.3851E12 Iy 5.7463E-05 |z: 0.0000E +00
Zc: 21701E17 |2z 5.7463E-05 lyz: -3.4287E-22
[ Part | wolume (] | wieight (bl | Welml | eliml | Zelinl [ s bPEnl | lwe b | lzz (6P | s IbPetin] | e (bPsting | e (bPin]
1 < Unnamed > 313EBE-01 | B.8958E-02 | OODODE+00 | -4.3851E12 | 21700E-17 | 1.1483E-04 | G7463E-05 | 5.7463E-05 | 0.0000E+00 | O.0000E+00 | -3.4287E-22

Figure 97-2. ""Weight and Center of Gravity Calculation' screen.

Table 97-1. Comparison of Results

Theory Analysis | % Difference

Volume, V (in%) 0.31416 0.31365 0.16
Weight, W (Ib) 0.089101 0.088958 0.16
X (inch) 0.00 0.00 0.00
Y. (inch) 0.00 -4.E-12 -

Z, (inch) 0.00 -4.E-17 -

Mass Moment of Inertia: X Axis (Ib in sec?) 1.15296E-4 | 1.1493E-4 0.32
Mass Moment of Inertia: Y Axis (Ib in sec®) | 5.76482E05 | 5.7463E-5 0.32
Mass Moment of Inertia: Z Axis (Ib in sec?) 5.76482E-5 | 5.7463E-5 0.32
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AVE - 98 Thick-walled Cylinder under Both Pressure and Temperature
Loadings

Reference

Tuba, I. S. and Wright, W. B., ed., "ASME Pressure Vessel and Piping 1972 Computer Program Verification,"
ASME Publication 1-24, New York: The American Society of Mechanical Engineers, 1972.

Problem Description

This example involves a thick-walled cylinder with temperature and pressure applied.

|
'l DII
|

15"

Figure 98-1. Axisymmetric model of the thick-walled cylinder.

Theoretical Solution

E = 28 x 10° psi (modulus of elasticity)

v =0.25 (Poisson's ratio)

a = 7.5 x 10°° in/in/°F (coefficient of thermal expansion)
p = 2000 psi (internal)

T; = 100 °F (temperature of inside wall)

T, = 0 °F (temperature of outside wall)

Temperature distribution:

wfria)

Autodesk Simulation Solution

T=

This AVE illustrates the axisymmetric form of the 2-D element. It also illustrates the use of the load case multipliers
to apply both the thermal and pressure loads.

Since temperature varies with position, the temperature at each node had to be specified. Use of the element load

multipliers sets up the pressure as load case 1, and the thermal load as load case 2. Since this is a portion of a long
cylinder, the Z displacements are fixed, so only the Y degrees of freedom are active.
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Stress
Tensor X-X
Ibff(in*2)
5182
4983
4785
4586

4388
4190
3981
3793
3594
3396
3198

Load Case: 10f2
Maximum Value: 5181.69 |bf/(in*2)

Minimum Value: 3197.66 Ibf/(in"2)

1 < Design Scenario 1 >

Figure 98-2. Stress tensor results for the pressure load case.

Stress
Tensor X-X
Ibff(in"2)

12168
9377.8
6587.9
3798
1008.2

-1781.7
-4571.6
-7361.5
-10151
-12941
-15731

Load Case: 20f 2
Maximum Value: 12167.7 Ibf/(in*2)

Minimum Value: -15731.1 Ibff(in"2)

1 < Design Scenario 1 >

Figure 98-3. Stress tensor results for the temperature load case.

Table 98-1 Comparison of Results (Pressure Load Case)

Theory | Analysis | % Difference
Inside Hoop Stress (psi) 5200 5181.7 0.35
Outside Hoop Stress (psi) 3200 3197.7 0.072

Table 98-2 Comparison of Results (Temperature Load Case)

Theory | Analysis | % Difference
Inside Hoop Stress (psi) | -15,870 | -15,731 0.88
Outside Hoop Stress (psi) | 12,128 12,168 0.33
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AVE - 99 Stress Concentration around a Hole

Reference

Zienkiewicz, O. C., The Finite Element Method in Engineering Science, 2nd ed., New York: McGraw-Hill, 1965.

Savin, G. N., Stress Concentrations Around Holes, London: Pergamon Press, 1961.
Problem Description

This example involves stress concentration around a hole obtained by a plane stress analysis. A uniform pressure
load is applied. Orthotropic material properties are used.

Theoretical Solution
Orthotropic properties from Zienkiewicz:

El =1

vy = 0.0
E2 =3
G=042
Glg =0.42
vy = 0.1

Figure 99-1. The mesh and geometry used to simulate this problem
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Autodesk Simulation Solution

A quarter-symmetry model is built using 2-D elements. A uniform pressure of 1 psi is applied in the Y direction.
The orthotropic properties are relative to the global coordinate system. The Y-Symmetry and Z-Symmetry boundary
conditions were applied to the appropriate nodes along the Symmetry edges.

The stress values at each radius were calculated by taking the average of the two nodal stresses (nodes | and L for
the Y-direction S-Tensor stress, with the "Smoothed" option active) for each element along the Z axis edge.

Stress \

Tensor Y-Y \

Ibff(in*2) 13056 o
2,767 —\

2.491
2216 1.7949
1.941 27667
1.666
1.39
1.115
0.8398
0.5645
0.2892
0.01393

S0 ey S* Ca

2.7667
1.7949

Load Case: 1
1.3056
mum Value: 2.76671 Ibf/(in?2) z

Minimum Value; 0.0139273 Ibff(in"2) R Y

1 < Design Scenario 1 >

Figure 99-2. Inquiring on the Y-directed stress tensor results along the Z axis. probes were added to Z
coordinates: 0.5, 0.625, 0.875 and 1.25 inches

Table 99-1. Comparison of results

. cyalongyY =0 .
Radius Theory | Analysis % Difference
0.5625 | 2.21727 2.2808 2.87
0.75 1.51756 | 1.55025 2.15
1.0625 | 1.20289 | 1.21185 0.74
1.75 1.05714 1.076 1.78
2.875 | 1.01771 | 1.02485 0.70
4.25 1.00749 1.0118 0.43
5.75 1.00396 1.0054 0.14
7.25 1.00245 | 0.99705 0.54
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AVE - 100 Spherical Cap with Pressure

Reference

Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition, New York: McGraw-
Hill, 1959.

Problem Description

This example involves a spherical cap with uniform pressure. (See AVE - 109 for the same problem with the
plate/shell element.)

C

L

Figure 100-1. Cross section drawing of the spherical cap with a pressure load and boundary conditions.

Theoretical Solution

E = 9.6 x 10° psi (modulus of elasticity)
v =0.2 (Poisson's ratio)

h =2.36" (thickness)

R =56.3" (radius of sphere)

p = 284 psi (applied pressure)

Autodesk Simulation Solution

There are several ways to set up this problem. In this example we will be using 2-D axisymmetric elements. This
problem verifies the accuracy of the 2-D element and shows how to apply uniform pressure to this type of element.

When analyzing such a problem with a 2D axisymmetric element, the use of incompatible displacement modes gives
the best results. However, incompatible displacement modes should not be used on an element that has one edge
coincident with the axis of revolution. Since the use or non-use of incompatible displacement modes is controlled
only by the part number, this example simulates the problem using 2 parts. Both are 2-D elements but one has only
two elements and no incompatible modes (compatibility enforced), while the other uses incompatible modes
(compatibility not enforced) with the remaining elements.
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surface Stresses (fosl)
(Thousands)

- T T T
0 Q.8 194 293 i

'. CAnge, Degrees

B Thetafl *  PhIM

Figure 100-2. Surface stress distributions.

The surface stresses, oy (hoop) and o4, (tangential), on the external (e) and internal (i) surfaces are shown in
Figure 100-2. The values used to plot these curves are obtained directly from the results environment by taking the
S-tensor stress in the hoop (S33) and tangential (S11) directions. See Figure 100-1 for a definition of the ® angle.
The stress values shown are those produced by the analysis.

Stress
Local 3-3
Ibf/(in"2)
350.9
-69.02
-488.9
-908.8
-1329
-1749
-2168
-2588
-3008
-3428
-3848

Load Case: 1 of 1

Maximum Value: 350.879 Ibff(in*2) Z

Minimum Value: -3848.06 Ibff(in*2) 1—}‘{

1 < Design Scenario 1 >

Figure 100-3. S-tensor stress in the hoop (S33) direction.
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Stress
Local 1-1
Ibfi(in"2)
1845
855.6
-134.2
-1124
-2114
-3104
-4094
-5083
-6073
-7063
-8053

Load Case: 10of1

Maximum Value: 1845.46 |bff(in*2) z

Minimum Value: -8052.9 |bf/(in"2) LY

1 < Design Scenario 1 >

Figure 100-4. S-tensor stress in the tangential (S11) direction.
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AVE - 101 Cylindrical Tube under Forced Response with Direct Integration

Reference

Reismann, H. and Padlog, J., "Forced Axisymmetric Motions of Cylindrical Shells", Journal of the Franklin
Institute, 284, November 1967.

Problem Description

A cylindrical tube with a suddenly applied constant radial load is analyzed using the direct integration method. (The
same example is analyzed in AVE - 106 using the modal combination method.)

I —

TIME

Figure 101-1. 2-D axisymmetric model of the cylindrical tube under forced response.

Theoretical Solution

E = 30 x 10° psi (modulus of elasticity)

P = 1000 Ib/in = 3000 Ib/radian (applied radial force)
v = 0.3 (Poisson's ratio)

p = 3.663 x 107 Ib/sec¥in* (mass density)

Autodesk Simulation Solution

Due to symmetry, only half the length is needed for the model. Note that the use of symmetry (including axial
symmetry) to reduce the size of dynamics problems can result in missing modes that do not have the symmetry of
the reduced model. For this problem, those modes would not be excited by the symmetrical loading.

A two-dimensional axisymmetric element is used. The dynamic load is applied as a unit step function at time = 0.0.

Only half the load needs to be applied since it is on the symmetry boundary. The method of analysis is direct
integration.
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Figure 101-2. FEA model of the cylindrical tube with boundary conditions.

In Figure 101-3, displacement versus time for node 32 is compared to the results in the reference for direct
integration and modal combination solutions. (The modal combination solution is obtained in AVE — 102.

@ Displacement ¥ Component (32) (in)
0.0012

ooof

0001
0.000 -;
o008
o007+
0.0008 [
0.0005 7%

0.0004 |-

I |
0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014
Time (s)

Figure 101-3. Radial displacement (i.e., displacement in the Y direction for node 32) versus time.
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Displacement
Y Component
in 10.001142

0.001142
0.001012
0.0008832
0.0007539
0.0006247
0.0004954
0.0003661
0.0002369
0.0001076
-2.165e-005
-0.0001509

Time: 0.0003 s

Time Step: 6 of 30

Maximum Value: 0.00114171 in
Minimum Value: -0.000150918 in

1 < Design Scenario 1 > o000 1.a79 " 250 am

z

¥

Figure 101-4. Y displacement result of node 32 at time =
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AVE - 102 Cylindrical Tube under Forced Response with Modal
Combination

Reference

Reismann, H. and Padlog, J., "Forced Axisymmetric Motions of Cylindrical Shells", Journal of the Franklin
Institute, 284, November 1967.

Problem Description

A cylindrical tube with a point load is analyzed using the modal combination method. (The same problem is
analyzed in AVE - 105 using the direct integration method.)

_______________ -

| T |

TIME

Figure 102-1. 2-D axisymmetric model of the cylindrical tube under forced response.

Theoretical Solution

E =30 x 10° psi (modulus of elasticity)

P = 1000 Ib/in = 3000 Ib/radian (applied force)
v = 0.3 (Poisson's ratio)

p = 3.663 x 107 Ib/sec¥in* (mass density)

Autodesk Simulation Solution

Due to symmetry, only half the length is needed for the model. Note that the use of symmetry (including axial
symmetry) to reduce the size of dynamics problems can result in missing modes that do not have the symmetry of
the reduced model. For this problem, those modes would not be excited by the symmetrical loading.

A two-dimensional axisymmetric element is used. The dynamic load is applied as a unit step function at time = 0.0.

Only half the load needs to be applied since it is on the symmetry boundary. The method of analysis is modal
combination.
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Figure 102-2: FEA model of the cylindrical tube with boundary conditions.

In Figure 102-2, displacement versus time for node 32 is compared to the results in the reference for direct
integration and modal combination solutions. (The direct integration solution is obtained in AVE - 101.)

® Dipiacement Y Component (32) ()

0.0011 4

00014

00000 |-

0.0008 -

0.0007

0.0006

0.0005 |

0.0004 |

0.0003

0.0002

0.0001

I | L I I I !
0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014
Time (s)

Figure 102-2. Radial displacement (i.e., displacement in the Y direction for node 32) versus time.
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Displacement
Y Component 0.001133
in
0.001133
0.001005
0.0008768
0.0007487
0.0006205
0.0004924
0.0003642
0.000236
0.0001079
-2.027e-005
-0.0001484

Time: 0.0003 s

Time Step: 6 of 30

Maximum Value: 0.00113313 in
Minimum Value: -0.000148423 in

2 < Design Scenario 2 > o000 1390 " 2772 asa

z

¥

Figure 102-3. Y displacement result of node 32 at time =

Accuracy Verification Examples Manual, Version 2014

0.003 seconds.

AVE - 102

324



AVE - 103

AVE - 103 Patch Test with Constant Stress

Reference

MacNeal, R. H. and Harder, R. L., "A Proposed Set of Problems to Test Finite Element Accuracy", Finite Element
Analysis and Design, 1985.

Problem Description

This patch test consists of applying a constant stress loading to a group (patch) of elements and showing that all
elements in the patch will have the same stress. Incompatible modes are suppressed in this example.

Z

b ¥
Figure 103-1. FEA Mesh of the 2-D Plane Stress Model

Theoretical Solution

E = 1.0° psi (modulus of elasticity)

v =0.25 (Poisson's ratio)

a =0.12" (patch height)

b =0.24" (patch length)

t = 0.001" (patch thickness)

F =12 Ib (applied force at each corner)

2x12 .
oy = ———— — = 200,000 psi
0.12x0.001
o, =0.0 psi
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Autodesk Simulation Solution

A static analysis using 2-D plane stress elements was performed.

Location of Inner Nodes

Node Number X Y
3 0.04 | 0.02
4 0.18 | 0.03
5 0.08 | 0.08
6 0.16 | 0.08

Because only one of the elements (element 5) has local axes that are parallel to the global axes, the smoothed stress
tensor display in the global Y and Z directions has been used for the analysis results below.

Note that the biggest Z direction stress value is more than nine orders of magnitude smaller than the Y direction
stress value, showing the Z direction stress values are within round-off error of zero.

Stress
Tensor Y-Y
Ibf/(in*2)

200000.005833
200000.00521
200000.004588
200000.003966
200000.003343
200000.002721
200000.002099
200000.001476
200000.000854
200000.000232
199999.999609

Load Case: 1 of 1

Maximum Value: 200000 Ibf/(in*2)

Minimum Value: 200000 Ibff(in*2) - 2:

1 < Design Scenario 1 > as oo - s o

Figure 103-2. Stress tensor display in the global Y direction.
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Stress
Tensor Z-Z
Ibf{(in"2)

-7.3158e-005
-8.0486e-005
-8.7814e-005
-9.5142e-005
-0.00010247
-0.0001098
-0.00011713
-0.00012445
-0.00013178
-0.00013911
-0.00014644

Load Case: 1 of 1

Maximum Value: -7.31583e-005 |bf/(in"2)

Minimum Value: -0.000146437 Ibf/(in"2)

1 < Design Scenario 1 > as ooz

0481

Figure 103-3. Stress tensor display in the global Z direction.

Table 103-1. Comparison of Results

Theory | Analysis | % Difference
Stress Tensor (Y Direction) | 200,000 | 200,000 0.0
Stress Tensor (Z Direction) 0.00 -0.0001 0.0
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AVE - 104 Weight, Center of Gravity and Mass Moment of Inertia Analysis
of a Circular Plate

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russel, Vector Mechanics for Engineers: Dynamics, Third Edition, New
York: McGraw-Hill, 1977, p. 936.

Problem Description

A 0.1" thick circular plate of 1" radius in the YZ plane is analyzed for weight, center of gravity, and mass moment
of inertia.

Figure 104-1. FEA model of the circular plate.

Theoretical Solution

Mass moment of inertia equation for a circular plate:

_ptrd*
64

Where:
e d=2.0"(plate diameter)

e t=0.1" (plate thickness)
e p=7.34e-4 b s¥in* (mass density)
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Autodesk Simulation Solution

The plate is modeled with 256 2-D plane stress elements. The theoretical moment of inertia for the axis
perpendicular to the plane of the disk is twice the above in plane thin plate approximation moment of inertia.

In FEA Editor, the "Analysis: Weight and Center of Gravity..." command sequence was used to perform a weight,

center of gravity and mass moment of inertia analysis. This example verifies the accuracy of the Mass Properties
Analysis Processor for 2-D plane stress elements.

Weight and Center of Gravity =

Model Information

Volume {in?): 3.1365E-01 Weight (bf): 8.8958E-02

Center of Gravity {in): Mass Moment of Inertia dbf*s¥in} Mass Product of Inertia (bf*s®in}:

Xc: 0.0000E+00 boc: 1.1493E-04 by: 0.0000E+00
Yc: -4.3848E-12 lyy: 5.7655E-05 bez: D.0000E+00
Zc: -1.7965E-17 Iz2: 5. 7655E-05 lyz: -2.0845E-22

| Part | voume g | Weightgbf) | i) [ Yein) [ Zein) [ bec@bfs®in) | by @bfs®in) | lzz bfs¥in) | bo (bfs¥in) | b @bfs®in) | bz dbisin) |
1 < Unnamed > 3136501 | 88958E02  (0O0DOE=00 4384812 -179656-17  1.1493E04 | 57655E05 | 57655605 | 0.0000E=00 | 0.0000E=00 | -2.0845E-22

Export |

Figure 104-2. "Weight and Center of Gravity Calculation™ screen in FEA Editor.

The values for weight, volume, and mass moment of inertia about the X axis are slightly low due to the volume
missed by approximating the circle by straight line segments. The values for the mass moments of inertia about the
Y and Z axes are slightly higher than theoretical because the 2-D element calculation takes some account of the
moment of inertia due to the thickness, which the thin plate theory used here does not.

Table 104-1. Comparison of Results

Theory Analysis % Difference
Volume, V 0.31416 in° 0.31365 in° 0.16
Weight, W 0.089095 Ib 0.088958 Ib 0.16
Xe 0.00" 0.00" -
Y. 0.00" -4.38E-12" -
Z. 0.00" -1.79e-17" -
Mass Moment of Inertia: X axis | 1.15288 E-4 Ib in sec’® | 1.1493 E-4 Ib in sec’ 0.31
Mass Moment of Inertia: Y axis | 5.7644 E-5Ibinsec’> | 5.7655 E-5 Ib in sec’ 0.02
Mass Moment of Inertia: Z axis | 5.7644 E-5lbinsec’® | 5.7655 E-5 Ib in sec? 0.02

Accuracy Verification Examples Manual, Version 2014

329



AVE - 105

AVE - 105 Thick-walled Cylinder under Centrifugal and Pressure Loading

References

Tuba, I. S. and Wright, W. B., ed., "ASME Pressure Vessel and Piping 1972 Computer Programs Verification",
ASME Publication 1-24, New York: The American Society of Mechanical Engineers, 1972.

Timoshenko, S. P., Strength of Materials, Third Edition, New York: Van Nostrand, 1955.
Problem Description

This example is an analysis of a thick-walled cylinder with centrifugal force and pressure applied as two separate
load cases.

|
|
|
i
| p—=L [ I [ [ | 01"
|
|
|
|

Figure 105-1. Sectional view of the cylinder with loading and dimensions.

Theoretical Solution

E =30 x 10° psi (modulus of elasticity)
v = 0.3 (Poisson's ratio)
p = 0.286 Ib/in® (weight density)

Structure Load Case 1: o = 100 rad/sec (angular velocity)
Structure Load Case 2: p = 3000 psi (internal pressure)

Autodesk Simulation Solution

This problem illustrates how centrifugal forces could be emulated by using load case multipliers to apply a different
gravitational force to each element based on its distance from the axis of rotation. (However, this is no longer
necessary due to the ability to automatically generate centrifugal loading.) This is a good illustration of the multiple
part concept (note that every brick element in the model is element number "1").

To model this problem, the 8-node bricks are arranged as a 0.1 radian segment.

Since boundary conditions in the software are globally oriented, boundary elements were added to insure that the
nodes do not move tangentially across the non-globally aligned pie-cut symmetry plane. One element group was
used for each brick element, allowing, in the old formulation of this problem, the appropriate amount of gravity
loading in the Y direction for each element to be applied using element load multipliers to act like centrifugal
loading. The mesh is coarse, due to this history.
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Load Case 10of 2
Maamum \alue: Not Avallable
Minimum Value: Not Available

1 < Design Scenario 1>

k

AVE - 105

Figure 105-2. Isometric view of the model with node numbers and boundary elements displayed.

Centrifugal loading is applied directly by giving the axis and the angular velocity in RPM. The following figures

show stress results for load cases 1 (centrifugal force) and 2 (pressure loading).

Stress
Tensor Y-Y
Ibf(in"2)
3.0475
28317
26159
2.4001
21843
1.9685
1.7527
1.5369
1.3211
1.1053
0.88955

Load Case: 10of2 i
Maximum Value: 3.04748 Ibf/(in"2)
Minimum Value: 0.889554 Ibf/(in"2)

1 < Design Scenario 1 > oo o __om o

k

Figure 105-3. Radial stress results of an element for Load Case 1 (centrifugal force).
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Stress
Tensor X-X
Ibf(in"2)

26.747
2516
23573
21.987

204
18.814
17.227
15.64
14.054
12.467
10.881

Load Case: 1of 2
Maximum Value: 26.7466 Ibf/(in*2)

Minimum Value: 10.8807 Ibf/(in*2)

1 < Design Scenario 1 > as o N o o

= =

k

Figure 105-4. Hoop stress results of an element for Load Case 1 (centrifugal force).

Stress
Tensor Y-Y
Ibf(in"2)
-106.04
-326.15
-546.26
-766.38
-986.49
-1206.6
-1426.7
-1646.8
-1866.9
-2087 1
-2307.2

Load Case: 2of 2

-

Maximum Value: -106.036 Ibff(in;‘Z)
Minimum Value: -2307.17 Ibf/(in*2)

1 < Design Scenario 1 > as o - oz sz

k

= =

Figure 105-5. Radial stress results of an element for Load Case 2 (pressure loading).
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Stress
Tensor X-X
Ibf(in"2)
51927
4867 .2
45416
42161
3890.6

3565

32395
29139
2588.4
22628
1937.3

Load Case: 2of 2

Maximum Value: 5192.74 Ibf/(in*2)

Minimum Value: 1937.27 Ibf/(in*2)

1 < Design Scenario 1 >

k

Figure 105-6. Hoop stress results of an element for Load Case 2 (pressure loading).

AVE - 105

The stress results reported in the tables below are the stress tensor vector stresses averaged from all the nodes of an

element.

Table 105-1. Comparison of Centrifugal Force Results

Centrifugal Force
R o (near o)) oo (Near oyy)
Theory | Analysis | % Difference Theory | Analysis | % Difference
1.1 | 1.4799296 | 1.5315 3.48 23.256107 23.92 2.85
1.3 | 2.8825521 | 2.97825 3.32 19.541775 19.84 1.53
15| 2971449 | 3.06525 3.16 16.755884 16.75 -0.03
1.7 | 2.2186548 | 2.2805 2.79 14.4264 14.135 -2.02
1.9 ] 0.8617883 | 0.8700 0.95 12.315703 | 11.725 -4.80
Table 105-2. Comparison of Pressure Loading Results
Pressure Loading
R o (near o)) op (near o)
Theory Analysis | % Difference Theory Analysis | % Difference
1.1 | -2305.7851 | -2302.25 -0.15 4305.7851 43515 1.06
1.3 | -1366.8639 | -1366.25 -0.04 3366.8639 3387.5 0.62
15| -777.7778 -778.25 0.06 2777.7778 2787.5 0.35
1.7 | -384.083 | -385.275 0.31 2384.083 2388.5 0.19
1.9 | -108.0332 | -109.675 1.52 2108.0332 2109.5 0.07

Note: Because the stress values are provided at nodes, and the legacy theoretical radius values used here
occur at the middle of the elements, the stress values in this table were arrived at by averaging the nodal
values for each element.
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AVE - 106 Cantilever Beam Eigenvalues

Reference

Carnegie, W. and Thomas, J., "The Effects of Shear Deformation and Rotary Inertia on the Lateral Frequencies of
Cantilever Beams in Bending", ASME Journal of Engineering for Industry, February 1972.

Problem Description

A cantilever beam is modeled with 3-D solid elements to verify natural frequencies.

Figure 106-1. FEA model of the cantilever beam.

Theoretical Solution

e E=10°psi (modulus of elasticity)

e L =10in (length of beam)

e v =0.3(Poisson's ratio)

Displacements in the X direction are suppressed.

e d=1in(beam height)

e w=12in (beam width)

e v=0.386 Ib/in® (weight density)

Frequencies for the flexural vibrations of a cantilever beam:
L2 | El

f,=— n
2n\ vyl

Extensional vibration frequencies:
i [E
o4l y

However, the flexural frequencies are too high because of neglecting shear and rotary inertia. This effect is more
pronounced for the higher modes. The results for a Timoshenko beam were obtained by multiplying the Euler beam
frequencies by a factor obtained from Figure 1 in the article by Carnegie and Thomas.
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Autodesk Simulation Solution

AVE - 106

The cantilever beam is modeled with 3-D solid elements. A Linear Mode Shapes and Natural Frequencies analysis

is performed.

Mode: 3of 5

Frequency: 821.158 cycles/s

Maximum Value: Not Available

Minimum Value: Not Available

1 < Design Scenario 1 > 000

Figure 106-2. Third mode shape.

Table 106-1. Comparison of Results

Natural Frequencies, Hz % Difference
Mode Number Type Euler Beam | Timoshenko Beam | Analysis Euler—_ Tlmosheqko—
Analysis Analysis
1 Flexural 55.96 55.6 52.43 4.52 3.90
2 Flexural 350.7 332.0 309.4 11.78 6.81
3 Flexural 982.0 876 821.2 16.37 6.26
4 Extensional 790.6 834.8 -5.59
5 Flexural 1924.0 1590.0 1537.0 20.11 3.33
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AVE - 107 Weight, Center of Gravity and Mass Moment of Inertia Analysis
of a Square Beam

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russel, Vector Mechanics for Engineers: Dynamics, Third Edition, New
York: McGraw-Hill, 1977, pp. 937-938.

Problem Description

A square 10" long steel beam of 1 in? cross-sectional area oriented along the Y axis is analyzed for weight, center of
gravity and mass moment of inertia. (This problem is the same as AVE - 99 where beam elements were used.)

Figure 107-1. FEA model of the square beam.

Theoretical Solution

The mass moment of inertia about a transverse axis through one end of the square cross section beam is given by the
following:

a®> I
I, =pa’ll —+—
<P [12 3)

2 2
a® |
I, =pa’ll —+—
=P (12 3)
Where:
e 1=10.00" (Iength of beam)

e o =1.00 (side of square beam)
e p=7.3395E-4 (Ibs?*/in* (mass density)
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Autodesk Simulation Solution

The beam is modeled with 10, brick elements. The volume of each brick is 1 in®. A weight, center of gravity and
mass moment of inertia analysis was performed.

Model Information

Volume (n): 1.0000E+01 Weight {Ibf): 2.8360E+00

Center of Gravity fin): Mass Moment of Inertia (bf*s*in): Mass Product of Inertia {bf*s¥in}:
Xe:-1.6157E17 beoe: 2.4526E-01 bey: -8.1050E-15

Ye: 5.0000E+D0 byy: 1.2233E-03 bez: 9.7409E-21

Zc: 2. 3081E-19 lzz: 2.4526E-01 lyz: -3.1340E-19

| Part | Volume gn?) | Weight@bf) |  Xcn) [ Yegn) | Zegn) [ becbfs®in) | by Mbfs¥in) | lzz fbfs¥in) | borbfs¥in) | be dbFsTin) | bz dbfs=in)
1 < Unnamed > 10000E<DT | 28360E<00  -16157E-17 | G50D00E=DD | 23081E-19 | 24506E-01 | 12233603 | 24526601 | -BI0SDE-19 | 9.7409E21 | -3.134DE-19

Figure 107-2. ""Weight and Center of Gravity Calculation' screen.

Table 107-1. Comparison of Results

Theory Analysis % Difference

Volume, V 10.00 in® 10.00 in® 0.0

Weight, W 2.836 Ib 2.836 Ib 0.0

X 0.00" 0.00" 0.0

Y. 5.00" 5.00" 0.0

Z. 0.00" 0.00" 0.0

Mass Moment of Inertia X axis 0.24526 Ib in sec? 0.24526 b in sec? 0.0
Mass Moment of Inertia Y axis | 1.2233 E-3lbinsec? | 1.2233 E-3 Ib in sec? 0.0
Mass Moment of Inertia Z axis 0.24526 Ib in sec? 0.24526 b in sec? 0.0
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AVE - 108 Weight, Center of Gravity and Mass Moment of Inertia Analysis
of a Solid Sphere

Reference
Ellis, R., and Gulick, D., Calculus with Analytic Geometry, New York: HBJ, 1978.
Problem Description

A 1.0" radius solid sphere is analyzed for weight, center of gravity and mass moment of inertia. (This problem is the
same as AVE - 40 where 2-D axisymmetric elements were used.)

Figure 108-1. FEA model showing the surface mesh of the solid sphere.

Theoretical Solution

The mass moment of inertia equation for a solid sphere is given by the following:

_8pur®
15

Where:

e r=1.0"(sphere radius)
e p=7.3395E-4 Ib s¥in* (mass density)
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Autodesk Simulation Solution

The solid sphere is modeled with 8000 brick elements. A weight, center of gravity and mass moment of inertia
analysis is performed.

The errors are due to the lost volume inherent in representing a sphere by a polyhedral shape with vertices on the
sphere surface. All volume between the flat surfaces and the sphere is missed. A finer surface mesh would reduce
the error.

.
Weight and Center of Gravity ‘ ‘ \ E‘Eﬂ

Model Information

Volume {n?): 4.1135E+00 Weight {Ibf): 1.1667E+00

Center of Gravity fin): Mass Moment of Inertia (bf*s*in): Mass Product of Inertia (bf*s*in):

¥o: 13273607 boc: 1.1967E-03 bay: 8.2799E-11
Yo:-1.1826E-08 yy: 1.1967E-03 bez: -5.6595E-22
Zo: 72355617 lzz: 1.1868E-03 lyz: 2 5432621

[ Part | Volume ¥} | Weightfbf) [ ¥cin) | Yein) | Zein) | bec@ofsTin) | by (bFs¥in) | ez (ofs¥in) | bey fbFstin) | b fb*s¥in) [ by dbfs®in) |)
1 < Unnamed > 471135600 | 11667E-00 | 1.3273E07 | -11826E08 | 72355E-17 | 1.1967E03  1.1967E03 | 1.1868E03 | 82799E-11 | 56595E-22 | 25432E-21

e
Figure 108-2. ""Weight and Center of Gravity Calculation' screen.
Table 108-1. Comparison of Results
Theory Analysis % Difference

Volume, V 4.189 in® 4114 in’ 1.79
Weight, W 1.1879 Ib 1.1667 Ib 1.78
X 0.00" 0.00" 0.0
Y. 0.00" 0.00" 0.0
Z. 0.00" 0.00" 0.0
Mass Moment of Inertia X axis | 1.23 E-3Ibs®in | 1.20 E-3Ib s in 2.44
Mass Moment of Inertia Y axis | 1.23 E-3Ibs®in | 1.20 E-3Ib s in 2.44
Mass Moment of Inertia Z axis | 1.23E-31Ibs”in | 1.19E-31Ibs”in 3.25
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AVE - 109 Spherical Cap with Uniform Pressure

Reference

Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition, New York: McGraw-
Hill, 1959.

Problem Description

This example involves a spherical cap with uniform pressure. (Refer to AVE - 104 for an alternate way of setting up
this problem using the solid of revolution element.)

Cy

Figure 109-2. Five-degree wedge of the shell (used to perform the analysis).

Theoretical Solution

E = 9.6 x 10° psi (modulus of elasticity)
v =0.2 (Poisson's ratio)

h =2.36" (thickness)

R =56.3" (radius)

p = 284 psi (applied pressure)
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Autodesk Simulation Solution

This problem is modeled by a 5-degree wedge of the shell. The wedge of plate/shell elements is constrained by
orthogonal degrees of freedom restrictions on one side and by two-node boundary elements on the other. Boundary
elements are used to force radial displacements of the nodes and to set the appropriate rotations to zero. The
coordinates are in the Cartesian system. Also, the element load case multipliers are used to apply the uniform
pressure.

Note: The apex element is a triangle. The triangular plate element is permitted, although the quadrilateral
element is preferable, when possible.

The surface stresses, oy (hoop) and o4 (tangential), on the external and internal surfaces are shown in Figure 109-3.
The values used to plot these curves are obtained from the Results environment by taking the S-tensor stress in the
radial and tangential directions. The stress values shown are those produced by the analysis.

3
- :
T
= .
= A

- B = O Phif=)

mom J'
il ’a i Thetal =)
Ho]
) j = e ¥ Phif i)
o E 5 . Thetai i)
3 E \
FE] 1 "-._
& . k

-0

| ] 8 i ! |

. Angle, Deorrees

Figure 109-3. Surface stress distributions.

Displacement
Magnitude
in —

0.02371331 / o
0.02134198 0028713
0.01897065 ~
0.01659932

0.01422798

0.01185665

0.009485323
0.007113992
0.004742662
0.002371331

0

Load Case: 1of 1

Maximum Value: 0.0237133 in

Minimum Value: 0 in t .

1 < Design Scenario 1 > o B o oms ez

Figure 109-4. The deflected and undeflected shapes with a probe on the apex point.

Accuracy Verification Examples Manual, Version 2014 341



AVE - 110

AVE - 110 Equilateral Triangle with Linear Thermal Gradient

Reference

I. S. Tuba and W. B. Wright, ed., "ASME Pressure Vessel and Piping 1972 Computer Programs Verification",
ASME Publication 1-24, New York: The American Society of Mechanical Engineers, 1972.

J. L. Maulbetsch, "Thermal Stresses in Plates”, Journal of Applied Mechanics, 2, June 1935.
Problem Description

This problem is a rare example of the application of temperature difference through thickness in plate element
analysis. In this case, a triangular wing is modeled and a temperature gradient through the thickness is applied using
the element load case multipliers. Find the deflections along the X axis.

Theoretical Solution
The following material data are used:

E =10 x 10° psi (modulus of elasticity)

v = 0.3 (Poisson’s ratio)

a =12 x 10°%/°F (coefficient of thermal expansion)
T, - T, = 450 °F (temperature difference)

t = 0.1" (plate thickness)

All edges are simply supported.

Figure 110-1. FEA model of the equilateral triangle.

The temperature gradient is:

8T/5Z = 450/0.1 = 4500°F/in
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Autodesk Simulation Solution

AVE - 110

The deflections are given in the following table. (Note: the theoretical values shown are from Maulbetsch.)

= @ &

Load Case: 1 of 1
Maximum Value: Not Available
Minimum Value: Not Available

1 < Design Scenario 1 > o0 o o ___owm 1500

Figure 110-2. Node numbering scheme.

Load Case: 1 of 1
Maximum Value: Not Available
Minimum Value: Not Available

1 < Design Scenario 1 > o0 o ___om I

= @ &

Figure 110-3. Deflected shape using the *'Shrink™* option
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Displacement
Z Component
in
0.02288614
0.02059753
0.01830891

0.0160203
0.01373168
0.01144307
0.009154456
0.006865842
0.004577228
0.002288614
0

Load Case: 1 of 1
Maximum Value: 0.0228861 in

Minimum Value: 0 in

1 < Design Scenario 1 > o0 oses i ams

Figure 110-4. Z-Displacement contour.

Table 110-1. Z Deflection at Nodes along the X Axis

Node X Dz Dz % Difference
Number | Coordinate | Theoretical | Analysis
2 0.403 0.0159003 0.01589 0.06
5 0.836 0.0229002 0.02289 0.07
7 1.269 0.0222439 0.02223 0.06
9 1.702 0.0167751 0.01678 0.03
11 2.134 0.0093451 | 0.009336 0.10
13 2.567 0.0028036 | 0.002832 1.01
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AVE - 111 Simply Supported Anisotropic Plate

Reference

Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition, New York: McGraw-
Hill, 1959.

Problem Description

This example involves a simply supported plate with anisotropic material properties. This example demonstrates the
capabilities of the software to engineers who are interested in the elasticity matrix. In this problem there is a flat
plate with simple supports and a uniform pressure applied perpendicular to the surface. Results are compared with
the Timoshenko method. Also, this example shows the use of orthogonal boundary conditions to model with quarter
symmetry.

Figure 111-1. FEA model of the simply supported plate (dimensions shown).

Theoretical Solution
Using Timoshenka's notation:

E, = 1.87 x 10° psi

E, = 0.6 x 10° psi

Ei, = 0.073 x 10° psi

G = 0.159 x 10° psi

h = 0.5" (plate thickness)

p = 5 psi (applied pressure)

Timoshenko's elasticity constants become:
Cyx = E1 = 1.87 x 10°psi
Cyy = E; = 0.6 x 10°psi

Cyy = E12=0.073 x 10°psi
Gy =G =0.159x 10%psi
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Autodesk Simulation Solution

, \\%\
Load Case: 1 of 1 IO \\
Maximum Value: Not Available \//

Minimum Value: Not Available t -

1 < Design Scenario 1 > 000 - am 230

Figure 111-2. Deflected shape superimposed on original model.

Displacement
Magnitude
in
0.06548064
0.05893257
0.05238451
0.04583645
0.03928838
0.03274032
0.02619226
0.01964419
0.01309613
0.006548064
0

Load Case: 1of 1

Maximum Value: 0.0654806 in

Minimum Value: 0 in Q

1 < Design Scenario 1 > as s - 20 ancs

Figure 111-3. Inquiring on the deflection result at a node.

Table 111-1. Comparison of Results

DZ DZ .
Node | x|y Theoretical Analysis % Difference
1 0|0 0.065654 0.06548 0.27
2 210 0.061151 0.06088 0.44
5 410 0.047717 0.04737 0.73
7 610 0.026319 0.02614 0.68
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AVE - 112 Rectangular Plate with All Edges Clamped

Reference

Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates and Shells, Second Edition, New York: McGraw-
Hill, 1959.

Problem Description
A square plate with all of its edges clamped is subjected to a uniform pressure load normal to the plate. Various
mesh densities are used, and the resulting maximum deflection is compared to that predicted by the Timoshenko

method. This example shows the reliability of the plate/shell element in bending analysis.

A 0.1" thick square plate with clamped edges is subjected to a uniform pressure.

a 1

F.3 a

uniform pressue
p = 100psi

E

Figure 112-1. The rectangular plate with loading and boundary conditions.

Theoretical Solution

a =10" (edge length)

p = 100 psi (applied pressure)

t = 0.1" (plate thickness)

E = 300.0 x 10° psi (modulus of elasticity)

v = 0.3 (Poisson's ratio)

Timoshenko predicts deflection at the plate's center to be the following:
A =0.00126 pa’/D

Where:

D = [Et*] / [12 (1-V?)] = 27472.53

Therefore:

A = 4.5864E-2
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Autodesk Simulation Solution

This problem was analyzed using various mesh densities. The resulting maximum deflection occurring at point A is
compared to the theoretical result predicted by Timoshenko.

Based on the symmetrical nature of the example, only 1/4 of the problem needs to be modeled. Figure 112-2 shows
the 1/4 model.

p= '"]hsi

SIS

\ Symmetry
B oundanies

Figure 112-2. FEA model of the plate using symmetric boundary conditions.

Full models were used for the first two design scenarios. Quarter models were used for the third and fourth design
scenarios.

Displacement

Magnitude
in

0.045755
0.041179
0.036604
0.032028
0.027453
0.022877
0.018302
0.013726
0.0091509
0.0045755
0

Load Case: 1 of 1

Maximum Value: 0.0457545 in

Minimum Value: 0 in E:

4 < 16x16 (8x8 quarter) > o0 150 - 2581

Figure 112-3. Displacement results in the 8x8 quarter simulation model.
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The following table shows the maximum deflection calculated for various mesh densities, and the percent error

when compared to Timoshenko.

Table 112-1. Comparison of Results

AVE - 112

Design . Number of | Maximum Theoretical .
Scenagrio Mesh Density Elements Deflection Result % Difference
1 4x4 (full) 16 4,2426E-2 4.5864E-2 7.5
2 8x8 (full) 64 4,4853E-2 4.5864E-2 2.2
3 12x12 (6x6 quarter) 36 4,5515E-2 4.5864E-2 0.76
4 16x16 (8x8 quarter) 64 4,5755E-2 4.5864E-2 0.24
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AVE - 113 Linear Mode Shape Analysis with Load Stiffening, Simply
Supported Beam

Reference

Timoshenko, S., Weaver, W. and Young, D. H., Vibration Problems in Engineering, New York: Wiley, 1974.
Problem Description

This beam load stiffening problem models a 0.25" x 12" x 96" steel beam which is simply supported under

compressive axial loading. This example verifies the accuracy of the Linear Mode Shapes and Natural Frequencies
Analysis with Load Stiffening processor for plate elements.

k

Figure 113-1. FEA model for the beam with nodal boundary conditions.

Theoretical Solution

The beam theory frequency equation is given by the following:

=2 2 2
o, :I 1: E 1+ _ZSI >
I pA i“Eln

Where:

i=(1,2,3...) for different mode shapes,

1 =96" (length of the beam)

E = 30E6 psi (modulus of elasticity),

| = bh*12 in* (area moment of inertia )

p = 7.34E-4 Ib s%/in* (Mass density)

A =3 in? (cross sectional area)

S =15 Ib (axial load)

+/- = Denotes tensile or compressive load respectively
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Autodesk Simulation Solution

The beam is modeled with 8 plate elements. Appropriate translational and rotational nodal boundary conditions are
used at the ends to constrain the beam.

The beam element load stiffening problem models a 0.25" x 12" x 96" steel beam which is simply supported under
compressive axial loading of 15 Ib. This load is about 3% of the buckling load for this model and lowers the lowest
frequency about 1.5%. Results below show good agreement. Higher modes are affected less, though the model has a
rather coarse mesh for the higher modes as it has only 8 plate elements. Modes 3 and 5 are torsional modes, which
are not covered by the simple beam theory formula shown above.

The following table gives both the theoretical and computed frequencies for different mode shapes. (Results show
comparative frequencies obtained for different mode shapes as obtained using the software and the theoretical
solutions using the FORTRAN program developed from the reference.)

Mode: 5o0of 5

Frequency: 32.8266 cycles/s
Maximum Value: Not Available

Minimum Value: Not Available k

1 < Design Scenario 1 >

Figure 113-2. Mode shape and frequency for mode 5.

Table 113-1. Comparison of Results

Mode Number | Mode Frequency (HZ). % Difference
Theory | Analysis
1 weak 1 | 2.4494 2.4456 -0.16
2 weak 2 | 9.910 9.838 -0.72
3 - - 15.91 -
4 weak 3 | 22.34 21.93 -1.84
5 - - 32.83 -
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AVE - 114 Thin-walled Cylinder with a Uniform Axial Load

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975.

Problem Description

This example is taken from formulas for membrane stresses and deformations in thin-walled pressure vessels. It is a
thin-walled cylinder with a uniform axial loading, which is analyzed for axial stress and deflection. This example is
the same as AVE - 3 where membrane elements were used.

r’“rft
' :

t t
Tttft

Figure 114-1. FEA model of the cylinder with loading and boundary conditions.

Theoretical Solution
For this example the following values are used:

p = 1000 Ib/in (uniform axial load)

t = 0.1" (cylinder thickness)

E = 30E6 Ib/in? (Young's Modulus)

L = 12" (half length of cylinder)

r = 5" (cylinder radius)

o1 = p/t=1000/0.1 = 10000 psi

A, = pz/Et = (1000 *12) / 30E6 * 0.1 = 0.004 in

Autodesk Simulation Solution

The cylinder is modeled in FEA Editor as a cylindrical surface with a radius of 5" and length of 12". There are 4
elements along the length of the cylinder and 15 elements around the circumference. The cylinder is fully fixed at
the base and the axial force applied as linear point loads at each of the nodes at the free end. The nodal loads are
calculated as

Total load = 1000 Ib/in * 2 * © * 5 =31415.93 Ib
F/node = 31415.93 /15 = 2094.4 Ib
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The model is constructed using plate elements and with E and t as stated above. The stress result below is the Z
direction plate membrane stress from the Results environment.

Displacement
Z Component
in

0.0040031
0.0036028
0.0032025
0.0028022
0.0024019
0.0020016

0.0016012
0.0012009
0.00080062
0.00040031
0

Load Case: 1of 1

Minimum Value: 0 in

Maximum Value: 0.00400311 in

1 < Design Scenario 1 >

= @ 5]

<+

Figure 114-2. Inquiring on the Z displacement result at a node.

Stress
Tensor Z-Z

Ibfi(in"2)
10073.512
10073.511
10073.51
10073.509
10073.508
10073.507
10073.506
10073.506
10073.505
10073.504
10073.503

Load Case: 1 of 1

Maximum Value: 10073.5 Ibf/(in*2)
Minimum Value: 10073.5 Ibf/(in*2)

1 < Design Scenario 1>

= @ 5

R 2

Figure 114-3. Stress tensor display of Z-direction. plate membrane stress option is activated.

Table 114-1. Comparison of Results

Theory | Analysis | % Difference
z (in) | 0.004000 | 0.004003 0.07
| (psi) | 10000.0 | 10073.5 0.74
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AVE - 115 Thick-walled Cylinder under Centrifugal and Pressure Loading

Reference

Tuba, I. S., and Wright, W. B., ed. "ASME Pressure Vessel and Piping 1972 Computer Programs Verification",
ASME Publication 1-24, New York: The American Society of Mechanical Engineers, 1972.

Timoshenko, S. P., Strength of Materials, Third Edition, New York: Van Nostrand, 1955.
Problem Description

This verification example is a thick-walled cylinder with pressure and centrifugal force applied as two separate load
cases modeled using tetrahedral elements.

|
|
|
|
| p—=L 1 [ [ [ | 01"
|
|
|
|

Figure 115-1. FEA model of the cylinder with pressure loading.

Theoretical Solution

E =30 x 10° psi

v=03

p = 0.286 Ib/in® (weight density)

Structure Load Case 1: (centrifugal force) = 100 rad/sec
Structure Load Case 2: p = 3000 psi
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Autodesk Simulation Solution

This problem is the same as AVE - 109, which was modeled using brick elements. To generate the FEA model for
this problem, A quarter symmetry model was generated using Autodesk Fusion and the model was meshed in
Autodesk Simulation with an absolute mesh size of 0.1 in and a “All tetrahedral” mesh type was used. 2" order

elements were generated and midside nodes were activated. Symmetry boundary conditions wer applied to the cut
planes.

Load Case One was assigned a multiplier of 1 for the Pressure load, whereas Load Case Two was assigned a
multiplier of 1 for “Angular rotation” load.

Stress -0
Tensor R-R
Coordinate System 1
Ibf/(in"2)

1.6257

-300.14

-601.91

-903.67 AN RAVAY. e v

-1205.4 iﬁ'ﬁ",‘:ﬁ?‘g’

-1507.2 SNSRI

-1809 WAV i -
21107 A VAV

24125 1364,

'%123 2299.237

Load Case: 1of 2
Maximum Value: 1.62569 Ibf/(in*2)

Minimum Value: -3016.03 Ibf/(in*2) v¢x

1 < Design Scenario 1 >

Figure 115-2. Inquiring on radial stress results at a node for Load Case 1.

Table 115-1. Comparison of Results — Pressure Loading

Radius Or (‘_522 i O'theta_ (o11) _
Theory | Analysis | % Difference | Theory | Analysis | % Difference
1.1 -2305.79 | -2299.24 0.28 4305.79 | 4299.187 0.15
1.3 -1366.86 | -1364.57 0.17 3366.86 | 3366.20 0.02
15 -777.778 | -775.12 0.34 2777.78 | 2775.386 0.09
1.7 -384.083 | -385.79 0.44 2384.08 | 2385.367 0.05
1.9 -108.033 | -107.398 0.59 2108.03 | 2107.114 0.04
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Stress

Tensor Theta-Theta
Coordinate System 1

bf/(in"2)

25672
24211
22751
21.29

19.83

18.369
16.909
15.448
13.988
12,528
11.067

Load Case: 2 of 2
Maximum Value: 25.6716 Ibf/(in"2)
Minimum Value: 11.0671 Ibf/(in"2)

1 < Design Scenario 1 >

5% ;
K ZdVAve

v

TSN
) ‘V‘Aﬂ SN

A"A"’é

P

Figure 115-3. Inquiring on tangential stress results at a node for load case 2.

Table 115-2. Comparison of Results — Centrifugal Force

Radius Or (‘_522 i o'theta. (o11) _
Theory | Analysis | % Difference | Theory | Analysis | % Difference
1.1 1.47993 1.469 0.74 23.2561 | 22.982 1.18
1.3 2.88255 2.919 1.26 19.5418 | 19.348 0.99
15 2.97145 3.065 3.15 16.7559 | 16.655 0.60
1.7 2.21865 2.058 7.24 14.4264 | 14.286 0.97
1.9 0.861789 0.881 2.23 12.3157 | 12.261 0.44
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AVE - 116

AVE - 116 Weight, Center of Gravity and Mass Moment of Inertia Analysis
of a Solid Sphere

Reference

Ellis, R. and Gulick, D., Calculus with Analytic Geometry, New York: HBJ, 1978.

Problem Description

This example involves a weight, center of gravity and mass moment of inertia analysis of a solid spherical model
using tetrahedral elements. This example verifies the accuracy of the Mass Properties Analysis Processor for

tetrahedral elements.

A 1.0" radius solid sphere is analyzed for weight, center of gravity and mass moment of inertia. This problem is the
same as AVE - 40 where 2-D axisymmetric elements were used.

Figure 116-1. FEA model of the solid sphere.

Theoretical Solution

The mass moment of inertia equation for a solid sphere is given by the following:
I =8pnr° /15

Where:

e r=1.0"(sphere radius)
e p=7.3395E-4 Ib s¥in* (mass density)
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Autodesk Simulation Solution

The solid sphere is modeled with 17,572 10-node tetrahedral elements. In FEA Editor, the "Analysis : Weight and
Center of Gravity..." command was used to access the capability for analyzing the weight, center of gravity and
mass moment of inertia.

p
Weight and Center of Gra\rrty—

Model Information

A o= T

Volume ) 4.1133E+00 Weight {bf): 1.1667E+00

Center of Gravity {in): Mass Moment of Inertia {bf*s*in}: Mass Product of Ineria {bf*s*in).
¥c: -1.8583E-07 boc: 1.1967E-03 bey: 2.8679E-11
Yo: 1.8744E-07 yy: 1.1967E-03 bez: 4 9558E-10
Zc: -3.2292607 Izz: 1.1868E-03 yz: -4.9377E-10
[ Part | Volumefind | Weightbf) [ Xcn) |  Yoin) | Zebn) | boc@bfsTin) |y dbfs®in) | lez (bfs¥in) [ by (bFs¥in) | be (bfs®in) | vz (bfs¥in) )
1 < Unnamed > 41139E+00  1.1667E+00 | -1.8583E07 | 1.8744E07 | -32292E07 | 1.1967E-03 | 1.1967E-03 | 1.1868E-03 | 2.8679E-11 | 4.9558E-10 | -4.9377E-10

cou

Close

Figure 116-2. The ""Weight and Center of Gravity Calculation' window.

Table 116-1. Comparison of Results

Theory Analysis % Difference

Volume, V 4.19in’° 4.1139 in’° -1.8

Weight, W 1.1883 Ib 1.1667 Ib -1.8

X 0.00" -2.E-7" 0.0

Y. 0.00" 2E-7" 0.0

Z. 0.00" -3E-7" 0.0

Mass Moment of Inertia X axis | 1.23 E-3Ibs?in | 1.1967 E-3Ib 5% in -2.7
Mass Moment of Inertia Y axis | 1.23 E-3Ibs?in | 1.1967 E-3Ib 5% in -2.7
Mass Moment of Inertia Z axis | 1.23 E-3Ibs?in | 1.1868 E-3 Ib 5% in -3.5

The errors are due to the lost volume inherent in representing a sphere by a polyhedral shape with vertices on the
sphere surface. All volume between the flat surfaces and the sphere is missed. A finer surface mesh would reduce
the error.
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AVE - 117 Two Cantilever Beams Connected by a Tension-Only Element at
the Tip

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975.

Problem Description

Two 100" long cantilever beams connected by a 1" long tension-only cable at the free ends are subjected to a
concentrated load of 10 Ib at 20" from the tip. A tension-only gap element is used to find the tip deflection.

10Mb.
t 8- 20—y
B

; IED
Tension Only Cable

Figure 117-1. FEA model of the coupled cantilever beam with a tension-only gap element at the tip.

Theoretical Solution
The material properties for the beams are the following:

E = 1.0 * 10°psi (modulus of elasticity)
v =0.1 (Poisson's ratio)

Area=1in?

ly=1z=1.0in"

Sy = Sz =0.2 in* (S = section modulus)

Find the displacements at points A and B.

The analytical solution can be found as follows: The deflections at points A and B due to a unit load at point B are
the following:

PxL1®  10x80°

dBB = = =0.170667"
3xExl 3x1.0E6x1.0
2 2
dAB = dBB; 200 PXLL 170667 4 20:0%10x80° _ ) oas667
2xExI 2x1.0E6x1.0

3 3
daa= XL 10x1007 4 355440

3xEx| 3x1.0E6x1.0

dBA = dAB = -/234667"
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The global stiffness matrix for points A and B is given as the following:

_[dBB dBAT' [0.17667 0.234667| [ 183120 -128.917
" |dAB dAA| |0.234667 0.333333| |-128.917 93.758

After the gap element is activated, the stiffness contributed from the bottom beam is:

_3x ExI ~ 3x1.0E6x1.0

kAA
L 100°

=3.0 Ib/in

This needs to be added to the global stiffness matrix.

Therefore, the final solution is given as:

uB| [ 183120 -128.917] [10.0] [0.88065"
UA| |-128.917 96.758 0.0 | [1.17334"
The reaction in the gap element is:

R=3.0*1.17334=3.520 b

Autodesk Simulation Solution

One tension gap element (zero gap) was used to model the tension-only element at the tip. Stiffness value of 1.0E7
Ib/in was used for the gap element.

The results are:

e uB=0.8806"
e UA=1.1733"
e R=35201b

which match the analytical answer.
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Displacement
Magnitude
in

1173
1.056
0.9387
0.8213
0.704
0.5867
0.4693
0.352
0.2347
0.1173
0

Load Case: 1 of 1

Maximum Value: 1.

17333 in

Minimum Value: 0 in

1 < Design Scenario 1 >

/1.173334
]0880640

k

Figure 117-2. Inquiring on displacement results at point A and B.

Axial Force
Ibf

3.52
3.168
2816
2.464
2112
1.76
1.408
1.056
0.704
0.352
0

Load Case: 1 of 1

Maximum Value: 3.52 |bf
Minimum Value: 0 Ibf

1 < Design Scenario 1 >

/0.000000
13.520000

ke

Figure 117-3. Displaying the reaction forces in the gap element.

Table 117-1. Comparison of Results

Theory | Analysis | % Difference
uB (in) | 0.88065 | 0.8806 0.0
UA (in) | 1.17334 | 1.1733 0.0
R (Ib) 3.520 3.520 0.0
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AVE - 118 L-Shaped Pipe System Subjected to Temperature Load

Reference
No theoretical reference is needed for this problem.
Problem Description

An L-shaped pipe system with a 6.625" diameter and 0.280" wall thickness is subjected to a uniformly distributed
load of 15 Ib/in, a temperature increase of 120 °F, and gravity. Due to the interaction of the gravity, temperature
load, and the uniformly distributed load, only a portion of the pipe contacts the support. Ten zero-gap compression-
only gap elements are used to find the reactions.

This problem is modeled in two different ways: using beam and gap elements (Design Scenario 1) and using only
beam elements (Design Scenario 2).

w=15 Ibfin

I e i i s )
H 42 13 14 15 46 4F¥ 18 14

10@10"=100"

Euu

Figure 118-1. FEA model of the pipe system with gap elements and boundary conditions.
Theoretical Solution
The material properties for the pipe are:

e E=30.0*10° psi (modulus of elasticity)

e Thermal Expansion Coeff. = 6.5 * 10/ °F

e Area=558in’

e I,=1,=281in"

e S,=S,=850in’(S = section modulus)

Find the reactions on the top support.

Autodesk Simulation Solution

For Linear Static Stress Analysis, 10 zero-gap compression elements are used. The pipe system was modeled by the
beam element. Gravity and a uniformly distributed load on the horizontal beam elements were applied to give a

downward deflection which was countered by growth due to thermal expansion.

The results show that only the last two gap elements, 9 and 10, are in action, ending up open for gap elements 1 to 8
(i.e., no contact).

A separate run (Design Scenario 2) using two boundary elements at the corresponding locations was performed.
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Axial Force
Ibf
0
-171.2
-342.4
-513.7
-684.9
-856.1
-1027
-1199
-1370
-1541
-1712

Load Case: 1 of 1
Maximum Value: 6.98452e-010 Ibf
Minimum Value: -1712.21 Ibf

1 < Beam and gap elements >

k

Figure 118-2. Axial forces for the gap and beam element model.

Axial Force
Ibf
0
-171.2
-342.4
-513.7
-684.9
-856.1
-1027
-1199
-1370
-1541
-1712

Load Case: 1 of 1
Maximum Value: O Ibf
Minimum Value: -1712.21 Ibf

2 < Only beam elements >

Figure 118-3. Axial forces for the all beam element model.

Table 118-1. Comparison of Results

Support Location | 10 Gap Elements | 2 Boundary Elements
11-18 0.0
19 -1065.0 Ib -1065.0 Ib
20 -414.14 1b -414.14 1b
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AVE - 119 An Internally Pressurized Cylinder

Reference

Roark, R. J. and Young, W. C., Roark's Formulas for Stress and Strain, Fifth Edition, New York: McGraw-Hill,
1975.

Problem Description
This model represents a sector of an internally pressurized cylinder. The cylinder is free to expand along its axis. All

rotations are fixed as the expected results are only radial and axial displacements. Find the radial displacement and
hoop stress.

2 @ 5

Figure 119-1. FEA model of the sector of the composite shell cylinder.

Theoretical Solution

P = 1000 psi (applied pressure)

t=0.01" (wall thickness)

I =1.0" (cylinder length)

R =10.0" (cylinder radius)

E = 30.0 x 10° psi (modulus of elasticity)

Hoop Stress (for thin walled cylinders)
= Pressure * (Radius / Thickness)
=1000(10/0.1)
= 100,000 psi

Strain = Stress / Modulus
= 100,000 / 30E6
=0.0033333

Radial Displacement
= Radius * Strain
=10 *0.0033333
=0.033333"
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Autodesk Simulation Solution

A sector of an internally pressurized cylinder is modeled using both thin and thick composite elements. Three
different mesh densities are considered. The first used 4 elements; the second used 8, and the third used 16. (The
supplied archive file represents the 1 x 16 mesh for the thin composite elements.)

The following table shows good agreement between the analysis and the theoretical results. Also, as the mesh is
refined, the analysis results approach the theoretical values. This shows convergence of the results with increasing
mesh density.

Displacement
Y Component
in

0.033293
0.029964

0.026635
0.023305
0.019976
0.016647
0.013317
0.009988
0.0066587
0.0033293
0

Load Case: 1 of 1
Maximum Value: 0.0332833 in

Minimum Value: 0 in [0.033293 :a

1 < Design Scenario 1 > Y

Figure 119-2. Inquiring on the Y displacement results at a node for the 1 x 16 mesh of thin composite
elements.

Stress
Local 1-1 ’
Ibf/{in~2)
99880 ‘
99880 Pt Doy Opions
99880 P
99880 :

99880 .
99880 ol Ittt

99880
99880 \}’\\

99880 \ —_
99880 =
99880

Load Case: 1 of 1

Maximum Value: 99879.6 Ibf/(in*2) %\
Minimum Value: 99879.5 Ibf/(in"2) \g\i
1 < Design Scenario 1 > I

Figure 119-3. Hoop stress results for the 1 x 16 mesh of thin composite elements.
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In Figure 119-3 the result contour is presented in the Local Coordinate system. “Plate Display Option : Membrane
Stress/Strain” and “Element Orientation : Element Axis 1” are activated.

Table 119-1. Comparison of Results

Element Mesh density Radial % Stress %
Type Displacement (in) | Difference (psi) Difference
Thin 1 x 4 Mesh 0.0327 1.90 98,085.1 1.91

Composite 1 x 8 Mesh 0.03317 0.49 99,508.3 0.49
1 x 16 Mesh 0.033293 0.12 99,879.6 0.12

Thick 1 x 4 Mesh 0.03269 1.93 98,078.6 1.92
Composite 1 x 8 Mesh 0.03317 0.49 99,518.5 0.48
1 x 16 Mesh 0.033293 0.12 99,879.6 0.12
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AVE - 120 Simply Supported Square Laminate Subjected to a Uniform
Pressure Load

Reference

Noor, A. K. and Mathers, M. D., "Shear Flexible Finite Element Models of Laminated Composite Plates and
Shells", NASA TN D-8044, 1975.

Problem Description

A simply supported square laminate (T,,R,) (10" x 10") is subjected to a uniform lateral pressure. The laminate
material is comprised of 9 different lamina (layers). Due to model symmetry, a quarter sector was modeled with
symmetric boundary conditions.

b
1u|l

T Pressure=100psi

21 25 10" I‘

L 16 Odd byer: 0.4t 07
Ewen Layer: 0125t od”
E11+=40.0E6psi

1 4 X Ez2-1.0EGpsi

i 5 G12=0.6E6psi
G13=0.6E6psi
G23=05E6psi

Figure 120-1. Quarter symmetric FEA model of the composite laminate plate.

Find the central laminate maximum deflection.
Autodesk Simulation Solution

This problem is modeled both as thin and thick composite elements. Two different laminate thicknesses and three
different mesh densities are considered.

The model was analyzed with three different grid refinements and two thicknesses. The grid refinements were 1 x 1,
2 x 2, and 4 x 4 element meshes. The plate thicknesses used were 0.01" and 0.1". Both the thin and thick composite
elements were used to model the plate.

The supplied model archive file represents the 4 x 4 mesh for the thin composite elements of 0.01" thickness with 10
psi applied over a model area of 25 square inches. This is a linear small deformation analysis, though the numbers
call for a large deformation non-linear analysis. However, even though the calculated displacement is hundreds of
inches and the stress is about 9 million psi, the small deformation analysis result can be reasonably checked against
small deformation theory, since both are completely scalable with respect to loading. If the pressure were reduced by
a factor of 1.0E-4 to 0.001 psi, the displacement and stress would be reduced by exactly the same factor. That would
be a more appropriate size of load to be supported by what is something like a sheet of paper in bending.
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Displacement
Magnitude
in
44712
402.4
357.69
31298
268.27
223.56
178.85
134.13
89.423
44712
0

Load Case: 1 of 1 l v
Maximum Value: 447.116 in
Minimum Value: 0 in k

. 4
1 < Design Scenario 1 >

Figure 120-2. Inquiring on displacement results at the central node of the quarter-symmetry model. The 4x4
mesh of thin composite elements with thickness of 0.01 is shown.

Table 120-1. Comparison of Results

. Central Deflection (in) .
Description Theory Analysis % Difference
1x1 Mesh, t =0.01 447 417.0 6.8
2x2 Mesh, t =0.01 447 446.0 0.3
Thin Laminate 4x4 Mesh, t = 0.01 447 447.12 0.03
1x1 Mesh,t=0.1 0.459 0.417 9.2
2x2 Mesh, t = 0.1 0.459 0.446 2.8
4x4 Mesh,t=0.1 0.459 0.447 2.6
1x1 Mesh, t =0.01 447 323.0 27.8
Sandwich | 2x2 Mesh, t =0.01 447 428.0 4.3
(T?Qn:\\lllecrsepshneear 4x4 Mesh, t=0.01 | 447 443.0 0.9
deflections in 1 ply only) 1x1 Mesh, t=0.1 0.459 0.351 23.6
2x2 Mesh, t = 0.1 0.459 0.446 2.8
4x4 Mesh, t=0.1 0.459 0.459 0.0

The table above shows a good correlation between the analysis and the predicted values. The mesh refinement
demonstrates the convergence of solutions for both element types with increasing mesh. The thin composite finer
mesh is closer to theory for the thinner examples, and the thick composite finer mesh is closer to theory for the
thicker examples, as should be expected.
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AVE - 121 Clamped Circular Plate with a Point Load

Reference
Reddy, J. N., Energy and Variational Methods in Applied Mechanics, New York: John Wiley and Sons, Inc., 1984.
Problem Description

A thick circular plate, 2" thick with a radius of 5", is subjected to a center point load of 4 Ib. Due to the symmetric
nature of this problem, a quarter-symmetry section was modeled with symmetry boundary conditions.

Find displacements at various points along the plate radius.

Figure 121-1. Quarter-symmetric FEA model of the thick shell composite circular plate.

Theoretical Solution

The analytic solution for the deflections is:

lama P AR ) (o 5

Where:

w = lateral deflection

P =4 1b (point load)

R = 5" (plate radius)

D = plate bending constant [(E * h®) / (12 * (1 - v?))]
E = modulus of elasticity (E11 = E22 = 10 EG6 psi)

v =0.3 (Poisson's Ratio)

h =2.0" (plate thickness)

G=E/[2(1+v)] (shear modulus)

K = shear correction factor ( K? = 5/6 )
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Autodesk Simulation Solution

For analysis with the Linear Static Stress Analysis processor, 20 thick composite elements were used to model the
quarter plate. These elements include a transverse shear deflection for the core layer. A small hole of radius 0.001"
is located at the center of the plate in order to maintain four-noded plates at the center. The point load is distributed
over the five nodes at this radius.

Displacement
Magnitude
in

8.5189e-007
7.667e-007

6.8151e-007
5.9633e-007
5.1114e-007
4.2595e-007
3.4076e-007
2.5557e-007
1.7038e-007
8.5189e-008
0

8.519e-007

Load Case: 1 of 1

Maximum Value: 8.51893e-007 in
Minimum Value: 0 in ﬁ
1 < Design Scenario 1 >

Figure 121-2. Inquiring on the displacement results at a node.

Table 121-1. Comparison of Results

pr[Reflection (iNXE-7) | puceeonce
Theory | Analysis

0.0002 | 11.174 8.519 23.8
0.02 6.5911 5.926 10.1
0.20 3.8557 3.690 4.3
0.44 2.1419 2.035 5.0
0.70 | 0.78996 0.7404 6.3
1.00 0.0 0.0 0.0

The above table shows good agreement between the analysis results and the theoretical ones. The analysis results do
not correspond as closely to the theoretical results at the plate center because the theoretical equation has a
singularity at that location.
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AVE - 122 Large Deformation and Large Strain for a Rubber Sheet

Reference

Iding, R. H., Identification of Nonlinear Materials by Finite Element Methods, SESM Report No. 73-4, Berkeley:
Department of Civil Engineering, University of California, January 1973.

Problem Description
A 0.125" thick, bell-shaped rubber sheet is subjected to a uniformly distributed load of 111.493 psi at the end

surface. The rubber material is assumed to be a Mooney-Rivlin type with the material constants C1 = 21.605 psi and
C2 = 15.7465 psi.

\/ 11.11in

H\\\“«H —
=t =
g8.892in —

3.0in

Figure 122-1. FEA model of a rubber sheet under pressure loading.

Theoretical Solution
The following values were used for the analytical solution:

Thickness = 0.125 in
p = 111.493 psi

Autodesk Simulation Solution
Because the sheet is symmetrical, only half of it is modeled using 33 plane stress elements (4-node 2-D continuum)

with "incompressible elastic (Mooney-Rivlin)" material properties. The total number of nodes is 48. The final
solution was obtained in 4 equal load steps. Total Lagrangian formulation and 2 *2 integration points were used.
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Figure 122-2. Node and element numbering in the FEA model.

Displacement
Y Component
in
5.6
5.04
4.48
3.92
3.36
2.8
2.24
1.68
112
0.56

0

Time: 3s

Time Step: 30f4

Maximum Value: 5.60009 in

Minimum Value: 0 in

1 < Design Scenario 1 >

15.599405

z

L.

Figure 122-3. Inquiring on Y-displacement results at node 24 for load case 3.

Table 122-1. Comparison of Results

Step | Load (psi) Displacement (inches) at Load End (I\!ode 12) % Difference
Theory Analysis
1 27.873 1.26 1.281 1.67
2 55.747 3.17 3.075 3.00
3 83.620 5.57 5.599 0.52
4 111.493 8.31 8.974 7.99

Note: The theory data were measured from the figure in the published paper.
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AVE - 123 Plastic Analysis of a Thick-walled Cylinder

Reference

Hodge, P. G. and White, G. H., "A Quantitative Comparison of Flow and Deformation Theories of Plasticity."
Journal of Applied Mechanics, 17 (1950) 180-184.

Problem Description
A thick-walled hollow cylinder with an inner radius of 1" and an outer radius of 2" was subjected to internal

pressure that varied with time. The material of the cylinder was assumed to obey the von Mises yield condition with
an equivalent uniaxial yielding stress of 17.32 psi.

Elastic-partectly Ua

#* =122 23

plastic matarial

won Mizes yleld condition

P (psi)

Figure 123-1. Thick-walled cylinder.

Theoretical Solution
The following values were used for the analytical solution:

outside diameter = 4.0 in

inside diameter = 2.0 in

E =86666.0 psi (modulus of elasticity)
v = 0.3 (Poisson's ratio)

Sy =17.32 psi (yield stress)
G=E/2(v+1) =33333 psi

Autodesk Simulation Solution

Because the cylinder is axisymmetrical, only one sector of it with a one radian angle was modeled using four
axisymmetric elements (8-node 2-D continuum). There are 23 nodes in the model. The uniformly distributed
pressure was added in FEA Editor as a surface load to element 1. There were 20 load steps used for the solution, and
results were printed at every fourth load step. Since displacements and strains were small, the analysis of the
cylinder was carried out using the materially nonlinear-only formulation with a 2 *2 integration scheme.
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Displacement

Magnitude
in

0.00048536
0.00046211
0.00043885
0.0004156
0.00039234
0.00036909
0.00034583
0.00032258
0.00029932
0.00027607
0.00025281

Time: 205

Time Step: 50f 5
Maximum Value: 0.000485363 in
Minimum Value: 0.000252812 in

1 < Design Scenario 1>

= @ 5]

0.000293

L.

Figure 123-2. Inquiring on the displacement results at node 14 for Time step 5.

Stress
Tensor Z-Z
Ibf(in"2)

2.8632
25032
21432
1.7832
1.4232
1.0633
0.70328
0.3433
-0.01668
-0.37666
-0.73664

Time: 16 s

Time Step: 4 0of 5
Maximum Value: 2.86316 Ibf/(in"2)
Minimum Value: -0.7366389 Ibf/(in"2)

1 < Design Scenario 1 >

2.110700

= @ 5]

L.

AVE - 123

Figure 123-3. Inquiring on the stress tensor results in the Z direction at node 23 for Time step 4.

Table 123-1. Radial Displacement Results

The radial displacements (Ua) on the outer surface of cylinder (Y-displacement at nodes 9, 14, 23)
Time Step Pressure (psi) Ua (10E-4 In) 2*G*Ua (Ib/In)
1 9.0 1.275 8.500
2 11.0 1.716 11.44
3 12.0 2.074 13.83
4 12.5 2.314 15.43
5 13.0 2.664 17.76

Accuracy Verification Examples Manual, Version 2014

374



AVE - 123

zZa .
— —&—— FEA solutlon
- Hodge and white
=
B e L
= Material nonlinear only
B with stiffness matrix
| reformed each step
L=}
-1 4 = 1z 1= jrin] 4 2=
2303 (oA
Figure 123-4. Comparison of Results.
Thickne== (In}
1s =]

-10
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T = Tangential stras=mes (SIg-+H,psl)

R = Radial Stres=mes (Slg-'v B}

A om AxlEl Stresses (SIg-Z2,psl)

a —
z
Eal mrA=tarial nonlinearty only
=]
FEA soiutien
— e
1.z zo
Hodge and white
-2 Thickness (ny

Figure 123-5. Elastic-plastic stress distribution through thickness of thick-walled cylinder at p = 12.5 psi.
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AVE - 124 Static Large Displacement Analysis of a Spherical Shell

Reference

Stricklin, J. A., "Geometrically Nonlinear Static and Dynamic Analysis of Shells of Revolution”, High Speed
Computing of Elastic Structures, Proceedings of the Symposium of IUTAM, University of Liege, August 1970.

Mescall, J. F., "Large Deflections of Spherical Shells Under Concentrated Loads", Journal of Applied Mechanics, 32
(1965): 936-938.

Problem Description
A spherical shell, 0.01576" thick, was subjected to a concentrated apex load up to 100 Ib. The material was assumed
to be isotropic, but the shell may experience a large displacement. Young's modulus = 1.0E+09 psi and Poisson's

ratio = 0.3 were assumed. The deflection at the apex of the shell will be determined.

R

|

| L=1.800155 In |

Figure 124-1. Axisymmetric FEA model of a spherical shell.

Theoretical Solution

The following values were used for the analytical solution:

Radius of Shell =4.76 in.
Young's Modulus = 1.0E+7 psi
Poisson's Ratio =0.3

Thickness of Shell =0.01576 in.
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Autodesk Simulation Solution

The shell is axisymmetrical, therefore 10 axisymmetric elements (8-node 2-D continuum) were used. There were 53
nodes in the model. The total load of 100 Ib was applied to a node over 25 time steps. A 2 *2 integration scheme and
Updated Lagrangian formulation was used. Element stiffness was reformed in every time step.

Force applied to a node on 2D axisymmetric model = 100 Ibf /(2x) = 15.9155 Ibf/radian

Displacement
Magnitude
in
0.17245
0.1552
0.13796
0.12071
0.10347
0.086224
0.068979 1 S I—
0.051734 e =

0.03449 - S
0.017245 : %
0 0.172429

Time: 200 s
Time Step: 25 of 25

Maximum Value: 0.172448 in
z

Minimum Value: 0 in l
Y

1 < Design Scenario 1 >

Figure 124-2. Inquiring on the displacement results at point A for time step 25/25.

Displacement Z Component (21) (in)

-0.02
-0.04 4
-0.06

-0.08

0124
014

-0.16

OA8—4 L L L
20 40 60 80 100 120 140 160 160 200

Time (s)

Figure 124-3. Z Displacements at Point A
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—F— Results from Ref 1

Linear solutlon

F (lbs)

T.L. nonlinear solutlon

(Mo equillorium Iteratiom)
20

Z-deflection at polnt & (I

Figure 124-4. Comparison of Results
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AVE - 125 Static Analysis of a Simply Supported Plate

Reference

Volterra, E. and Gaines, J. H., Advanced Strength of Materials, Prentice-Hall, Englewood Cliffs, NJ: 1971.
Problem Description

A simply supported, 1.0" thick plate was subjected to a concentrated load of 40 Ib applied at the center. The material
was assumed to be isotropic with Young's Modulus = 30000 psi and Poisson's Ratio = 0.25. Only the small

displacement was considered. The deflection at the plate center was to be determined. Note that this problem is
similar to AVE - 69 by design with a different loading condition.

Loading on 174 plate

1018

Figure 125-1. FEA model of a simply supported plate.

Theoretical Solution
The following values were used for the analytical solution:

e Thickness=1.0in
e Poisson's Ratio = 0.25
e E =30000 psi (Young's Modulus)

Ib sec?

in*

e p=0.0003

Autodesk Simulation Solution

Because the plate is symmetrical, only a quarter of it was modeled. Four elements (20-noded Brick elements), 51
nodes, and a 2*2*2 integration scheme were used.

You should note that the finite element model was rather coarse, yet the results are fairly close to theoretical, due to
the midside nodes being used on all element edges.
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Displacement =
Magnitude
in

0.37051

0.33346
0.29641
0.25936
0.22231
0.18527
0.14822
0.11117
0.074117

0.037068

1.859e-005

Time: 0.1 s

Time Step: 1 of 1

Maximum Value: 0.370512 in
Minimum Value: 1.85898e-005 in i
1 < Design Scenario 1 >

Figure 125-2. Inquiring on displacement results at the center node.

Note that 2 mirror planes were activated in the above figure to show the full model

Table 125-1. Comparison of Results

Deflection at the center n_ode 9% Difference
Theory Analysis

0.3684 0.3688 0.11
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AVE - 126 Natural Frequencies for a Simply Supported Plate

Reference

Young, Warren C., Roark's Formulas for Stress and Strain, Sixth Edition, McGraw-Hill Book Company, New
York: 1989, 717.

Problem Description

The geometric and material properties for this plate are identical to those in AVE - 129. Three natural frequencies
were determined.

Figure 126-1. FEA model of a simply supported plate.

Theoretical Solution

The analytical solution from Kirchhoff plate theory is as follows.

f(Hz)=1.5708x \/(Ej(p—;”—g
m i a b

Where:

~ (cycles
e f=natural frequencies
Sec

Eh®

T k-

e E =30000 psi (Young's Modulus)
e h=1.0in (thickness of plate)
e v =0.25 (Poisson's Ratio)
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e a =60 in (width of plate)
e b =40in (height of plate)
e p,n =math number

1 .
.+ T=osec (period)
e m= 0.72 Ib*s¥in (mass of the plate)
Autodesk Simulation Solution

Because the plate geometry and boundary conditions were symmetrical, only a quarter of the plate needed to be
modeled for the static analysis AVE - 129 and the dynamic analysis AVE - 131. The same mesh is used for this
modal analysis. However, the use of symmetry to decrease model size restricts the mode shapes that can be found to
those having the same symmetry as the model. Therefore, antisymmetric modes are predictably missed by this
particular analysis. Four elements (20-noded Brick elements), 51 nodes, and a 2*2*2 integration scheme were used.
Two separate analyses, one with consistent masses and the other with lumped masses, were performed. Only the
input model database for consistent masses is included with the software, but it is easy in the "Analysis Parameters"
screen to change to a lumped mass analysis.

& Resuts - [aveld] : AVE] oG- | @ Results - [aveldl : AVE] o |[@ |52 | @ Resubs - [aveldl : AVE] o |[EB[=

Mode: 10of3

Frequency: 4.17304 cycles/s
Maximum Value: Not Available

Minimum Value: Not Available

1 < Design Scenario 1 > 1(_

Mode: 20of3
Frequency: 14.0069 cycles/s
Maximum Value: Not Available

Minimum Value: Not Available

1 < Design Scenario 1 > 1‘.':

Mode: 30of3
Frequency: 25.9836 cycles/s
Maximum Value: Not Available

Minimum Value: Not Available

1 < Design Scenario 1>

k

Figure 126-2. Displaying the frequency for the first 3 modes.

The period is the reciprocal of the frequency (1/4.1662 for mode 1). Note that the finite element model was rather
coarse and high accuracy in the model could not be expected. With more elements the accuracy would improve

substantially.

Table 126-1. Comparison of Results

Mode Vibration Period (sec) Vibration Period (sec)
Analysis % Difference . % Difference
Number | Theory (Consistent) Analysis (Lumped)
1 0.2365 0.2396 1.31 0.2396 1.31
2 0.0683 0.0714 4.54 0.0714 4.54
3 0.0362 0.0385 6.35 0.0385 6.35
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AVE - 127 Dynamic Analysis of a Simply Supported Plate under
Concentrated Load

Reference

Volterra, E. and Gaines, J. H., Advanced Strength of Materials, Prentice-Hall, Englewood Cliffs, NJ, 1971.
Problem Description

A simply supported, 1.0" thick plate was subjected to a concentrated load of 40 Ib applied at the center. The material

was assumed to be isotropic. (The geometric and material properties for this plate are identical to those in AVE -
130.) The dynamic displacement at the point of applied load until time = 0.3 sec was to be determined.

Loading on 174 plate

1018

Figure 127-1. FEA model of a simply supported plate.

Theoretical Solution
The following values were used for the analytical solution:

e Thickness=1.0in
e Poisson's Ratio = 0.25
e E =30000 psi (Young's Modulus)

Ib sec?

in*

e p=0.0003
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Autodesk Simulation Solution

Because the plate is symmetrical, only a quarter of it was modeled. The previous form of this model did not include
midside nodes through the thickness; therefore there are now 9 more nodes, and flexibility, displacements, and
period are somewhat increased compared to the previous results. Four elements (20-noded Brick elements), 51
nodes, and 2 *2 *2 integration scheme were used. Only the response with consistent masses was considered.

0 @ _Displacemert Z Component (17) (m)

014

o024

03+

044

054

064

i = L [ L L L L

Displacement
Z Component
in
0.0001737
-0.027793
-0.05576
-0.083726
-0.11169
-0.13966
-0.16763
-0.19559
-0.22356
-0.25153
-0.27949

<
N

T

Time: 0.3 s

Time Step: 30 of 30

Maximum Value: 0.000173699 in

Minimum Value: -0.279494 in 2:

1 < Design Scenario 1 >

Figure 127-3. Inquiring on the displacement results at the center node for the last step.

Note that 2 mirror planes were activated in the above figure to show the full model
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AVE - 128 Wall with Internal Heat Generation

Reference

Holman, J. P., Heat Transfer, Third Edition, New York: McGraw-Hill, 1981.

Problem Description

A plane wall 40" thick has a distributed internal heat generation of 1 BTU / in® hr. The temperature distribution

inside the wall is desired. The conductivity of the material is 0.5 BTU / hr in °F. The external temperature is held at
70 °F.

<>
e

o

Figure 128-1. Thermal FEA model of the wall with internal heat generation.

Theoretical Solution

q=1BTU/in®hr
K=05BTU/inhr°F

t =40 in (wall thickness)
Tw = 70°F

It can be shown (by using an offset with the steady state terms of the formula for AVE - 58) that the temperature is a
parabolic function of distance and that the maximum temperature is at the midplane, and that this maximum
temperature is 470°.

Autodesk Simulation Solution
Taking advantage of symmetry, only half the thickness of the wall needs to be analyzed. At the center, the derivative
of temperature with respect to thickness is 0, which means that the midplane can be treated as an insulated surface.

Four temperature boundary elements are used to maintain a temperature of 70°F at the outside of the wall. A
stiffness of 10,000 BTU/(F.hr) is used. (This is equivalent to the stiffness of a boundary element in a stress analysis.)
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Temperature

°F
470
430
390
350
310
270
230
190
150
110
70

Load Case: 1 of 1
Maximum Value: 470.001 °F
Minimum Value: 70.0005 °F

1 < Design Scenario 1 >

Figure 128-2. Inquiring on temperature results at a node.

Note that 1 mirror plane was activated in the above figure to show the full model

Table 128-1. Comparison of Results

Maximum Temperature (°F)

Theory

Analysis

% Difference

470

470

0.0
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AVE - 129 DDAM Shock Analysis of Heavy Equipment Mounted on the
Deck of a Surface Ship

Reference

Belsheim, R. O. and O'Hara, G. J., "Shock Design of Shipboard Equipment: Dynamic Design-Analysis Method",
Naval Ship Systems Command, Department of Navy, Washington, D.C., NAVSHIPS 250-423-30, May 1961.

Problem Description

Consider a piece of previously shock-tested equipment that weighs 20,000 Ibs. It is deck mounted on a surface ship
and a design check of a proposed foundation is to be made for the elastic-plastic category in the athwartship
direction. Assume that, the equipment can be considered to be a rigid body, but because of unsymmetrical
foundation stiffness and location of the center of gravity that the system rotates as it translates (see Figure 129-1).
Then a system of two degrees of freedom will be used to check the foundations. Figure 129-2 is the system under
consideration and shows its schematic model for shock design purposes.

144"

0"

-@- C.G.

, N e

Figure 129-1. Rigid equipment.

go"
| 30" 30" |
| |
T i
(L (_/
K.I M'I M2 K2

Figure 129-2. Considered system.
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Theoretical Solution

First the moment of inertia I, of the equipment was found about the center of gravity. Since only unidirectional
motion is being considered, the "rigid” equipment was then divided into two equal masses that were located about

the center of gravity such that Z:Midi2 =l,, where d; is the distance to the mass center from the center of
i

gravity. Assume this is 30 inches. Then if the spring constants for the left and right hand foundations are,
K, =1.3x10°Ibs/in and K, =3.9x10° Ibs/in, the normal node equations become:

x,| 107 ?[0.336539 0.176282] [1 0] [x,
x,| 386 |0.176282 0.194088| |0 1| |x,

This matrix equation has two solutions:

Model Mode 2

w; = 84753 ®; =513393

o, = 291.123 rad/sec ®, = 716.514 rad/sec
f, =46.3cps f, =114.0 cps

X, =1.0 X, =10

X,, = 0.674506 X,, =—1.482584

The procedure outlined previously, along with that in the reference, is now followed.

Table 129-1. Mode 1 — Analysis Table
Mass M; Xiy M;X;, M5 | MiX;,P,D,
1 25.906736 1.0 25.906736 | 25.906736 69054 Ibs
2 25.906736 | 0.674506 | 17.474249 | 11.786486 46577 Ibs

2. | 43.380985 | 37.693222

~  43.360985

' 37.693222

W, = % x 43.380985x1.150895 =19.272 kips

=1.150896
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The reference equations provide

A, =27.798¢
V,, =37.123in/sec

From Table V:

Now

A, =04A,=11119¢g
V, =0.2V, =7.425Iin/sec

A.g = 4292 in/sec?

V, o, = 2162 in/sec?

The lesser of these two values is V,®,, but this is less than 2316 in/sec’ so D, = 2316

AVE - 129

To complete the table, please notice that D,P, = 2665.475, and proceed with column M X, P,D, to find the
forces applied to each mass.

The displacement at each mass is:

2

2

Accuracy Verification Examples Manual, Version 2014

Ay = XllDzlP1 _10x 2665.?75 _3145x10°2
(N 291.123
A, = x21D2lPl _ 0.674506 x 26?5.475 9 121x10°2
O, 291.123
Table 129-2. Mode 2 — Analysis Table
Mass M; Xy M;X;, Mxi | MX;,PD,
1 25.906736 1.0 25.906736 | 25.906736 | -31794 lbs
2 25.906736 | -1.482584 | -38.408912 | 56.944438 47138 lbs
2 | 12502176 | 82.851174
—12.5021765 _ _0.150899
82.851174
386 .
——— x(~0.150899)x (- 12.502176) = 0.728 kips
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A,, =107.490g

The reference equations provide ]
V,, =56.754 in/sec

A, =04A, =42.996g

Using the factors of Table V produces ]
V, =0.2V, =11.351in/sec

A,g = 16596 in/sec?

Then Dy is the lesser of ]
V,w, = 8133in/sec®

Then D, = 8133 in/sec?. Since it is greater than 2316 in/sec?, it becomes the Shock Design Value. Then
D zﬁz = —1227.262 and the modal analysis table for mode 2 can be completed.

_ x,DiPy _1.0x(-1227.262)

A, : = -2.390x10°°
. _ o) 716.514
The displacement at each mass is: D.p 1.482584 ( 1227 262)
A, = X22 < LEA L = — =3.544x107°
w3 716.514

The forces found by this method are used to design check the foundations. After the stresses in each mode for each
of the foundations are found they are combined by the method in the later section.

Autodesk Simulation Solution

DDAM (Dynamic Design Analysis Method) is a restart analysis processor that calculates a combination of peak
responses of given spectra through all considered frequency modes calculated by a previous modal analysis on the
model. The user selects shock spectra based on ship type, mounting method, material type, and direction. The Naval
Research Laboratory (NRL) combination method is used to determine the resultant response. By default, shock
spectra are calculated using unclassified equations and coefficient that are "hard coded" into the DDAM application.
It is also possible for the user to define the shock spectra using an ASCII format input file. A sample copy of this file
is provided with the software. It can have an arbitrary name, but the provided file is called DDAM.DEF. This ASCII
definition file can also be used to avoid the default English (inch based) units system.

A DDAM model that is equivalent to the example is shown in Figure 129-3:

mi=0 m2=25 907 m3=25.907 M4=L

z L3 - - LS L L]

iy (03] [(Wk]] (Li3)
i1

Figure 129-3. Model of the DDAM system.
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Three massless beams were used for the structure with two lumped masses of 10,000/386 added at the appropriate
locations. (Note: Although the modal analysis defaults to a gravity constant of 386.4, the gravity value for DDAM
can be set to 386.0 to match the hand calculation.) Because the rigidity of the structure is not part of the hand
solution, the beam element properties were made "rigid" (A=100, 1,=1,=1000, E=12x10'%). The end nodes were
fixed in X and Y translation and Y and Z rotation, while node 1 and node 4 are constrained by elastic boundary
elements in the Z direction. Ty and Tx might be considered too but they will not make too much different because
the model is a one-dimensional problem. The DDAM analysis gives:

[0)
Mode | Frequency % R;a-l;gtal Participation | Direction
1 46.3 96.36 7.0659 Z
2 114.0 3.64 -1.3737 Z

Note that all participation factors in Rx get dropped because they are too small (relative values to the maximum
participation factor are less than 10°). The eigenvector sets from the modal analysis are different from the ones used
in hand calculations above. The ones DDAM gets from the modal analysis are normalized by mass matrix, i.e.,

generalized mass is unit, X;I\/IXQ =1. So the participation factors in DDAM are different from what are used in
hand calculations too. In fact participation factors, P, is calculated by

i M iiia
— =l
i=1

If we replace the eigenvector X, by Y, = s* X,, then P, will vary by 1/s, too. But since the responses are calculated
by multiplying the participation factor by the design value times the eigenvector, the scale s will cancel 1/s from the
participation factor in Y. So the response should be same even though the eigenvector scale is different.

o

=0 B

Displacement
Magnitude
in
0.040663
0.036597
0.032531
0.028464
0.024398
0.020332
0.016265
0.012199 ;
0.0081327 — , .
0.0040663 ) M“hw——é

0

Load Case: 1of 2
Frequency: 46.3018 cycles/s

Maximum Value: 0.0406633 in

Minimum Value: 0 in I
Y

2 < Design Scenario 2 >

Figure 129-4. Displacement results for mode 1.

Where {U1, U2, U3, U4},-, = {0.0406, 0.0315, 0.0212, 0.0161}.
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Displacement

Magnitude
in

0.0077289
0.0069561
0.0061832
0.0054103
0.0046374
0.0038645
0.0030916
0.0023187
0.0015458
0.00077289
0

Load Case: 20f 2

Minimum Value: 0 in

2 < Design Scenario 2 >

0.00355 N

i 10.00239

Frequency: 113.997 cycles/s

Maximum Value: 0.00772895 in

Figure 129-5. Displacement results for mode 2.

Where {U1, U2, U3, U4},-, = {-0.00773, -0.00239, 0.00355, 0.00651}.

Table 129-3. Comparison of Results

Mode | Value | Theory | Analysis | % Difference
1 Ap 0.03145 0.0315 0.16
1 Axn 0.02121 0.0212 -0.05
2 A | -2.39E-3 | -0.00239 0.0
2 Ay | 3.544E-3 | 0.00355 0.17

Accuracy Verification Examples Manual, Version 2014
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AVE - 130 DDAM Shock Analysis of a Ship's Rudder System

Reference

"Shock Design Criteria for Surface Ships", Naval Sea Systems Command, NAVSEA 0908-LP-000-3010, Rev. 1,
Appendix |, May 1976.

Problem Description

The rudder system of a surface ship is supported vertically at the deck level by the upper bearing housing (see
Figure 130-1). The rudder is secured to the rudder stock by the carrier key. This means that the flexibilities to be
considered are in the bearing housing and foundation, the rudder stock and the rudder carrier key. Hence, the system
can be modeled as an elastic mass-spring system shown in Figure 130-2.

ARRIER RiMG RETAINER
CARRIER RING
UPPER BEARZING

18- ﬂ‘f DA, BOLTS

18-1%4" o1a BolTS

- N
RubpE R
STock
DECK y \—/@ ¢ 1Bl BolTs

Figure 130-1. Diagram of the vertical rudder system. Figure 130-2. 3-mass, vertical rudder system.
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Theoretical Solution

The mass assignments are as follows. For the spring-mass system shown in Figure 130-2, mass 1 includes:

Table 130-1. Weight of mass 1.

Mass 1 Weight (Iby)
Crosshead 5,200
Upper bearing 500

Y Foundation (upper bearing) | 315

Carrier ring, retainer and seal 143

Upper bearing housing 1785
Upper ¥z of rudder stock 7413
Total | 15,356

Converting to mass units,
M, = 15,356 / 386.4 = 39.742 Ib; sec’ / in

Mass 2 is the rudder stock (lower half), which weighs 7,413 Ibs. Hence,
M, = 7,413/ 386.4 = 19.185 Ib; sec’/ in

Finally, mass 3 includes the rudder and rudder hub casting, which weighs 11,500 Ib;. Therefore,
M;= 11,500 / 386.4 = 29.762 Ib; sec®/ in

The total model weight is 34,269 Ibs.

Stiffness K; comes from serial combination of the upper bearing housing stiffness Ky and the foundation stiffness

] AE
Kk so that, since K = 0

_ 0.7845(31% —23.623? )x30x10°
11.25

K, =592.61x10° b/ in

« _ [0.7845(30° ~28.57)+ (0.75x 4x18))(30x10°)
-

= 491.64x10° Ib;/in
7.5

« __ 1 KxK, _59261x49164
YTUK, UK, K, +K,  592.61+491.64

= 268.72x10° I, / in
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Stiffness K, is for the rudder stock so that,

_ Average AreaxE  300.835(30x10°)

2

Length

140

=64.46x10° Ib,/in

AVE - 130

Stiffness K comes from the carrier key, which is a parallel combination of the stock stiffness and the casting
stiffness on the left side (K. ) and the right side (Kg) so that,

L

4.625

~39.075(12x10°)
" 4625

K3= K+ Kg=90.03x10° + 101.38x10° = 191.41x10° Ib; / in

Then, using the following definition of the ship:

Ship type: surface
Shock direction: vertical
Input: deck mount
Material: elastic

Final results are obtained from the reference as:

Mode 1

Frequency: m; = 965.814 rad/sec, f; = 153.75 cps

Participation Factor P, = 1.18603

6
_3472x107) _ o 53108 Ib/ in

=101.38x10° Ib; / in

Modal Effective Mass M; = 63.5876, 71.6238% of total mass

Modal Effective Weight W, = 24.5448 Kips

Table 130-2. Results for Mode 1.

Mass M; Displacement (in) Force (Ibs)
1 39.752 2.21989E-3 82376.9
2 19.205 1.01959E-2 182652.0
3 29.793 1.19276E-2 331478.0
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Mode 2

Frequency: m, = 2870.56 rad/sec, f, = 456.972 cps

Participation Factor P, = 0.767363

Modal Effective Mass M, = 25.0237, accumulated 99.8099% of total mass

Modal Effective Weight W, = 9.65914 kips

Table 130-3. Results for Mode 2.

Mass M;i Displacement (in) | Force (Ibs)
1 39.752 1.49736E-3 490847.0
2 19.205 1.24543E-4 19709.1
3 29.793 -4.4074E-4 -108201.0

Mode 3

Frequency: ;= 4353.13 rad/sec, f; = 692.986 cps

Participation Factor P; = 7.76597E-2

Modal Effective Mass M; = 0.163735, accumulated 100.0% of total mass

Modal Effective Weight W3 = 0.163735 x 386.4 = 63.20171 Ib¢
63.20171 /1000 = 6.320171e-2 Kips

Table 130-4. Results for Mode 3.

Mass M; Displacement (in) | Force (Ibs)
1 39.752 2.98639E-5 22513.1
2 19.205 -1.94902E-4 -70930.5
3 29.793 9.99739E-5 56442.2

NRL Combined Displacements

Table 130-5. Results for NRL Combined Displacements

Mass | Displacement (in)
1 3.718E-3
2 1.0427E-2
3 1.2379E-2
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Mode 2 Forces = 490847.0

+ 19709.1
- 108201.0
402355.1
P _ 402351 _ »3068.17 psi
A (18)0.969

Autodesk Simulation Solution

DDAM (Dynamic Design Analysis Method) is a restart analysis processor that calculates a combination of peak
responses of given spectra through all considered frequency modes calculated by a previous modal analysis on the
model. The user selects shock spectra based on ship type, mounting method, material type, and direction. The Naval
Research Laboratory (NRL) combination method is used to determine the resultant response. By default, shock
spectra are calculated using unclassified equations and coefficient that are "hard coded" into the DDAM application.
It is also possible for the user to define the shock spectra using an ASCII format input file. A sample copy of this file
is provided with the software. It can have an arbitrary name, but the provided file is called DDAM.DEF. This ASCII
definition file can also be used to avoid the default English (inch based) units system.

For the rudder system model, to satisfy the equation,

_AE
L

K

assume the following:

>
I

1
i=Ki

mr

An DDAM maodel that is equivalent to the example is shown in Figure below.

e
MI1=39.782 hM2=19.205 M3=290793
b T o =B ow = I o = o e =
Ul Uay Uzy

Figure 130-3. Three mass model.
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At each node, Tx is the only degree of freedom considered as unknown while node 1 is fully fixed. Modal analysis
(by the Linear Mode Shapes and Natural Frequencies processor) gives:

Table 130-6. Modal analysis results.

Mode | Frequency | Modal Effective Mass | % of Total Mass | Participation
1 153.7141 0.64E02 71.62 0.7974E01
2 456.8640 0.25E02 28.19 0.5002E01
2 692.8220 0.17E00 0.19 0.4108E00

Notice that all participation factors are different from hand-calculations above because DDAM uses SSAP1
eigenvectors that are normalized by mass matrix, i.e. their generalized mass is unit, X, M X, = 1. The eigenvector
sets used in fact are,

{2.768147381977E-02} {1.534000376710E-01} {2.896826084630E-02}
X, ={1.271395959713E-01} X, = {1.275904251113E-02} X = {-1.890568794670E-01}
{1.487343220827E-01},  {-4.515254351314E-02},  {9.697567444345E-02}

In the DDAM "Analysis Parameters"” screen, on the "General" tab, the "Shock uses" field is set to "Vertical spectrum
only". On the "Advanced" tab, its "Spectrum Coordinate Directions" are set as X. Also in the DDAM "Analysis
Parameters" screen, on the "General" tab, we set "Type of ship" as "Surface", "Mounting Locations" as "Attached to
deck”, and "Type of material” as "Elastic". Then results are obtained:

Displacement
Magnitude
in

0.011933
0.01074
0.0095467
0.0083533
0.00716
0.0059667

{0.010201
0.0047733 /
0.00358
0.0023867
0.0011933 [0.002221

0

Load Case: 10f 3 10.000000

Frequency: 153.714 cycles/s
Maximum Value: 0.0118333 in

Minimum Value: 0 in Y, i x

2 < Design Scenario 2 >

Figure 130-4. Displacements for mode 1.

where {Ugy, Usy, Usy}a=1={2.220951663958E-03, 1.020071760145E-02, 1.193331476019E-02}, notice they match
hand-calculated results in table 2.

Table 130-7. Comparison of displacement results for mode 1.

Mass Theory Analysis % Difference
1 2.21989E-3 | 2.220952E-3 0.47%
2 1.01959E-2 | 1.02007E-2 0.047%
3 1.19276E-2 | 1.19333E-2 0.048%
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Response of mode 2:

Displacement
Magnitude
in

0.001498
0.0013482
0.0011984
0.0010486
0.0008988
0.000749
0.0005992
0.0004494
0.0002996
0.0001498
0

/0.000125
/{0‘001498

0.000000

Frequency: 456.864 cycles/s

Load Case: 20f 3

Maximum Value: 0.00149801 in
Minimum Value: 0 in

2 < Design Scenario 2 >

{0.000441

ad

Figure 130-5. Displacements for mode 2.

AVE - 130

Where {Usx, Uz, Usdaes = {1.498006079610E-03, 1.245966007692E-04, -4.409306915399E-04}, they match

hand-calculation results in table 3.

Table 130-8. Comparison of displacement results for mode 2.

Mass Theory Analysis | % Difference
1 1.49736E-3 | 1.498E-3 0.04%
2 1.24543E-4 | 1.246E-4 0.05%
3 -4,4074E-4 | -4.409E-4 -0.13%
Response of mode 3:
Displacement o
Magnitude
in
0.0001951
0.00017559 /
0.00015608 BB
0.00013657
0.00011706
9.7551e-005 40'000195
7.804e-005 .
5 853¢-005 /
3.902e-005
1.951e-005 @
0

Load Case: 3of 3 0.000000

Frequency: 692.822 cycles/s
Maximum Value: 0.000185101 in

Minimum Value: 0 in

2 < Design Scenario 2 >

Figure 130-6. Displacements in mode 3.
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Where {Uiy, Usy, Uscta=s = {2.989439189336E-05, -1.951011306791E-04, 1.000760394736E-04}, they match
hand-calculation results in table 4.

Table 130-9. Comparison of displacement results for mode 3.

Mass Theory Analysis | % Difference
1 2.98539E-5 | 2.989E-5 0.12%
2 -1.94902E-4 | -1.951E-4 -0.06%
3 9.99739E-5 | 1.001E-4 0.13%

Then, the NRL combined response is as follows:

Magnitude
in

0.012385
0.011147
0.0099084
0.0086598
0.0074313
0.0061927
0.0049542
0.0037156
0.0024771
0.0012385
0

Displacement

Load Case: Resultantof 3

Frequency: Resultant

Minimum Value: 0 in

2 < Design Scenario 2 >

{0.000000

Maximum Value: 0.0123855 in

P

(0.003719

Figure 130-7. NRL combined displacements.

Where {Usx, Uay, Usdeoms = {3.719E-3, 1.043E-2, 1.239E-2}.

Table 130-10. Comparison of NRL combined displacement results.

Mass | Theory | Analysis | % Difference
1 3.718E-3 | 3.719E-3 0.03%
2 1.0427E-2 | 1.043E-2 0.03%
3 1.2379E-2 | 1.239E-2 0.09%
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AVE - 131 Linear Static Stress Analysis of a Laminated Strip

AVE - 131

Reference

"NAFEMS Composite Benchmarks”, NAFEMS, Reference R0031, Test No. R0031/1, Date/Issue 28.11.94/1.

Problem Description

A 1mm thick laminated strip, which is 50 mm long and 10 mm wide, is simply supported 10 mm inward from each

end (see Figure 131-1). The strip is subjected to a 10 N/mm line load at the center.

The material lay-up for the

laminate is comprised of seven layers of the same orthotropic material in a 0/90/0/90/0/90/0 material orientation (see

Figure 131-2). The middle layer is 0.4 mm thick while the outer six layers are 0.1 mm in thickness.

|
: «—(° fiber dlrecuon—» |
| |

¥

10

4

P%%%A

TO0N/mm

] 1

AN

All dimensions inmm

¥
_T_

Figure 131-1. Overall dimensions of the laminated strip.

0101 01
g g L

0.1 0.1 01
(e

All dimensions in mm

Figure 131-2. Material lay-up.
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The orthotropic material properties are as follows:

E; = 1.0E5 MPa

E, = 5.0E3 MPa

G, = 3.0E3 MPa

Vig = 0.40

Vo1 = 0.02 (calculated based on vi,/E; = vu/Ey)

Theoretical Solution

There is no exact analytical solution for this problem. An approximation can be developed by modifying
fundamental beam bending theory to include the effects of layered construction and shear loading. These equations
are presented in Appendix A of the reference.

Autodesk Simulation Solution

A 10x50 grid of 500 thin composite elements was created in the XY plane in FEA Editor. Simply supported
boundary conditions (TxyzRyz) were added at the designated locations. The line load was created by adding nodal
forces of 10 N in the negative Z direction at the center nodes. Note that the 2 nodes at each end of the line load have
a magnitude of 5 N (see Figure 131-3).

Figure 131-3. FEA model.
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Displacement
Magnitude
mm

1.024
0.92162

10.81922
0.71682
0.61441

10.51201
0.40961
0.30721
0.2048
0.1024
0

Load Case: 1 of 1
Maximum Value: 1.02402 mm

Minimum Value: 0 mm

1 < Design Scenario 1 >

Figure 131-4. Displacement magnitude.

Stress

Local 1-1
N/(mm*2)
690.14

Thick/Thin Compasite Options

=]

Lamina

Resuits for Coes Lareiia

® Wors Rlesuts

552.11
414.08
276.06
138.03
0
-138.03
-276.06
-414.08
-552.11
-690.14

Load Case: 1 of 1
Maximum Value: 690.138 N/(mm*"2)
Minimum Value: -690.138 N/(mm*2)

1 < Design Scenario 1 >

Resuits for speciic Lamina

Stain Calcuiation
® Total Stian
Mecharical Strain

It Stran

| Hep

=0

Figure 131-5. Composite stress in local 11 direction.
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The reference provides only the results at the center node of the laminate strip, which corresponds to node #281 in

the meshed model.

for the Local 11 direction. A comparison of the results is provided in Table 131-1.

Table 131-1. Comparison of Results.

Output at center node | NAFEMS | Analysis | % Difference
Displacement (mm) -1.06 -1.02 3.7%
Stress (MPa) 683.9 680.1 0.056%

Accuracy Verification Examples Manual, Version 2014
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AVE - 132 Distance for Stopping a Car

Reference
Shames, Irving H., Engineering Mechanics: Volume Il Dynamics, Third Edition, Prentice-Hall, Inc., 1980, page 509.
Problem Description

Determine the distance it takes to stop a 2895-Ib weight traveling at 88 ft/s if the coefficient of friction between the
weight and the concrete is 0.6.

-+
1 3
Figure 132-1. Diagram of the problem.
Theoretical Solution

The input variables are listed as follows:

o Weight of car (W) =2895 Ib
Dynamic friction coefficient (L) =060

e Gravity (g) = 32.2 ft/s®
o Initial velocity (vy,) = 88 ft/s
e L = Stopping distance

L

m
ij dy = E[Viz_ Vi
0
W

L*W*p, = ﬂ[Vf,z— Vfll
where

L% 2895 l* 0.6 = - o010 _gg2]

2*32.2 ftls

L =200.4 ft
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Autodesk Simulation Solution

The weight is modeled as a two-dimensional (2-D) plane stress problem. The mesh is comprised of 3 parts and a
total of 123 elements. Part 1 is made of Aluminum. Part 2 has Steel A-36 material properties and Part 3 is
considered to be concrete. Parts 1 and 2 are connected together while a 0.01-foot gap is between parts 1 and 3.
Surface to surface contact was added between parts 1 and 3 with the specified friction coefficient.

= @ 5

H

Figure 132-2. FEA model.

Displacement ¥ Component (76) (1)

200
180
160
140
120
100
80
60
40

20

oL L
05 1 15 2 25 5 35 4 45 5
Time (s)

Figure 132-3. Graph Results

Table 132-1. Comparison of results.

Output

Theoretical

Analysis

% Difference

Length to stop

200.4 feet

194.02 feet

3.18%

Accuracy Verification Examples Manual, Version 2014

405



AVE - 133

AVE - 133 Body-to-Body Radiation between Two Cylinders

Reference

Holman, J.P., Heat Transfer, Seventh Edition, McGraw-Hill Inc, 1990, pages 424-425.

Problem Description

Two concentric cylinders each have a length of 20 cm and diameters of 10 cm and 20 cm, respectively. The inner
cylinder is maintained at a temperature of 1000 K. The inner cylinder has an emissivity of 0.8 and the outer cylinder

has an emissivity of 0.2. The cylinders are in a room at 300 K. The outer cylinder is in radiant balance. Calculate the
temperature of the outer cylinder.

— 20 cmm ——p

<+ 10 cm 1000 K
< }5/ &=0.8

/ &=0.2

T amb=300 K

X

20 cm

N

Figure 133-1. Overall dimensions of the cylinders.

Theoretical Solution

The problem is solved with the aid of the following network, where the inner cylinder is designated as body 1, the
outer cylinder is designated as body 2, and the room is designated as body 3. The view factors between the bodies
are calculated as follows:

F1, = 0.86 (inner cylinder to outer cylinder)

F13 = (2)(0.07) = 0.14 (inner cylinder to room)

F.3i = (2)(0.12) = 0.24 (inside of outer cylinder to room)
F,3, = 1.0 (outside of outer cylinder to room)
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Also,

e A, =0.06283 m* (area of inner cylinder)

e A,=0.12566 m* (area of outer cylinder)

e Ep =(5.669 x 10°®)(1000)* = 5.669 x 10* W/m? (emissive power of inner cylinder)
e Ey=(5.669 x 10°®%)(300)* = 459.2 W/m? (emissive power of the room)

Solving the network as a series-parallel circuit yields three equations for node Ji, J,; and J, gives the following
results:

e J;=50,148 W/m?
o J,=27,811W/m?
o Jy = 3498 W/m?

From the network, the emissive power of the outer cylinder is the following:
Ep = (Jai + J20)/2 = 15,655 W/m?

and
T, = (15,655 /5.669 x 10%)"* = 724.9 K [Answer]

1
J1 A1 F12 J2i
Ep10 Q
1-€1
€1 A1 1-€
€ A2
1
— Epb2
A1 F13
1- €2
€2 A2
J3= Ep3
1 ‘]20

A2 Fa3g

Figure 133-2. Radiation network for concentric cylinders.

Autodesk Simulation Solution

The cylinders are modeled using plate elements. A mesh of 40 elements around the perimeter and 10 elements along
the length was created. The model was analyzed with the Steady-State Heat Transfer processor.

The theoretical example assumes that the outer cylinder is at a uniform temperature. In reality, the temperature
would vary along the length because the view factor with the room and inner cylinder changes along the length. To
compensate for this effect, a large conductivity (180E3 J/(s m K), or 1000 times as conductive as aluminum) was
used for the cylinders.
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The temperature of the inner cylinder was set by using a large convection coefficient (LE8 J/(s m? K)) at 1000 K.
Body to body radiation was set for the radiation between the outside of the inner cylinder, the inside of the outer
cylinder, and the room. To calculate a more accurate view factor between the closely spaced cylinders, the view
factor calculation method was set to “string rule/contour integration”. Radiation from the outside of the outer
cylinder could also be handled with the body to body radiation, but it is more efficient to use the surface-based
radiation since the view factor is known (1).

Since the model includes nonlinear effects (radiation), the "Advanced” tab of the "Analysis Parameters™ screen was
used to specify the iteration controls. The input used was the following:

Criteria; Stop when corrective norm < E1 (case 1)
Maximum number of iterations: 40

Corrective tolerance: 0.1

Relaxation parameter: 0.3

Also, to aid the convergence, the "Default nodal temperature” was set to 724.9 K, which is the expected temperature
of the outer cylinder. An initial temperature of 1000 K was specified for the inner cylinder as its expected
temperature.

The temperature results are shown in Figure 133-3.

Temperature
K
1000
972.02
944.04
916.07
888.09
860.11
83213
804.16
776.18
T48.2
72022

Load Case: 1o0of 1
Maximum Value: 1000 K

Minimum Value: 720.223 K

1 < Design Scenario 1 >

Figure 133-3. Temperature results.

Table 133-1. Comparison of results.

Output Theoretical | Analysis | % Difference

Outer cylinder 724.9 720.2 -0.65%
temperature (K)
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AVE - 134 Nonlinear Displacement of a Bar with an Axial Load

Problem Description

Determine the displacement of a bar that has an axial load (4000 N) applied to it and has gone past the yield point of
the material. The model will demonstrate nonlinear material capabilities.

- rrrrr =

% T [ 1 T [ 1 [ 1 [ 1 ~F=4000N
Figure 134-1. Diagram of the bar made of nonlinear material with an axial loading.

Theoretical Solution

The material and geometry properties are as follows:

Modulus of Elasticity = 1e7 N/cm?
Poisson’s Ratio = 0.3

Strain Hardening Modulus = 1e5 N/cm?
Yield stress = 3000 N/cm?

Area = 1.0 cm?

The theoretical solution will be based on the linear and nonlinear solution.

The linear solution using Hooke’s law is:

F =k*x

solving for x

The nonlinear solution is:

nl

« —Lh LRy
" AE, AE,
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When the force is equal to 3000 Newtons, the model is still in the linear range. The following shows the hand
calculations:

Axial Displacement = (15cm* 3000 N)/(1cm?*1e7 N/ cm?)
Axial Displacement = 0.0045 cm

When the force is equal to 4000 Newtons, part of the model has yielded and now uses nonlinear material properties.
The following shows the hand calculations:

Axial Displacement = (15cm* 3000 N)/(1cm®*1e7 N/ cm?)+(15*1000N)/(1cm®*1e5 N/ cm?)
Axial Displacement = 0.1545 cm

Autodesk Simulation Solution

The model is constructed using two-dimensional (2-D) plane stress elements. The mesh is made of 30 elements,
with 15 elements in the axial direction (YY) and 2 elements in the vertical direction (Z). The material model chosen
was von Mises with isotropic hardening. The force on the end of the model was applied as 0.5 Newtons on the top
and bottom nodes and 1.0 Newton on the middle node. The total load of 4000 Newtons was achieved by scaling the
load curve from 0 at time 0 seconds to 2000 at time 2 seconds. The analysis formulation for the 2-D elements was
changed to nonlinear material only. Ty constraints were added to the top and bottom nodes on the left-hand side of
the model. Ty and Tz constraints were added to the middle node on the left-hand side.

A Mechanical Event Simulation with Nonlinear Material Models was performed. The results for the model were
captured at node number 47 as shown in Figure 134-2 and Figure 134-3. Table 134-1 shows a comparison of the
analysis results and the theoretical solution.

Displacement
Magnitude
cm

0.0045002
0.0040502
0.0036002
0.0031502
0.0027001
0.0022501
0.0018001
0.0013501
0.00090004

0.00045002 | | O |
0 :-||\|\|||\| 0.004500

Time: 1.5s
Time Step: 15 of 20

Maximum Value: 0.00450022 cm
z

Minimum Value: 0 cm I
Y

1 < Design Scenario 1 >

Figure 134-2. Displacement results at node 47 for time step = 15, which corresponds to force = 3000 N.
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Displacement
Magnitude
cm

0.1545
0.13905
0.1236
0.10815
0.092702
0.077252
0.061802
0.046351
0.030901
0.01545
0

Time: 2s

Time Step: 20 of 20
Maximum Value: 0.154504 cm
Minimum Value: 0 ¢cm

1 < Design Scenario 1 >

-0.154484

z

L.

AVE - 134

Figure 134-3. Displacement results at node 47 for time step = 20, which corresponds to force = 4000 N.

Table 134-1. Comparison of Results

Output Displacement (cm) o i
Node Number | Load Step | Force (N) | Analysis | Theoretical 0 Difference
32 15 3000 0.0045 0.0045 0.00
32 20 4000 0.1545 0.1545 0.00
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AVE - 135 Tapered Axisymmetric Thick Shell Subjected to a Pressure Load

Reference: NAFEMS (C1 REV1) — Benchmarks Test for Various Finite Element Assemblies, Glasgow, UK,

November 1986, pp 13-15.

Problem Description

Determine the hoop stress of a tapered axisymmetric thick shell that has a pressure load of 100E6 N/m? applied to it.

Axis of Symmetry

©= T, Constraint i

C = Point of Interest ’fi “-“ ! T !

) | ‘ | \ Y £

.7 = Surface Pressure Load I i f \ VoY e 3

(100E6 Pa) L y \\ I
1 | Lo [
N L
- ’f ! /{ K ! \ \ I“L/"
z / / f ‘ I\ \‘ \ !
! | | | Vo

¥ ¥ iﬂ j j 1 N - i
¢ am bt 4m ¥

Figure 135-1. Diagram of the tapered axisymmetric thick shell problem.

The material and geometry properties are as follows:
e Modulus of Elasticity = 210e9 Pa

e Poisson’s Ratio =0.3

e Density = 7e3 kg/m®

Reference Solution

The reference solution yielded the following result:

e Hoop stress at point C (labeled in Figure 135-1) = 2.28E8 Pa

Autodesk Simulation Solution

The model is made of two-dimensional (2-D) axisymmetric elements. The mesh consists of 64 elements, with 8
elements in the radial direction (Y) and 8 elements in the vertical direction (Z). The pressure of 100E6 N/m* was
applied to the outside surface of the model. Boundary conditions of Tz were applied to the bottom of the model.

A Static Stress with Linear Material Models analysis was run. The hoop stress results for the model were examined
by displaying the stress tensor in the X-X direction and inquiring on the results at node number 37 as shown in

Figure 135-2.
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Stress
Tensor X-X
N/(mA2)
-211909104
-225712501
-239515898
-253319294
-267122691
-280926088
-294729485
-308532882
-322336278
-336139675
-349943072

Load Case: 1o0of 1
Maximum Value: -2.11909e+008 N/(m*2)
Minimum Value: -3.49943e+008 N/(m*"2)

1 < Design Scenario 1 >

= 0

Figure 135-2. Hoop stress results displayed in the model.

The following table shows a comparison of the analysis results to the reference solution.

Table 135-1. Comparison of Results.

Node Hoop Stress (Pa) o i
Number Analysis | Theoretical o Difference
37 2.3E8 2.28E8 0.8

Accuracy Verification Examples Manual, Version 2014
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AVE - 136 Contact Pressure Analysis of a Punch-Foundation System

Reference

Feng, Q. and Prinja, N. K., NAFEMS Benchmark Tests for Finite Element Modelling of Contact, Gapping and
Sliding, Ref: R0081, Issue: 1, CGS-1.

Problem Description

Calculate the contact pressure when a punch contacts the foundation. The punch and the foundation combine to
make a 1.0-m cube. The entire bottom of the foundation is constrained in the vertical direction and the center node
on the bottom of the foundation has all rotations and translations constrained. A pressure of Q = 40,000 N/m? is
applied to the top of the punch.

«— punch
contact
1.0 m .
interface
+— foundation
Yo A &

1.0m
Figure 136-1. Diagram of the punch-foundation model.
The material properties are as follows:

e Modulus of Elasticity = Epunch = Efoundation = 100 MPa
e Poisson's Ratio = Vpynch = Vioundation = 0.3

Reference Solution

The reference solution yielded the following result:

o Applied pressure = contact pressure = 40,000 N/m?

Autodesk Simulation Solution

The model was drawn in the YZ plane using 2D elements. The constraints as described in the problem description
were applied. Additionally, the upper middle node of the punch was constrained from translation in the horizontal
(Y) direction to provide additional stability. Gap elements were drawn between the punch and the foundation to
facilitate calculation of the contact force. A pressure of 40,000 N/m? was applied to the top of the punch. A Linear

Static Stress analysis was performed. Then, the inquire results capability was used to sum the forces in the three gap
elements, which equaled -40,000 N.
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Axial Force
N
-10321
-11224
-12128
-13032
-13936
-14840
-15744
-16647
-17551
-18455
-19359

Load Case: 1o0of 1
Maximum Value: -10320.6 N
Minimum Value: -19358.9 N

1 < Design Scenario 1 >

7110320560336

- >
- -

e

~71-19358.861328

k

Figure 136-2. Sum of the contact forces.

AVE - 136

Dividing the total force by the area of 1 m? gives a contact pressure of 40,000 N/m? which matches exactly the
reference solution as shown in the following table.

Table 136-1. Compari

son of results.

Contact Pressure (N/m?)

Analysis | Theoretical

% Difference

40,000 40,000

0.0

Accuracy Verification Examples Manual, Version 2014
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AVE - 137 Acceleration Analysis of a Piston-Crank Mechanism

Reference

Hibbeler, R.C., Engineering Mechanics:Dynamics, (7" Edition), Prentice-Hall, Inc., 1995, p. 322.

Problem Description

Calculate the acceleration of point C of the piston-crank mechanism shown below if the rotational velocity of link

AB is 10 rad/s (95.493 RPM), the rotational velocity of link BC is 2.43 rad/s (23.205RPM) and the geometry is
known. Point C can only move in the vertical direction. There is no angular acceleration.

&

0.25 ft A
A

Figure 137-1. Diagram of the piston-crank mechanism.

Theoretical Solution

From the reference:

_ 2
dg = OpgXTgn—Wpglga

_ 2
dc =g+ Qg XM= Wgclep

Using trigonometry, we can find horizontal (i) and vertical (j) components of the displacement vectors from point A
to point B and from point B to point C.

Fon = {—0.177i+0.177 j} ft
res = {0.176i+0.729 j} ft
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Solving for ag,

ag = {17.7i—17.7j}E2
S

Solving for ac,

| ft
ac = {—17.971}5—2

Autodesk Simulation Solution

The mechanism was drawn in the XY plane using truss and beam elements. Point A was constrained in all three
translations. Point B was constrained in the Z translation. Point C was constrained in the X and Z translations.
Aluminum material properties were defined for all parts; however, the choice of material was arbitrary because
inertial effects were not considered and mass was irrelevant for this purely kinematic analysis. A prescribed rotation
of 1 rev magnitude was applied to point A by defining a load curve that ramped from 0 to —1.59155 in 1 second. A
Mechanical Event Simulation with Nonlinear Material Models analysis was performed to analyze the motion of the
piston-crank mechanism. The acceleration at 0.628 s, which is when the mechanism is at the location shown in
Figure 137-1, is —18.046 ft/s for point C as shown in Figure 137-2.

Time: 0s Time: 0.628 s
Time Step: 0 of 1000 Time Step: 628 of 1000
Maximum Value: Not Available Maximum Value: Not Available
Minimum Value: Not Available ¥ Minimum Value: Not Available v
_ _ L. _ _ L.
1 < Design Scenario 1 > 1 < Design Scenario 1 >

Figure 137-2. Position of point C at the time of interest.
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- Second Derivative of Displacement Y Component (3)

Figure 137-3. Acceleration of point C throughout the simulation.

AVE - 137

Alternatively, the graph values can be saved as a Comma Separated Value output list and examined in a spreadsheet

utility. Table 147-1 provides a comparison of the theoretical and analysis results.

Table 137-1. Comparison of Results.

Acceleration (ft/s®)
Theoretical | Analysis
-17.97 -17.835 0.85

% Difference

Accuracy Verification Examples Manual, Version 2014
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AVE - 138 Natural Frequencies Analysis of a Pin-Ended Double Cross
Structure

Reference

Abbassian, F., Dawswell, D. J. and Knowles, N. C., NAFEMS Free Vibration Benchmarks, November 1987, Test 2,
pp. 60-79

Problem Description

Calculate the first 16 natural frequencies of the double cross structure shown below. The ends of the beams are
pinned, each arm is 5.0m long and the cross section of each beam is a 0.125m x 0.125m square.

? & J2)

S.0m S

-1 S0m S50 m jes—

Figure 138-1. Schematic of the pin-ended double cross structure.

Material properties are as follows:
e Modulus of elasticity (E) = 200 x 10° N/m?
e Poisson’s ratio = 0.3
e Mass density (p) = 8000 kg/m®

Theoretical Solution

The classical beam theory prediction of the natural frequencies is given by:

1

M2 (El2
f, = e
2nL° \ pA

Autodesk Simulation Solution

The model was drawn in the XY plane using beam elements. The ends of the beams were constrained in all
translations. The rest of the nodes were constrained in the Z translation. A Linear Mode Shapes and Natural
Frequencies analysis was performed and the natural frequencies were obtained as shown in Figure 138-2.
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Mode: 9 of 16

Frequency: 45.1927 cycles/s
Maximum Value: Not Available
Minimum Value: Not Available

1 < Design Scenario 1 >

Figure 138-2. Natural frequency and mode shape for mode 9.
Below is a table comparing the analysis results to the reference results.

Table 138-1. Comparison of Results.

Mode Number | NAFEMS (Hz) | Analysis (Hz) | % Difference
1 11.336 11.325 0.09
2 17.709 17.639 0.39
3 17.709 17.639 0.39
4 17.709 17.666 0.25
5 17.709 17.668 0.23
6 17.709 17.668 0.23
7 17.709 17.668 0.23
8 17.709 17.670 0.22
9 45.345 45.193 0.34
10 57.39 56.741 1.13
11 57.39 56.741 1.13
12 57.39 57.044 0.60
13 57.39 57.052 0.59
14 57.39 57.052 0.59
15 57.39 57.052 0.59
16 57.39 57.059 0.58
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AVE - 139 Electrostatic Field Strength Analysis of a Spherical Electron
Cloud

Reference
Pohang University of Science and Technology, Example Problems on Electrostatic Field, pp. 9-10
Problem Description

Calculate the electrostatic (E) field caused by a spherical cloud of electrons with a volume charge density p = -p, for
0 < R < b (both pg and b are positive) and p = 0 for R <b.

Pab
3Ea

Electron
cloud

Figure 139-1. Electric field intensity of a spherical electron cloud.

Theoretical Solution
From the reference, the following assumptions are made:

e spherical symmetry
e the Gaussian surfaces must be concentric spherical surfaces

There are two cases to solve for:
1. 0<R<D
2. R>Db

Case 1:0< R<bDb

The outward E flux can be expressed as:

ISE ds=E, jgs =Eg 4nR’?
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The total enclosed charge is:

szvpdvz—po I9v=—po4§R3

Substituting gives us:

E=-P R Oo<R<b
3¢,

Case2:R> Db

The outward E flux can be expressed as:
_ _ 2
ISIOE-ds_ C. jgs_ E. 47R
The total enclosed charge is:

47
——p T2
Q Po 3

Substituting gives us:

Autodesk Simulation Solution

AVE - 139

A two-dimensional (2-D) axisymmetric section of the plate was modeled in the YZ plane using 2-D elements for the
inner and outer parts. The dimension b was chosen to be 1 meter, and the outer boundary had a radius of 2 meters.
Dielectric constants of 1.0 were assigned and the inner area was given a charge density of 8.8545E-11 C/m°.
Voltages of 0 were applied along the outer edge with a stiffness of 100,000. An Electrostatic Field Strength and

Voltage analysis was performed to obtain the E field magnitude as shown in Figure 139-2.
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Electrical Field
Magnitude
Vim
3.2971
2.9678
26384
2.309
1.9797
1.6503
1.3209
0.99158
0.66222
0.33286
0.0034925

Maximum Value: 3.29713 V/m
Minimum Value: 0.00349246 V/m

1 < Design Scenario 1 >

Figure 139-2. Electric field magnitude for R = 0.5, 1.0, 1.57 and 2.55.

The analysis results are compared to the theoretical solution in the following table.

Table 139-1. Comparison of Results.

Electric Field Magnitude
Radius | in Radial Direction V/Im | % Difference

Theoretical | Analysis
0.50 1.67 1.68 0.60
1.00 3.33 3.28 1.50
1.57 1.35 1.35 0.0
2.55 0.51 0.51 0.0

Accuracy Verification Examples Manual, Version 2014
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AVE - 140 Steady-State Heat Transfer Analysis of a Rod with an Adiabatic
Tip

Reference

Lindeberg, Michael R., Mechanical Engineering Reference Manual, (10th Edition), Professional Publications, 1997,
pp. 34-18 — 34-19

Problem Description

Calculate the temperature 3 inches in from the base of a 0.5 in x 0.5 in x 10 in long rectangular rod, which has its
base maintained at 300°F by heating equipment, as shown in Figure 140-1.

0.5".+,0.5"

1 OII

300°F T
Figure 140-1. Setup of the rod.

The problem specifications are as follows:

e Conductivity = 80 Btu-ft/hr-ft>-°F

e Ambient air temperature = 80°F

o Average film coefficient = 1.65 Btu/hr-ft>-°F
Theoretical Solution

Because the tip area is approximately 1% of the total surface, the rod is assumed to have an adiabatic tip.
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The perimeter length is:

_(2(0.5in+0.5in)

P =(2)(w+1) =0.167 ft
In
12—
ft
The cross-sectional area of the fin at its base is:
A, =wi= @3NOSIN ¢ 50174 42

in)’
12—
ft
From heat transfer theory:

m = hP _ (1.65)(0.167) —141/ ft
KA (80)(0.00174)
Hence, the temperature 3 in from the base is:

T, =T, +(T, ‘Tw){%m}

(1.41)(10 - 3)

cosh( 17 J
=80+ (300-80) = 248.4°F

COsh(l.41(10)j
12

Autodesk Simulation Solution

AVE - 140

The rod was drawn in the XY plane and extruded in the Z direction. It was constructed of brick elements. The film
coefficient, conductivity and ambient temperature were applied and one tip was kept at 300°F. A Steady-State Heat
Transfer analysis was performed to obtain the temperature distribution. In the Results environment, the "Inquire

Results" capability was used to obtain the temperature at 3 inches from the base.
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Temperature
°F
300
290.43
280.85
271.28
261.71
25213
24256
23299
223.41
213.84
204.26

Load Case: 1o0of 1

Maximum Value: 300 °F

Minimum Value: 204.264 °F

1 < Design Scenario 1 >

Figure 140-2. Probing the temperature at 3 inches from the base.

The analysis results are compared to the theoretical results in the following table.

Table 140-1. Comparison of results.

Temperature (°F) at 3 in from base
Theoretical Analysis
248.4 248.6 0.08

% Difference

Accuracy Verification Examples Manual, Version 2014
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AVE - 141 Natural Frequency Analysis of a Flat Circular Plate

Reference
Young, Warren C., Roark’s Formulas for Stress & Strain, (6th Edition), McGraw-Hill, 1989, case 10a, p. 716
Problem Description

Calculate the first natural frequency of a flat circular plate of uniform thickness (t) and radius (r). There is a uniform
load (w) per unit area including its own weight. The outer edge is fully fixed.

r=10"
Figure 141-1. Setup of the circular plate.

For this example, the following specifications are used:
e r(radius) =10in
t (thickness) =.01 in
p (mass density) = 2.61E-4 Ibf*s¥/in/in®
E (modulus of elasticity) = 10E6 Ibf/in?
v (Poisson's ratio) = 0.397
g (gravity) = 386.4 in/s?
w (uniform load per unit area) = g * p * t = 1.009E-3 Ibf

Theoretical Solution

From the reference:

K |Dg
27 Vwr?
where
K1 =10.2 (fundamental)
K2 = 21.3 (one nodal diameter)
K3 =34.9 (two nodal diameter)
K4 = 39.8 (one nodal circle)
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or
10.2
|13
1349
39.8
and
E-t

D:12I1—v2)

Hence, solving for the first natural frequency gives:
f, =10.29 cycles/s

Autodesk Simulation Solution

The plate was drawn in the FEA Editor and assigned to plate elements with a thickness of 0.01 in.

AVE - 141

Material

properties were manually entered based on the problem description. The outer edge was fully constrained. A

Natural Frequency analysis was performed to obtain the natural frequencies.

Mode: 10of5
Frequency: 10.0162 cycles/s

1 < Design Scenario 1 >

Figure 141-2. First natural frequency of the flat circular plate.

The analysis results are compared to the theoretical solution in the following table.

Table 141-1. Comparison of results.

First Natural Frequency (cycles/s)
Theoretical Analysis
10.29 10.0162 2.66

% Difference
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AVE - 142 Cylinder/Sphere under Uniform Internal Pressure

Reference

Hitchings, D., Kamoulakos, A., Davies, G. A. O., Linear Statics Benchmarks, Volume 1, National Agency for Finite
Element Methods & Standards (NAFEMS), October 1987, Example 27.

Problem Description

A thin-shelled cylinder/sphere combination is subjected to a uniform internal pressure of 1 MPa. Calculate the hoop
stress (Sy) on the outer surface at point D as shown in Figure 142-1.

A
1 N " B
- A C
Y ]
vy s B D
C' E
— D'
£
1.5
y —
> X
— Lo
- X
F
o— 1|
A 4

X

Figure 142-1. Drawing and setup of the cylinder/sphere model.

The following specifications were used:

e thickness = 0.025 m
uniform internal pressure = 1 MPa
material properties = isotropic
E (modulus of elasticity) = 210 x 10° MPa
v (Poisson's ratio) = 0.3

Theoretical Solution

Data coordinates for points B, D and E were specified as shown in Table 152-1.
Table 142-1. Data coordinates for points B, D and E.

Point X Y
B 0.9814 | 1.6920
D 1.0 1.4034
E 1.0 1.1136

The boundary conditions were specified as follows:
o Edge AC'D' was given boundary conditions of zero y displacement and zero rotations about the x and y
axes.
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e Edge ACD was given boundary conditions of zero x displacement and zero rotations about the y and z

axes.

e Edge FF' was given a boundary condition of zero z displacements.

An isotropic material model was used with general thin shell quadrilateral and triangular elements.

Solving for an analysis type of linear elastic thin shell, the pressure on the outer surface at point D is 38.5 MPa.

Autodesk Simulation Solution

For the model, the profile was drawn in the XY plane using the coordinates shown in Table 152-2.

Table 142-2. Data coordinates for points A, B, C, D and E.

Point X Y
A 0 2.5
B 0.9814 | 1.6920
C 1.0 15
D 1.0 1.4034
E 1.0 1.1136

The line AB was divided into 12 segments; the line BC was divided into 8 segments; the line CD was divided into 6
segments; and the line DE was divided into 8 segments. The profile was then copied 8 times over a 90-degree angle
to meet the —z axis. Plate elements were assigned to the part with a thickness of 0.025 m, and an isotropic material
model was chosen with E = 210 x 10° MPa, v = 0.3. The edge of the part on the XY plane was given Z symmetry,
the edge on the YZ plane was given X symmetry, and the edge on the XZ plane was constrained from moving in the
Y direction. A Linear Static Stress analysis was performed and a cylindrical Local Coordinate system was used in

the results environment to obtain the hoop stress at point D as shown in Figure 142-2.

Stress
Tensor Theta-Theta

40102738
38004344
35905949
33807554
31709160
29610765
27512370
25413976
23315581
21217186
19118791

Load Case: 1o0of1
Maximum Value: 4.01027e+007 N/(m*2)
Minimum Value: 1.91188e+007 N/(m*2)

1 < Design Scenario 1 >

Figure 142-2. Hoop stress on outer surface at point D.

Table 142-3. Comparison of Results.

Analysis

Theory

% Difference

38.0

36.3

4.47
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AVE - 143 Heat Generation in a Wire due to Electrical Current

Reference
Holman, J. P., Heat Transfer, (7th Edition), McGraw-Hill, 1981, p. 42

Problem Description

A stainless steel wire, which is 1 m long with a 3 mm diameter, passes an electrical current of 200 A and is
submerged in a 110°C fluid. The convection coefficient between the fluid and the wire is 0.004 W/(mm?C).
Calculate the temperature at the center of the wire.

As shown in Figure 143-1, an axisymmetric cross-section of the wire, measuring 10 mm long and 1.5 mm wide, was

analyzed.
1.5 mm

10 mm

z

|

Figure 143-1. Setup of the wire model.

The following material properties were used:
e Thermal Conductivity = 0.019 W/(mm?®C)
e Resistivity = 0.0007 Q mm (1428.57 A/Vmm)
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Theoretical Solution

All of the power generated in the wire must be dissipated by convection to the liquid:
P=I’R=q=hA(T,-T,)
The resistance of the wire can be calculated from

-6
Ropl_ (70x10 )(goo) 00990
A n(0.15)

where p is the resistivity of the wire. The surface area of the wire is w dL, S0

(200)%(0.099) = 40007(3x10°* |1}, —110) = 3960 W

Hence,
T, =215°C

The heat generated per volume, ( can be calculated from

P =GV = gL
Hence,
g=— 0 _ge0pMW
n(1.5x10° f (1) m

Finally, the center temperature can be calculated

T, = cl,ri AT = (5-602X108X1.5><10*3)2

! (4)29)

Autodesk Simulation Solution

+215=231.6°C

The analysis of the model required a two-step multiphysics approach:
1. An Electrostatic Current and Voltage analysis would be performed to get the voltage distribution for the
200 Amp current.
2. The voltage results would be used as input to a Steady-State Heat Transfer analysis to get the temperature
distribution.

A planar rectangular section of 1.5 X 10 mm was drawn in the YZ plane and assigned to 2-D elements. Element
divisions of AB =4 and BC = 20 were used. The 2-D elements were set to axisymmetric (about the Z axis).

The analysis type was specified as Electrostatic Current and Voltage. The given thermal conductivity was converted
to get an electrical conductivity value of 14.2857 A(V/mm). A loading was specified as a voltage drop of 0.198 by
applying voltages of 0.198 to the top row of vertices in the model and applying voltages of 0 to the bottom row. The
electrostatic analysis was performed to obtain the voltage distribution results.
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Voltage

0.198

0.1782
0.1584
0.1386
0.1188
0.099

0.0792
0.0594
0.0396
0.0198

Maximum Value: 0.198 V
Minimum Value: 6.62946e-011 V

1 < Design Scenario 1 >

z

L.

Figure 143-2. Voltage distribution in the wire model.

AVE - 143

Next, the analysis type was changed to Steady-State Heat Transfer. A convection coefficient of 0.004 was applied to
the outer edge of the wire. The ambient temperature was specified as 110°C. In the "Analysis Parameters" dialog, on
the "Multipliers" tab, load case multipliers were activated for a convection multiplier and a heat generation
multiplier. On the "Electrical" tab, under "Joule Effects", the "Use electrostatic results to calculate Joule Effects"”

option was activated and the location of the source model (.efo file) was specified as shown below.

Analysis Parameters - Steady-State Heat Transfer @Iﬂ
Description of model
Heat Transfer - Reset From Model
I Reset From Default

Mutipliers | Options ~ Blectrical ]Solution | output | Advanced | Contact |
Joule Effects

Use electrostatic results to calculate Joule effects flag.

Source Model  CMAVEMAVE1S3\ave153.ds_data' 1 ds.efo .

[ ok |[ cancel ][ Heo |

e

~

Figure 143-3. Specifying the use of electrostatic results to calculate Joule effects.

The heat transfer analysis was run to obtain the temperature distribution. In the Results environment, the "Inquire
Results™ capability was used to obtain the temperature at the center of the wire.
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Temperature

C
23217
23045
22874
227.02
22531
22359
221.87
22016
218.44
216.73
215.01

Load Case: 1o0of 1

2 < Design Scenario 2 >

Maximum Value: 232.17 °C

Minimum Value: 215.011 °C

z

L.

Figure 143-4. Inquiring on the temperature result at the center of the wire.

Table 143-1. Comparison of Results.

Temperature (°C)

Theoretical

Analysis

% Difference

231.6

232.17

0.25
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AVE - 144 Natural Frequency (Modal) Analysis of a Cantilevered Beam

Reference

Abbassian, F., Dawswell, D. J., Knowles, N. C., Selected Benchmarks for Natural Frequency Analysis, National
Agency for Finite Element Methods & Standards (NAFEMS), November 1987, Test 71.

Problem Description

A 10-m beam with a square cross section of 0.125 m x 0.125 m is rigidly supported at one end as shown in Figure
144-1. The material properties are:

e Young's modulus of elasticity (E) = 200e9 N/m?

e Density (p) = 8000 kg/m®

Calculate the first modal frequency.

Zlﬂ
o~
-

10m { 125

LLLLLLLL

Figure 144-1. Diagram of the cantilevered beam problem.

Theoretical Solution

The beam is modeled as 8 equal-length segments using 2-D beam elements. Boundary conditions of Tx = Ty =Rz =
0 are specified at the wall. The natural frequency analysis result for the first mode of vibration is given in the
reference as 1.010 Hz.

Autodesk Simulation Solution

The profile was drawn from the origin to (0, 10, 0) and split into 8 equal-length beam elements. The left end was
given a fully fixed boundary condition, and the rest of the segments in the model were given boundary conditions of
Tx =Ry = Rz = 0 to simulate a 2-D beam element.

A Natural Frequency (Modal) analysis was performed. In the Results environment, the first mode for the beam was
displayed as shown in Figure 144-2.
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Mode: 10of5
Frequency: 1.00231 cycles/s
Maximum Value: Not Available

Minimum Value: Not Available

1 < Design Scenario 1 >

k

AVE - 144

Figure 144-2. Results for the first mode of vibration. (3D beam visualization was activated)

Table 144-1. Comparison of Results.

Frequency (Hz) o
Theoretical | Analysis % Difference
1.010 1.00231 0.69
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AVE - 145 Tapered Plate with Gravity

AVE - 145

Reference

Hitchings, D., Kamoulakos, A. and Davies, G. A. O., Linear Statics Benchmarks, National Agency for Finite
Element Methods & Standards (NAFEMS), October-November 1987 (LSB1 and LSB2), Test 11.

Problem Description

A flat tapered plate (4 m x 4 m x 2 m) is fixed at edge ABC as shown in Figure 145-1. Find the stress in the X

direction (Sxx) at point B due to the acceleration of gravity.

C
2‘ D
+ B>
B
2 E
A
| 4 I

Figure 145-1. Diagram of the flat tapered plate problem.

Specifications used in this example include the following:
e Thickness=0.1m

E = 210x10° MPa

v=0.3

p =7 Mg/m?

Gravity = 9.81 m/s’ in the Z direction

Theoretical Solution

According to the NAFEMS report, the stress at point B is 26 MPa.

Autodesk Simulation Solution

The plate was drawn in the XY plane and meshed with 64 divisions along each edge. These were defined as plate
elements. Edge ABC was fully constrained. The materials and loads were applied as described above. A Static
Stress with Linear Material Models analysis was performed to determine the stress tensor results in the X direction

as shown in Figure 145-2.
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Stress
Tensor X-X
N/(m*2)
25664463
23087878
20511294
17934710
15358126
12781542
10204957
76283732
5051789
2475204.8
-101379.41

Load Case: 1o0of 1

Plate Display Options B

Maximum Value: 2.56645e+007 N/(m*2)

Minimum Value: -101379 N/(m*2)

Bendng/Menbians
Total Shess/Strin
® Berdig Stess/Stan
Mesbxane Siress/Siran
TroSiced Display
Belh Sides
Reverse Sides in P
@ TopSide Oy
Bolton Side Orks

Cam)

256544

1 < Design Scenario 1 >

L.

AVE - 145

Figure 145-2. Stress tensor results in the X direction. Bending stress for the Top side of the plate is shown.

Table 145-1. Comparison of Results.

Stress Tensor in the X
Direction (MPa)

Theoretical | Analysis

% Difference

26.0 25.7

-1.2
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AVE - 146 Rectangular Plate Held by Three Wires

Reference

Beer, Ferdinand P. and Johnston, Jr., E. Russell, Vector Mechanics for Engineers: Statics and Dynamics, Third
Edition, McGraw-Hill Book Company, 1977, Sample Problem 16.2, p. 739

Problem Description

As shown in Figure 146-1, the thin rectangular plate ABCD has a mass of 50 kg and is held in position by three
inextensible wires AE, BF and CH.

E F
30° A B_30°

H

D el 50,
—1.5m—| \~

Figure 146-1. Diagram of the plate held by three wires.

Properties of the plate include the following:
e AB,DC=15m

AD,BD=2m

Thickness =0.25 m

Mass = 50 kg

Gravity = -9.81 m/s?

Mass density = 66.667

Properties of the wires include the following:
e AEBF,CD=1m
e Mass density =0
Calculate the acceleration of a plate and the tension in two cables when a third cable is cut.

Theoretical Solution

The plate is 0.25m thick and has a mass of 50 kg. Cable AE is cut. The force in cable BF can be calculated to be
175.9N. The force in cable CH can be calculated to be 69.6N.
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Autodesk Simulation Solution

The plate was drawn in the XY plane and meshed with 8 divisions along the AD edge and 6 divisions along the AB
edge. These were defined as shell elements. Two cables were modeled with truss elements. Points F and H were
constrained with boundary conditions. Point A was constrained with prescribed displacements of 0. Gravity was
applied to the model. Once the gravity has been applied, the prescribed displacement at point A is removed
allowing the point to move freely. The image below shows the axial force in the truss elements after the prescribed
displacement was removed.

Axial Force
N

17585
165.23 (175.85]
1546

143.97
13334
12272
112,09
101.46
90.836
80209
695682

Time: 0.104 s

169.58
Time Step: 104 of 200

Maximum Value: 175.853 N

A 4
Minimum Value: 69.5819 N I
X

1 < Design Scenario 1 >

Figure 146-2. Axial force in the truss elements at Time = 0.104s.

Table 146-1. Comparison of Results.

Theoretical | Analysis | % Difference

Axial Force in Cable BF at 0.104s (N) 175.9 175.85 0.03
Axial Force in Cable CH at 0.104s (N) 69.6 69.6 0.00
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AVE - 147 Effect of Fins on Heat Transfer from a Steam Pipe

Reference

Cengel, Yunus A., Heat Transfer: A Practical Approach, WCB/McGraw-Hill, 1998, Example 3-14, pp. 191-192
Problem Description

Steam in a heating system flows through an aluminum pipe with an outer diameter of 3 cm and a temperature that is
maintained at 120°C. Circular aluminum fins with a diameter of 6 cm and a thickness of 2 mm are attached to the
pipe as shown in Figure 147-1. The space between the fins is 3 mm, and thus there are 200 fins per meter length of

the pipe. The pipe and fins have thermal conductivity of k = 180 W/m-°C. The surrounding air temperature is 25°C
with a combined heat transfer coefficient of h = 60 W/m?.°C.

-

)

?

m

-

Figure 147-1. Diagram of the steam pipe with fins (not to scale).

The problem parameters include:

Ambient Temperature (T,) = 25°C
Temperature of the Pipe = 120°C
Thermal Conductivity (k) = 180 W/m-°C
Convection Coefficient (h) = 60 W/m?.°C

Determine the increase in heat transfer from the pipe per meter of its length as a result of adding 200 fins.
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Theoretical Solution
The following assumptions are made:
1) Steady operating conditions exist.
2) The heat transfer coefficient is uniform over the entire fin surfaces.
3) Thermal conductivity is constant.
4) Heat transfer by radiation is negligible.

For the pipe without fins, the heat transfer can be determined as follows:
A, i =7D,L = n(0.03m)1m)=0.0942m’

Qnoﬁn = h'A\noﬁn (Tb_ Tw) =537 Watts

For the pipe with fins, the heat transfer can be determined as follows:

L= %(DZ— D,)= %(o.os-o.os): 0.015m

Therefore, the efficiency of the circular fins is:

[+t (0.03+;><0.002jm

2 _ =207
n 0.015m

1 0 1 60ﬂ2-°c
L+=t /—: 0.015+=x0.002 |mx m =0.207
2 )V kt 2 ( W

180— o oc)(o.ooz m)
m

Mgy = 0.95
Agy = 27(r2— 17 )+ 2t = 0.00462m?
Qpin = Nfin Qﬁn,max = nhAfin (Tb_Too) =25.0W

If the space between the 2 fins is 3mm, then heat transfer from the finned portion is:

A,.qn = 1D,S = 1(0.03m)(0.003m) = 0.000283 m*

Qunfin - hAunfin(Tb_ Tw) =1.60W
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Since there are 200 fins and 200 interfin spacings per meter length, the total heat transfer from the finned pipe is:

étotal,ﬁn = n(éﬁn + éunﬁnj = 200(250 +16)W = 5320W

Autodesk Simulation Solution

A 1/200 m segment of the pipe length was modeled using quarter symmetry, both without fins and with fins. When
meshing the fins, arithmetic meshing was used to create a finer mesh near the pipe because that area was expected to
have the greatest change in heat transfer. Brick elements were used and, on the "Element Definition" dialog box, the
"Heat Flow Calculation™ option was set to "Linear Based on BC" to specify that the heat fluxes for the convection
boundary conditions should be linearized. This option enabled examination of the heat flow through the convection
boundary surfaces. Material properties were specified as noted in the problem description.

A Steady-State Heat Transfer analysis was performed to calculate the steady-state temperature distribution. In the
Results environment, the heat flow rate was displayed as shown in Figure 147-2. The heat flow rate was summed
for the elements of the pipe both without fins and with fins. The results were multiplied by 4 due to quarter

symmetry and then by 200 to obtain the total heat loss in 1 meter of the pipe.

Heat Flow Rate
Jis
0.05474
0.036777
0.018814
0.00085082
-0.017112
-0.035075
-0.053038
-0.071001
-0.088965
-0.10693
-0.12489

Load Case: 1o0of1
Maximum Value: 0.05474 Jis
Minimum Value: -0.124891 J/s

1 < Design Scenario 1 >

Figure 147-2. Display of heat flow rate. Smooth results deactivated

Table 147-1. Comparison of Results.

Heat Transfer in 360°, 1-m section of Pipe (W/m) % Difference
Theoretical Analysis
without Fins 537 537 0.00
with Fins 5320 5340 0.38
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AVE - 148 Velocity and Reaction Force from a Crate Being Dragged across
the Floor

Reference

Hibbeler, R. C., Engineering Mechanics:Dynamics, Seventh Edition, Prentice-Hall, 1995, Example 15-1, p. 193
Problem Description

A 100-kg crate is initially at rest on a smooth horizontal floor. A force of 200 N, acting at an angle of 45°, is applied

to the crate for 10 seconds, which drags the crate across the floor, as shown in Figure 148-1. Determine the final
velocity of the crate.

ss 33| 200N

Figure 148-1. Diagram of the crate-dragging event.

Theoretical Solution

It is assumed that during the motion the crate remains on the floor. The vector along the X axis can be resolved as
follows:

m(v,), + ZT F.dt=m(v,),

0 + 200 N(10 s) cos 45° = (100 kg)v,

v, =14.1m/s
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Autodesk Simulation Solution

A 1m x 1m cube was built in the YZ plane with a 6 x 6 mesh of 2-D elements. A thickness of 1 m and a mass
density of 100 kg/m® were specified. A 200 N force was applied to the side of the crate at a 45 degree angle from
the Y axis. A “slide no bounce” impact plane was setup at Z = -0.00001 to simulate the floor with a slight space
beneath the crate to allow for impact from gravity. A Mechanical Event Simulation with Nonlinear Material Models
was set up with duration of 10 s and a capture rate of 10 per second.

Figure 148-2 shows a graph of the first derivative of the displacement of node 1, which gives the velocity. The
graph shows that, at time = 10 s, the final velocity is 14.14 m/s.

'AVE-Velocity of Node 1

L o o o o o o
1 2 3 4 5 [ 7 8 9 10
Time (s)

Figure 148-2. Graph of velocity.

Table 148-1. Comparison of Results

Theoretical Analysis | % Difference
Velocity (m/s) 14.1 14.14 0.28
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AVE - 149 Heat Transfer between Hot- and Cold-Water Pipes

Reference

Cengel, Yunus, Heat Transfer: A Practical Approach, McGraw-Hill, 1998, p. 196

Problem Description

Two pipes run parallel to each other in a concrete block as shown in Figure 149-1. One pipe has hot water (70°C)
running through it and the other pipe has running cold water (15°C). The pipes are each 5 cm in diameter and the

distance between their centerlines is 30 cm. The thermal conductivity of the concrete is k = 0.75 W/m-°C. For a
length of 5 m, calculate the rate of heat transfer between the pipes.

- 5cm — - 5cm

}——30cm —]

Figure 149-1. Diagram of the hot- and cold-water pipes in concrete.

Theoretical Solution

From the reference, the following assumptions are made:
1) Steady operating conditions exist.

2) The head transfer is two-dimensional (no change in the axial direction).
3) Thermal conductivity of the concrete is constant.

The shape factor for this configuration is

2zl

COSh_l M
2D,D,

S:

where z is the distance between the centerlines of the pipes and L is the length. Therefore,
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S

271 x(5m)

Cosh_l(4><o.32 —0.05? —o.oszj

2x0.05x0.05

=6.34m

Thus, the steady rate of heat transfer between the pipes is

Q = SK(T-T>) = (6.34 m)(0.75 W/m-°C)(70-15°C) = 262 W

Autodesk Simulation Solution

AVE - 149

A model was built of a cross-section of the concrete block with holes to represent the pipes. Automatic mesh
generation capabilities were used to generate a mesh using two-dimensional (2-D) elements. The mesh was finer
around the holes, which was the area of interest. In the element definition, the heat flow calculation was changed to
“linear Based on BC” for increased accuracy. Convection surface loads were specified for the two holes to simulate
the hot and cold running water.

A Steady-State Heat Transfer analysis was performed to calculate the temperature distribution. Summing the heat
rate of faces of a one-element radius from the hole provided the heat transfer between the pipes as shown in Figure

149-2.

Heat Flow Rate
Jis
16.542
13.265
9.9886
6.7118
3.435

0.1582

Inquire: Results

-3.1186
-6.3954
-9.6722
-12.949

Current Losd Case = 1

Paxt: 1, Elsnent. 1487, Face. 1 (Hodes
Result Value: 10 40165452 J/=
14

alue

Summan: Sum - |m0se3s|
! Inchde resubs from hcden elements

Can| [mmvews) [emichmwi] [Leesin)

43)

b ]

Figure 149-2. Summing the heat rate of faces at one of the holes.

Table 149-1. Comparison of Results.

Heat Transfer between Pipes (W)

Theoretical

Analysis

% Difference

262

261.096

0.35

Accuracy Verification Examples Manual, Version 2014

447



AVE - 150

AVE - 150 Axisymmetric Vibration of a Simply Supported Annular Plate

Reference

Abbassian, F., Dawswell, D. J., Knowles, N. C., Selected Benchmarks for Natural Frequency Analysis, National
Agency for Finite Element Methods & Standards (UK), November 1987, Test 43.

Problem Description

A simply supported annular plate has an inner radius of 1.8 m, radial length of 4.2 m and thickness of 0.6 m as
shown in Figure 150-1. The plate is constrained in the Z direction at point A. The material properties are:

e Young's modulus of elasticity (E) = 200e9 N/m?

e Poisson's ratio (v) = 0.3

e Density (p) = 8000 kg/m®

Calculate the first three modal frequencies.

AZ

R
—>

o JA
—1.8m —|—— 4.2m —

Figure 150-1. Diagram of the axisymmetric model of the simply supported annular plate.

.6m

Theoretical Solution

From the reference, using a 15 x 4 mesh of 4-noded isoparametric axisymmetric elements to model the plate, the
first mode is 18.711 Hz, the second mode is 145.46 Hz and the third mode is 224.22 Hz.

Autodesk Simulation Solution

The profile was drawn from (0, 1.8, 0) to (0, 6, 0.6) and meshed with a mesh size of 15 x 4 using two-dimensional
(2-D) elements. The bottom right corner was constrained from translation in the Z direction.

A Natural Frequency (Modal) analysis was performed to calculate the natural frequencies and mode shapes. The
results for the first mode are shown in Figure 150-2.
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Mode: 10of 3

Frequency: 18.5246 cycles/s
Maximum Value: Not Available
Minimum Value: Not Available

1 < Design Scenario 1 >

= @ |

L.

Figure 150-2. The frequency and mode shape of the first modal frequency.

Table 150-1. Comparison of Results.

Frequency (Hz) .
Theoretical | Analysis % Difference
18.583 18.5246 0.31
140.15 138.467 1.20
224.16 224.042 0.05
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AVE - 151 Natural Frequency (Modal) Analysis of a Cantilever Beam with
Off-Center Point Masses

Reference

The Standard NAFEMS Benchmarks, National Agency for Finite Element Methods & Standards (UK), TNSB, Rev.
3, 5 October 1990, Test No. FV4.

Problem Description

A cantilever beam with a circular cross section is fixed at one end and has two off-center point masses at its free end
as shown in Figure 151-1.

Figure 151-1. Illlustration of the cantilever beam with circular cross section and two off-center point masses.

The beam is 10 m long and has a cross-sectional diameter of 0.5 m. The point masses are 10,000 kg and 1,000 kg,
respectively, both 2 m from the end of the beam. (See Figure 151-2)
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| 10m

I— 0.5m —l

Figure 151-2. Dimensions of the beam with masses.

The material properties are:

e Young's modulus of elasticity (E) = 200e9 N/m?
e Poisson's ratio (v) = 0.3

e Density (p) = 8000 kg/m®

Calculate the first six natural frequencies.

Theoretical Solution

According to the NAFEMS benchmark, using a mesh of 5 3-D beam elements along the beam length, the first
natural frequency is 1.722 Hz, the second is 1.727 Hz, the third is 7.413 Hz, the fourth is 9.972 Hz, the fifth is
18.155 Hz and the sixth is 26.957 Hz.

Autodesk Simulation Solution

The beam was drawn as a line from (0, 0, 0) to (10, 0, 0) and meshed with 20 beam elements. The origin point was
fully constrained. Offsets for the point masses were defined using beam elements with high stiffness and zero mass
density so they would not affect the solution. Lumped masses were defined at (10, 2, 0) and (10, -2, 0).

A Natural Frequency (Modal) analysis was performed to calculate the first six natural frequencies and mode shapes.

The results for the sixth mode are shown in Figure 151-3. The analysis results are compared to the NAFEMS
solution in Table 151-1.
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Mode: 6 of 6

Frequency: 26.7205 cycles/s

Maximum Value: Not Available

Minimum Value: Not Available I

1 < Design Scenario 1 >

Figure 151-3. The frequency and mode shape of the sixth natural frequency.

Table 151-1. Comparison of Results.

Frequency (Hz) .
Mode NAFEMS | Analysis % Difference
1 1.723 1.722 0.06
2 1.727 1.725 0.12
3 7.413 7.435 0.30
4 9.972 9.950 0.22
5 18.160 18.060 0.55
6 26.972 26.721 0.93
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AVE - 152 Steady-State Heat Transfer Analysis of a Coal Powder Stockpile

Reference
Bejan, A., Heat Transfer, John Wiley & Sons, 1993, Example 1.2, p. 25.
Problem Description

A 2-m-deep layer of fine coal powder (as shown in Figure 152-1) generates heat volumetrically due to a reaction
between the coal particles and atmospheric gases.

Atmosphere
T.——
o —>

: T i1

H=2m

Insulated

Figure 152-1. Illustration of the heat-generating coal powder stockpile.

The material properties are:

e Air temperature (T,) =25 °C

e Heat transfer coefficient (h) =5 W/m?K
e Heat generation (¢ ) = 20 W/m®

e Conduction=2W/mC
Calculate the temperature of the upper surface, Ty,
Theoretical Solution

Expressed per unit of surface area covered by the coal pile, the heat generated by the entire layer of coal is

q =aH=20"% om =40 %
m m

This heat transfer rate must escape through the upper surface of temperature T,
q" = h(TW_ Too)

because the lower surface has been modeled as insulated (zero heat flux). The unknown temperature of the upper
surface of the coal stockpile is

" 2
T, =T, +3 —o50c go W MK
h m? 5W

o0

=25°C+8°C=33°C
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Autodesk Simulation Solution

A cross-section of the coal stockpile (10 m long by 2 m wide) was modeled in FEA Editor using 80 two-dimensional
(2-D) elements. The top surface was defined as a unique surface number to facilitate the application of the
convection load. Element and material information was defined per the problem statement.

A Steady-State Heat Transfer analysis was performed to calculate the temperature distribution. The temperature at
the top of the coal stockpile was 33 °C as shown in Figure 152-2. The analysis results are compared to the
theoretical solution in Table 152-1.

Temperature
C

53

39 (33.0

Load Case: 1o0of 1

Maximum Value: 53 "C
z

Minimum Value: 33 °C I
Y

1 < Design Scenario 1 >

Figure 152-2. Inquiring on the temperature results at the top of the coal stockpile model.

Table 152-1. Comparison of Results.

Temperature (°C)
Theoretical | Analysis
33 33 0.00

% Difference
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AVE - 153 Bending and Wrinkling of a Pretensioned Beam-like Membrane

Reference

Miller, R. K., Hedgepeth, J. M., Weingarten, V. |, Das, P. and Kahyai, S., "Finite Element Analysis of Partly
Wrinkled Membranes", Computers and Structures, 1985; 20:631-639.

Problem Description

A beam-like rectangular plane membrane, with width h and thickness t, is tensioned by a uniform normal stress 6 in
both the x- and y-directions and subject to an in-plane bending moment M applied on its two ends. As the bending
moment is increased, a band of vertical wrinkles with height b appears along the compressed edge.

ttttttttts

0 O O

Taut Remon

p—
N -«
-
-+ h
b
\\*«1\ -—
Y. -] [
G, * 1
‘_

T T T
Wrinkling reglon

bevvloloy

T

0,

INES RN

Figure 153-1. Diagram of the beam-like membrane.

Determine the stress in the membrane and the relation between the bending moment and the overall curvature of the

beam-like membrane.
Theoretical Solution

The height b of the wrinkling region is given by

M 1

0, —(=

b_ Ph 6
h M 1 1 M1
Ph 2" 6 Ph 2

2
oY DY/ b)Y by,
Ox _ h h h h h
oo 0, os%s%
o
Oo
Ty =0
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Let k denote the overall curvature of the membrane acting as a beam. The relation between M and « is given by

1 Eth? . Eth?

2M _| 3 2P 2P
Ph |, 2 [ 2P Eth?

3VEth?c’ 2P

k<1

Kl

where E is the Young's modulus of the membrane material.
Autodesk Simulation Solution

Taking advantage of symmetry, only half of the diagram shown in Figure 153-1 was modeled in FEA Editor using
200 membrane elements. When defining the element information, a thickness of 0.01 m was specified. Additionally,
on the "Advanced" tab, the "No Compression™ option was activated, which disabled the element's ability to support
compressive loads (i.e., if the membrane elements are placed in compression, they should not resist the compressive
load). This option is useful for simulating fabric materials such as sails or parachutes. The material was specified
from the Autodesk Simulation Material Library as Plastics Nylon, Type 6/6.

Symmetry boundary conditions (TX, Ry, Rz) were defined along the left edge of the model, which is the centerline
of the diagram shown in Figure 153-1. Additionally, to give the model stability, nodal boundary conditions were
specified for the bottom left corner node (Tx, Tz, Rx, Ry, Rz) that constrained the model from out of plane
translation at the centerline.

Nodal forces of 0.01 N were added to the upper, right, and bottom edges to define the pretensioned tautness of the
membrane. (At the corner nodes, the nodal force values were halved (0.005 N) because the nodal forces are shared
by the adjacent elements.)

To simulate the moments shown in Figure 153-1, a nodal force of 0.0233 N was added to the top right corner node
and a nodal force of -0.0233 N was added to the bottom right corner node.

Figure 153-2. Half-symmetry model of the pretensioned membrane.

An MES with Nonlinear Material Models was set up with duration of 4 seconds and a capture rate of 10 steps per
second. A load curve was defined to specify that the bending load should be applied after 2 seconds and remain in
effect for the rest of the event. The analysis solved for motion and stresses.

In the Results environment, stresses were examined, which indicated that the upper region of the model is taut and
the lower region may be buckled. A chart comparing the theoretical and analysis results is shown in Figure 153-4.
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Stress
Tensor X-X
N/(m*2)

69.048
62.144
55.239
48.335
41.431
34526
27.622
20717
13.813
6.9086

00041556

Time: 4s
Time Step: 40 of 40
Maximum Value: 69.0483 N/(m*2)

Y
Minimum Value: 0.00415564 N/(m*2) I
X

1 < Design Scenario 1 >

Figure 153-3. Stress tensor X-X results at a node in the buckling region.
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Figure 153-4. Comparison of Results.
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AVE - 154 Displacement of a Restraining Rod Attached to a Beam

Reference

Lindeburg, Michael R., EIT Review Manual, #4073 594, Problem 13, p. 18-10.

Problem Description

A horizontal beam carries a triangular distributed load of 290 kN/m over section AB as shown in Figure 154-1. The

beam has a mass of 148 kg/m and is simply supported at point B. The cantilever end BC is restrained by a thin
aluminum rod, CD.

A -
C
B
;92/
35m
e\D
1.5m 5m 7

Figure 154-1. Diagram of the beam and restraining rod.

The material properties of aluminum rod CD are:
e Cross-sectional area (A) = 3.25 cm?

e Modulus of elasticity (E) = 6.9 x 10'° Pa
Determine the change in length of the rod.

Theoretical Solution

The triangular distribution has a total magnitude of
Tph-(L (1.5m 290x10° N | = 217500\
2 2 m

This force can be assumed to act through the centroid of the triangular distribution located 2/3 of the length AB from
support B. This is at

(%)(1.5m):1m

The beam self-loading for 1.5 m on either side of support B is equal. Only the last 3.5 m of the right side of the
beam are unbalanced. The unbalanced beam load is
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(148Qj(9.81m2)(3.5m) =5082N
m S

Measuring distance from point B to the right, this unbalanced beam load acts at
1
L5m+| 2 (3.5m)=23.25m
Take moments about point B to determine the tensile force in the aluminum rod CD.
Mg: (217500NX1m)— (5082 N)3.25m)+ R (5m)=0

Rc = -40197 N [downward]

The elongation is

(40197 N)(3.5m)(

1OOcmj2
=0.00627 m=6.27 mm

“AE (3.25cm?J6.9x10'Pa)
Autodesk Simulation Solution
The lines of the model were created by using the "Draw: Line..." capability in the FEA Editor environment.

The horizontal beam was modeled as part 1 using beam elements. The reference did not provide a cross-sectional
area for the horizontal beam; however, in the "Element Definition™ screen, a cross-sectional area of 1 was specified
to allow easy calculation of mass density. The mass density was defined as 148 kg/m®. (Multiplying the mass
density times the area of 1 gives the density as 148 kg/m?.)

The thin aluminum rod was modeled as part 2 using a single truss element. On the "Element Definition" screen, the
cross-sectional area was specified as 0.000325 m?. Because the rod was considered thin and massless, a very small
value was entered for the mass density (0.00001 kg/m®) on the "Element Material Specification" screen. The
modulus of elasticity was defined as 6.9e10 N/m?.

The bottom node of the rod (D in Figure 154-1) was fully constrained. Because truss elements have only
translational degrees of freedom, the fixed node will act as a pin. To simulate the simple support of the beam at point
B, the node was constrained in all degrees of freedom except for rotation about the Z axis.

The triangular distributed load over the 1.5-m section (AB) of the beam was defined by selecting the line and right
clicking to access an options menu and then using the "Setup tab; Beam Loads panel; Beam Distributed Load"
command sequence. The I-node magnitude was specified as -290000 N/m in the Y direction at the | side (the left
hand side of the model) and the J-node magnitude was defined as 0 N/m in the Y direction at the J side to give the
triangular distributed load.

To better simulate the gravity loading, the 5-m beam section (BC) was divided into five beam elements. The gravity
loading was specified in the —Y direction.

A Static Stress with Linear Material Models analysis was run to determine the displacement of point C. In the

Results environment, displacements were examined in the Y direction, which matched the reference solution. Table
154-1 shows a tabular comparison of the theoretical and analysis results.
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Displacement

Magnitude
m

0.0062735
0.0056462
0.0050188
0.0043915
0.0037641
0.0031368
0.0025094
0.0018821
0.0012547
0.00062735
0

Load Case: 1o0of 1

Minimum Value: 0 m

Maximum Value: 0.00627354 m

1 < Design Scenario 1 >

0.006274

0-r-<
>

AVE - 154

Figure 154-2. Inquiring on displacement results at point C. Results are shown on the displaced model with the

undisplaced model shown as a mesh.

Table 154-1. Comparison of Results.

Displacement (m) %
Theoretical | Analysis | Difference
6.27e-3 6.27e-3 0.00
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AVE - 155 MES of a Parallelogram Linkage Used to Transfer a Crate
between Platforms

Reference
Meriam, J. L., Kraige, L. G., Engineering Mechanics: Dynamics, Volume Two, problem 6/29, p. 426.
Problem Description

As shown in Figure 155-1, a parallelogram linkage (including rods CD and EF) is used to transfer crates from
platform A to platform B and is hydraulically operated by an actuator.

G
°
A
480
——eD Fe
B -~
— i
/
1200 mm '\ "~
~ |
~ 8ol
600 mm

Figure 155-1. Diagram of the parallelogram linkage used to transfer a crate from platform A to platform B.

The oil pressure in the actuator cylinder is programmed to provide a smooth transition of motion from 6 =0 to 6 = 6
= 71/3 rad given by

0= g(l— cos%j where t is in seconds.
The crate has a mass of 200 kg with mass center at point G. Assume that the mass of both the platform beneath the
crate and the rods is negligible.
Determine the force at point D on the rod:
(a) just after the start of the motion with 0 and t essentially zero; and
(b) whent=1s.
Theoretical Solution
The reference gives the solution as:
(8 D=1714 N; and
(b)) D=2178 N
Autodesk Simulation Solution
Rod CD was modeled as part 1 using a single truss element. On the "Element Definition" screen, a cross-sectional

area of 1 m? was specified. The material was defined as "Aluminum (6061-T6)" with a small value for the mass
density (0.00001 kg/m®) to because the problem description specified that the rod is considered massless.
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The platform that supports the crate was modeled as part 2 using 2-D elements with dimensions (1.6 m wide and .25
m thick) that were not specified in the problem description. On the "Element Definition" screen, plane stress
geometry was specified along with a thickness of 1 m. The material was defined as "Aluminum (6061-T6)" with
mass density of 0.00001 kg/m?® to simulate masslessness.

The crate was modeled as part 3 using 2-D elements with the center point of the crate at 0.48 m above point D. Same
as for the platform, plane stress geometry and a thickness of 1 m were specified. The material was defined as
“Aluminum (6061-T6)" with the mass density as 352.113 kg/m®, which was calculated from the volume to give
mass = 200 kg as specified in the problem description.

Rod EF was modeled as part 4 using a single beam element. A cross-sectional area of 1 m? was specified. The
material was defined as "Aluminum (6061-T6)" with mass density as 0.00001 kg/m? to simulate masslessness.

Fully fixed nodal boundary conditions were added to the node at point C. Per the problem description, point C
should be free to rotate about the X axis; however, because rod CD is a truss element and truss elements do not have
rotational degrees of freedom, there is no need to define rotational degrees of freedom and it is satisfactory to use the
fully fixed condition.

The node at point E was constrained in all degrees of freedom except for rotation in the X direction.

A prescribed rotation was added to the node at point E with a magnitude of 1 revolution in the Scalar X direction.
The Timeline Event Editor was used to define an equation to represent the motion. In the "Equation Editor" dialog, a
start time of 0.00, end time of 1.00 and interval of 0.001 were specified and the equation was input (the equation
given in the problem description was converted from radians to revolutions). (See Figure 155-2)

Equation Editor Liz-,l
Start ¥ k]
End 1.0
Interyal 0m

Equation (1-CO5[3.14%421114

ABS DEG ARCCOS

ARCTAN SINH ARCOSH

cas LOG TANH

R&D ARCSIN SIM

SGR ARSIMH INT

LM COSH ARTAMNH

TaN ExP

| Owenanite Modes [ ar. ” Cancel |

L 4

Figure 155-2. Defining the event curve in the ""Equation Editor" dialog of the Timeline Event Editor.

The active range for the prescribed rotation was defined as a birth time of 0 and death time of 100 so that it was
always active throughout the event.

On the "Analysis Parameters" screen, the duration of the event was specified as 1 s and the capture rate as 100
steps/s. On the "Accel/Gravity" tab, a standard gravity load was specified in the —Z direction.

A Mechanical Event Simulation with Nonlinear Material Models was performed to solve for the force at point D at
time = 0.01 s and 1.00 s. In the Results environment, axial forces were examined for the relevant time steps. The
axial force on point D at time = 0.01 s was calculated as -1714.88 N as shown in Figure 155-3. The axial force on
point D at time = 1 s was calculated as -2174.48 N as shown in Figure 155-4. Table 155-1 shows a tabular
comparison of the theoretical and analysis results.
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Axial Force o
N
-247.81
-394.52
-541.22
-687.93
-834.64
-981.35
-1128.1
-1274.8
-1421.5 f

|
-1568.2 -1714.881226
-1714.9

Time: 0.01s
Time Step: 1 of 100
Maximum Value: -247.81 N

z
Minimum Value: -1714.88 N 1
Y

1 < Design Scenario 1 >

Figure 155-3. Inquiring on axial force results at point D for time = 0.01 s.

Axial Force -e
N
636.46
35537
74.271
-206.82
-487.92
-769.01
-1050.1
-1331.2 I

-1612.3 : ; . -
18934 1-2174.484 \

-2174.5

Time: 1s

Time Step: 100 of 100
Maximum Value: 636.46 N
Minimum Value: -2174 48 N

1 < Design Scenario 1>

md—rN
-£

Figure 155-4. Inquiring on axial force results at point D for time=1s.

Table 155-1. Comparison of Results

. Axial Force (N) or M
Time (s) Theoretical | Analysis 6 Difference
0.01 1714 1714.88 0.05
1 2178 2174.48 0.16
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AVE - 156 Beam with Spring Support under Distributed Load

Reference

Formulae used in this example are available in any mechanical engineering handbook.

Problem Description

A horizontal beam (length = 30 in, width = 0.5 in and height = 0.75 in) is fixed on one end and supported by a spring

(with stiffness k = 54 Ib/in) at the other end. A distributed load (w = 5 Ib/in) is applied on the top of the beam as
shown in Figure 156-1.

Figure 156-1. Diagram of the beam with a spring support under a distributed load.

The material properties of the beam include:
e Modulus of elasticity (E) = 30 x 10° Pa
e Poisson's ratio = 0.3

Find the deflection at point A (the free end of the beam) and the force in the spring.

Theoretical Solution

The method of modal superposition was used for the theoretical solution of this problem. As shown in Figure 156-2,
the problem was broken down into two problems:

1. acantilever beam with the distributed load (causing a larger deflection at the free end); and
2. aforce (equal to the spring stiffness times the deflection in the spring) applied to the end of the beam.

Figure 156-2. The results of these two problems were added to solve for the system shown in Figure 156-1.

The results of these two problems were added together to yield the solution for the system shown in Figure 156-1.
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First, the deflection at point A due solely to the distributed load was solved for as shown in Figure 156-3.

Figure 156-3. Diagram of the deflection at point A in the beam due to the distributed load.

This value can be found in mechanical engineering handbooks or calculated as follows

4
L=L 5 9509inch
8xEx|

The above equation gives a deflection of nearly one inch in the downward direction.

The moment of inertia (the beam cross section) is based on the width and height given and is calculated as

(0.5(0.75)
12

| = =0.01758in*

Next, as shown in Figure 156-4, the deflection due to the spring load (the force F) is unknown because the amount
of downward deflection in the beam (AA) is not known.

s.—-——___—?a.ﬂ

F=KkA
Figure 156-4. Diagram of the deflection at point A in the beam due to the spring load.

The deflection due to the load at the end of a cantilever beam is

3
AAp =5 (ke an)#0.0171
3xEx|

where the force at the end of the beam is a function of how much deflection occurs in the spring.

Finally, the two problems were put together to calculate the total deflection at point A as shown in Figure 156-5.

Figure 156-5. Diagram of the total deflection at A in the beam with support spring.
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The total deflection at point A due to both loads is
AA = AA,+ AA¢
AA =-0.9599in+ (k* AA)*0.0171
AA =-0.499in

Thus, the final deflection at point A was calculated as just under a half inch.
With the deflection of the spring known, it was used to find the force in the spring:

F=k+AA =-26.951b

Thus, the force in the spring was calculated as nearly 27 pounds compression.
Autodesk Simulation Solution

The beam was modeled in FEA Editor as using Brick elements. The Brick model represented the ends of the beam
as four rectangular surfaces with a point at the center of the beam. The center point was where the spring would be
attached, which would not introduce any twisting effects that were not covered in the theoretical solution. A line
(with a length of 5 inches in the —Z direction) was added as part 2 to represent the support spring.

Translational constraints (Tx, Ty and Tz) were applied to the free end of the spring to pin it to the ground. Fully
fixed constraints were applied to the free end of the beam. A uniform pressure load of 10 Ibf/in? was applied to the
top surface of the beam.

For part 1, the beam, material properties were specified for the modulus of elasticity (30e6 Ibf/in?), which was given,
and Poisson's ratio (0.3). For part 2, the spring, the spring element type was specified. In the "Element Definition"
dialog, the spring stiffness was defined as 54 Ibf/in and the "Axial" option was chosen for the element type to
describe the spring's movement. On the "Visualization" tab, options were specified to visualize spring elements as a
spring with coils rather than as a line. The finite element model of the beam and spring support is shown in Figure
156-6.
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Figure 156-6. The finite element model of the beam and spring support.

AVE - 156

A Static Stress with Linear Material Models analysis was performed. In the Results environment, the deflection in

the Z direction at the center of the spring end of the beam was examined as shown in Figure 156-7.

Displacement
Z Component
in

0
-0.049591
-0.099181
-0.14877
-0.19836
-0.24795
-0.29754
-0.34714
-0.39673
-0.44632
-0.49591

Load Case: 1o0of 1
Maximum Value: 0 in

Minimum Value: -0.495907 in

1 < Design Scenario 1 >

=0 B

Figure 156-7. Displacement results at the center of the spring end of the beam.
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The force in the spring was examined as shown in Figure 156-8.

Reaction Force
Z Component
Ibf
1376.4
1166.3
956.22
74612
536.01
32591
115.81
-94.294
-304.4
-514.5
-724.6

Load Case: 1o0of 1
Maximum Value: 1376.43 Ibf

Minimum Value: -724.604 |bf

1 < Design Scenario 1 >

-26.778924

k

Figure 156-8. Inquiring on the force result of the spring.

AVE - 156

Table 156-1 shows a tabular comparison of the theoretical and analysis results. The results matched the theoretical

solution to within one percent.

Table 156-1. Comparison of Results

Theoretical | Analysis | % Difference
Displacement (in) -0.499 -0.496 -0.60
Force (Ib) -26.95 -26.78 -0.63
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AVE - 157 Body-to-Body Radiation Heat Transfer in the Frustum of a Cone

Reference

Siegel, Robert and Howell, John R., Thermal Radiation Heat Transfer, 3rd Edition, Taylor & Francis, 1992,
Example 7-15, pp. 277-278.

Problem Description

A frustum of a cone has its base heated (heat flux of 3000 W/m?) while its top is held at 550 °K and the side is
perfectly insulated on the outside as shown in Figure 157-1. Each surface has a different emissivity as noted.

Surface 3
T3=550 K > cm
83 = 1 '

Surface 2
insulated
€7 =0.8

Surface 1
q1=3000 W/m2
€1=0.6

Figure 157-1. Diagram of the body-to-body radiation heat transfer in the frustum of a cone.

Find the temperature on the bottom surface and the temperature of the side surface.

Theoretical Solution

From Appendix C of the reference, the shape factor for surface 3 to surface 1 (the top to the bottom) is calculated as
F3-1=0.3249

All other view factors are calculated either by using reciprocity because the view factors must sum to 1. With the
view factors known and based on the given, the equation for the temperature of the bottom surface can be written as

% = o[Tl“— 0.8556T, — 0. 1444(550)4]

and the equation for the temperature of the side surface can be written as

1-0.6

o6 o[— 0.3735T+ (1—0.4955)T, — 0. 1310(550)4]

—3000(0.3735)

Solving the two equations for the unknowns gives

Tbottom surface = 721.6 °K
®  Tsidesurface = 667.4 °K
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Autodesk Simulation Solution

A two-dimensional (2-D) model of the cone frustum was built using FEA Editor. 3-D view with a slice plane is
shown in Figure 157-2. The top, side and bottom parts were modeled using different part numbers and the inner and
outer surfaces were specified to have distinct surface numbers to facilitate applying loads and examining results.

=0 |

z

]‘:v

Figure 157-2. A cross section of the cone frustum.

For units, the standard Metric mks (SI) unit system was modified to use Kelvin (K) for temperature in order to
match the problem description. 2D axisymmetric elements were used for all three parts.

Although the material was not specified in the reference source, it was assumed that all three parts had uniform
temperatures. This was simulated by using a material with a high thermal conductivity, copper, for all three parts.

Three loads were applied to the model:

Controlled temperature (550 °K) on the top part — A stiffness of 500e4 J/°K was used to ensure that the
calculated temperature would approach the specified magnitude.

Heat flux load (3000 J/(s*m?)) on the bottom part

Body-to-body radiation for the three parts — The Analysis Parameters dialog was used to define surfaces
and specify emissivity values per the problem description. Then, the surfaces were assigned to enclosures,
which are collections of surfaces that can "see" each other and radiate amongst themselves. Because the
interior of the cone frustum is a completely enclosed body, no shadowing or ambient temperature
parameters needed to be specified. However, because the surfaces are relatively close to each other, the
view factor tolerance was set to 0.2 to avoid a warning message.

Additional analysis parameters were specified:

On the "Multipliers" tab, a radiation multiplier of 1 was specified to activate the radiation load.

On the "Options™ tab, under "Nodal Temperatures”, the default nodal temperature was specified as 667 °K
to help the solver converge on the final solution. (This value, which is near the theoretical result, would be
used by the solver for the first iteration.)

On the "Advanced" tab, under "Non-Linear Iterations", the "Perform™ option was activated to specify that
nonlinear calculations should be performed. In the "Criteria" field, the "Stop when corrective norm < E1
(case 1)" option was specified. Values were specified for the maximum number of iterations (500), the
corrective tolerance (0.1) and relaxations parameter (0.15).
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A Steady-State Heat Transfer analysis was performed and the temperature distribution results were examined in the

Results environment.

Temperature

K
738.69
719.83
700.96
682.09
663.22
644.35
625.48
606.61
587.74
568.87
550

Load Case: 1o0of1

Maximum Value: 738.695 K

Minimum Value: 550.003 K

1 < Design Scenario 1 >

= 0 B

Figure 157-3. Temperature results (3D visualization + slice plane).

Table 157-1. Comparison of Results

Theory | Analysis | % Difference
Temperature of Bottom Surface (°K) 721.6 738.5 2.34
Temperature of Side Surface (°K) 667.4 685.1 2.65
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AVE - 158 Circular Plate with Fixed Edges under Uniform Pressure Load

Reference

Boresi, Arthur P., Schmidt, Richard J. and Sidebottom, Omar M., Advanced Mechanics of Materials, Fifth Edition,
John Wiley & Sons, Inc., 1993, Example 13.3, pp. 548-550.

Problem Description

A circular plate (diameter = 200 mm, thickness = 10 mm) is fixed at the edges and is subjected to a uniform pressure
load of 4.2 MPa as shown in Figure 158-1.

200 mm

-—

Figure 158-1. Diagram of the circular plate with fixed edges under uniform pressure load.

The material properties of the plate include:
e Modulus of Elasticity (E) = 200 GPa
e Poisson's Ratio (v) = 0.29

Find the maximum displacement in the circular plate due to the pressure load.
Theoretical Solution
The maximum deflection of the plate under the uniform applied pressure is

_ 3l - 0.20%)(4.20)100)¢

=0.361mm
"En® 1620010 J10)’

4
3 pya
W :—16(1—\/2\ y
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Autodesk Simulation Solution

A plate element model of the circular plate was built using the Sketching features in FEA Editor. A sufficiently fine
mesh was created by drawing a rectangle inside the circle and then meshing between the arcs of the circle and the
sides of the rectangle as well as inside the rectangle as shown in Figure 158-2.

L.

Figure 158-2. The finite element mesh.

the problem description, the unit system was customized for length in millimeters to correspond with how the model
was drawn. Plate elements were used with the thickness specified as 10 mm per the problem description. For
material properties, the modulus of elasticity and Poisson's ratio were specified per the problem description.

A uniform pressure load (4.2 N/mm?) was added to surface 1 of the model. The outermost nodes of the model were
fully constrained.

A Static Stress with Linear Material Models analysis was performed and the maximum displacement results were
examined in the Results environment. The maximum displacement was found at the center of the plate as shown in
Figure 158-3.
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Displacement
Z Component
mm

0.35911
0.3232
0.28729
0.25138
0.21547
- 0.17956
-0.14365
0.10773
0.071823
0.035911
0

Load Case: 1 of 1
Maximum Value: 0.359114 mm
Minimum Value: 0 mm

1 < Design Scenario 1 >
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Figure 158-3. Inquiring on nodal displacement results in the Z direction for the circular plate with fixed edges

under uniform pressure load.

Table 158-1 shows a tabular comparison of the theoretical and analysis results. The results correlated with the

theoretical solution to less than one percent.

Table 158-1. Comparison of Results

Theory | Analysis | % Difference

Displacement (mm) 0.361 0.359
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AVE - 159 Force on the Actuator of a Hydraulic-Lift Table

Reference

Beer, Ferdinand P., Johnston, Jr., E. Russell, Eisenberg, Elliot R. and Clausen, William E., Vector Mechanics for
Engineers: Statics and Dynamics, Seventh Edition, McGraw-Hill, 2004, Problem 6.7, pp. 332-333.

Problem Description
A hydraulic-lift table is used to raise a 1000-kg crate. It consists of a platform and two identical linkages on which
hydraulic cylinders exert equal forces. (Only one linkage and one cylinder are shown in Figure 159-1.) The two

vertical members are each 1.4 m in length and the horizontal member is 1.6 m in length. Half of the weight of the
crate acts as a downward force of 4905 N on the table.

l F=4905N

a=14m

L=32m

Figure 159-1. Diagram of half of the hydraulic-lift table.

Determine the force on the actuator at D when 6 = 60°.
Theoretical Solution
Free-body diagrams were used to solve for the force on the actuator as

For = W2 oot 0 = (0.81kN)22E™ ot 60° = 5.15 kN
EH 3.20m

Autodesk Simulation Solution

A model of half of the hydraulic-lift table was built using FEA Editor. The crate was not modeled because its weight
would be simulated by the downward force of 4905 N on the table top.

Beam elements were used for the two 1.4-m long vertical members. Because results in this part of the model were
not of interest and because cross-sectional properties were not given in the problem description, these beam
elements were made very rigid (a thick cross-section was specified [L m x 1 m]; the mass density was made very
small [.00000001 kg/m?]; and the modulus of elasticity was made an order of magnitude stiffer than normal steel
[1999500000000 N/m?]).

2-D elements were used to represent the table top. A thickness of 1 m was specified and the same material properties
were specified as for the beam elements in order to make the table top very rigid.
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An actuator element was used to simulate the hydraulic actuator. The type of actuation was specified as
displacement (rather than rotation) and a distinct load curve number was used for the specified length.

The bottom three nodes (at the base of the vertical members and the actuator) were constrained except for rotation
about the X axis. The other three nodes of the model (at the midpoint of the leftmost vertical member and at the top
of the vertical members) were constrained from translation in the X direction in order to make the 3-D beam and
actuator elements remain in the YZ plane along with the 2-D elements.

A nodal force (magnitude = -4905 N in the Z direction) was added to the table top to simulate the weight of the
crate. (The location of the force was arbitrary because it could be applied to any node along the top of the table
without changing its effect.)

Analysis parameters were defined including the event duration (1 second) and capture rate (1000 time steps/second).
Load curve information was specified for the force load and for the actuator movement (extend the actuator by 0.3
m, which would move the leftmost vertical member to an angle slightly greater than 6 = 60°). The finite element
model is shown in Figure 159-2.

= Fen Ednor | aaRS) [T Ragart |

Figure 159-2. The finite element model of the hydraulic-lift table.

A Mechanical Event Simulation with Nonlinear Material Models was performed. The "Tools tab: Inquire panel:
Measure command™ was used to determine at what time step was the angle of the leftmost vertical member nearest
to 0 = 60° (see Figure 159-3).
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Inquire: Distance and Angle 72| =@ &

Distance between last 2 nodes = 0.7m
X = Om

DY = -0.349791n

DZ = -0.606338m

Angle betveen last 3 nodes = 60.0197° (angle)
Bend Angle (180 — Angle) = 119.98° (angle)

Clear [ Hel

Time: 0.989 s

Time Step: 989 of 1000

< Design Scenario 1 >

Figure 159-3. Inquiring on the distance and angle of circled nodes.

AVE - 159

It was found that 6 was nearest to 60° at time step 989. Inquiring on the reaction force magnitude at point D for time
step 989 (as shown in Figure 159-4) gave the answer that was asked for in the problem description.

Reaction Force
Magnitude
N

51535
46381
41228
3607.4
30921
2576.7
2061.4
1546
1030.7
51535
0

Time: 0.989 s

Time Step: 989 of 1000

Maximum Value: 5153.48 N
z

Minimum Value: O N I
Y

1 < Design Scenario 1 >

Figure 159-4. Inquiring on the reaction force magnitude at point D when 0 was nearest to 60°.

Table 159-1 shows a tabular comparison of the theoretical and analysis results. The results matched the theoretical

solution.

Table 159-1. Comparison of Results

Theory

Analysis | % Difference

Force (kKN)

5.15

5.15

0.00
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AVE - 160 Heat Transfer Rate of a Heat Exchanger Wall with Pin Fins on
One Side

Reference

Bejan, Adrian, Heat Transfer, John Wiley & Sons, Inc., 1993, Example 9.1, pp. 456-457.

Problem Description

A heat exchanger wall separates a stream of hot liquid (T, = 100 °C, h, = 200 W/m?*K) from a stream of cold gas
(T. = 30 °C, he = 10 W/m**K). The wall has a thickness of 0.8 cm and a square frontal area (length = 0.5 m). The

cold side has 625 pin fins (each with length = 5 cm and diameter = 0.5 cm) arranged in a square pattern (see Figure
160-1). The effects of convection on both sides of the wall are negligible.

0.5m

rF s

2cm

< el
0.8cm 2cm

Figure 160-1. Diagram of the heat exchanger wall with pin fins on one side.

The wall and fins are made of a metal with the following material properties:
e  Conductivity (k) = 40 W/m*K
Determine the total heat transfer rate (q) for the entire 625-pin finned heat exchanger wall.
Theoretical Solution
The total heat transfer rate through the entire arrangement is calculated as

_ (100-30)k

=U,A. (T,-T.)=
q h h(h c) 0.169 KIW

=415W

Autodesk Simulation Solution

Due to symmetry, only a section of the wall with one fin was modeled using FEA Editor. First, a 2-D cross section
of the wall and fin was drawn and meshed. Then, the wall and fin were extruded separately to create the 3-D mesh.
Different surfaces were specified to facilitate adding convective loads to the hot side and the cold side (see Figure
160-2).
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0ad and Constraint Groups

ats
= () Part1 < Unnamed >
5 Element T,
5] Element
15 Mate
@ sufaces
(3 Suface < Unnamed >

ion
{Customer Defined] >

{3 Sufaced < Unnamed >
) Suface 6 < Unnamed >
I Meshes

55 Contact (Default: Bonded)

=0 %

F

NUM

Figure 160-2. The surfaces of the heat exchanger wall and pin fin.

AVE - 160

Brick elements were used and material properties were specified including the thermal conductivity per the problem
description. Convective loads were specified for the surfaces of the cold side and the hot side. A Steady-State Heat
Transfer analysis was performed to determine the temperature results for the model under the two convective loads.
The results were examined in the Results environment. Inquire capabilities were used to sum the heat flow rate
results for only the nodes of the hot-side surface (see Figure 160-3). The summed value was multiplied by 625 to
give the total heat flow rate for the entire heat exchanger wall with 625 pins.

Heat Flow Rate
Jis

0.0037853

0.0030558
0.0023262
0.0015966
0.00086707
0.00013752
-0.00059204
-0.0013216
-0.0020512
-0.0027807
-0.0035103

Inquire: Results

Current Load Case = 1

« m

/| Include results from hidden elements

Part: 1. Element: 1. Face: 2 (Nodes: 6674. 6621. 6f
Current Result Value: -1.972599886e-003 J/s

Part: 1, Element: 9, Face: 2 (Nodes: 6673. 6674, 6%
Current Result Value: -2.067971043e-003 J/s

Part: 1, Element: 41, Face: 2 (Nodes: 6669, 6670, € _

Summary: G - -0.6513651862

0

Cear | [SaveVaues.| [Save ToRepart.|

[ Speciy. | [ Hep |

F

Figure 160-3. Summing the heat flow rate for the hot-side surface.

Table 160-1. Comparison of Results

Theory | Analysis

% Difference

Total Heat Transfer Rate (q) 415 407

1.9
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AVE - 161 First Natural Frequency of a Rectangular Flat Plate with All
Edges Fixed

Reference

Young, Warren C., Roark's Formulas for Stress and Strain, Sixth Edition, McGraw-Hill Book Company, 1989,
Table 36, Case Number 15, p. 717.

Problem Description

A rectangular flat plate (in this case, a square with sides of length = 10 in as shown in Figure 161-1) has all four
edges fixed.

10 in

Figure 161-1. Diagram of the rectangular flat plate with all edges fixed.

Find the first natural frequency of vibration (cycles per second) due to the plate's own weight.
Theoretical Solution

The first natural frequency of the plate is calculated as

=k |09 35104,
2n | wa

Autodesk Simulation Solution

The reference allows for the rectangle to have different length and width, but, for this example, a 10 in x 10 in
square was used. The model of the square plate was drawn within FEA Editor. A 100 x 100 mesh was created using
automatic meshing capabilities.

Plate elements were used and a thickness of 0.1 inch was specified arbitrarily because the problem description did
not specify the thickness. The problem description also did not specify material properties, so properties for Steel
(4130) from the Autodesk Simulation Material Library were used. The nodes along all four edges were fully
constrained.

A Natural Frequency (Modal) analysis was performed to determine the mode shapes and natural frequencies for the

model due to its own weight under gravity loading. The results were examined in the Results environment including
the first natural frequency.
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Mode: 1of5

Frequency: 350.895 cycles/s

< Design Scenario 1 >

k

Figure 161-2. The first natural frequency.
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Table 161-1 shows a tabular comparison of the theoretical and analysis results. The results nearly matched the

theoretical solution.

Table 161-1. Comparison of Results

Theory

Analysis

% Difference

First Natural Frequency (Hz)

351.0

350.9

0.03
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AVE - 162 Heat Transfer through Thin Plate

Reference

Bejan, Adrian, Heat Transfer, Second Edition, John Wiley and Sons, 1993, Example 2.3, p. 68

Problem Description

A 3in diameter circular battery of 6in in length is placed on one circular face on a heated plate with temperature of
50 C. The surrounding air is 20 C and sufficiently large that can be considered infinite thermal well for the battery.
A thin shell of .5 mm surrounds the interior of the battery. The convection coefficient for this shell and the contact

with surrounding air is 5 W/K*m?. The thermal conductivity value is 15 W/K*m. The Heat transfer between the
battery shell and contents of the battery can be ignored.

. p—|

Tinf

To

Figure 162-1. Diagram of Problem

Theoretical Solution

This situation is clearly an application of an extended surface or a fin. Since we have the choice of equations on
how to treat fins, first the situation is tested for the long-fin criteria:
mL = (25.8)*(0.06) =1.55

h 1/2
m=|—
)

Since mL is not significantly larger than 1, the model should be considered a fin with heat transferring tip rather than
a long fin:

T — T

9. 1h =0402=—>__"~

O, cosh(mL) + —-sinh(mL) T =T,
mk

T,=321C

top
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Autodesk Simulation Solution

The model was created in the sketching environment of FEA Editor by first sketching a radial cross section of the
model. This rectangle is then meshed using the “4 points rectangular” function of the FEA editor. The lines on the
outside of the mesh are selected and designed as Part 2. The entire system is then selected and the entire cross
section is revolved around the center axis. The element type of the center part, Part 1, is assigned as brick and the
battery shell, Part 2, is assigned as a plate element. The plate element is assigned a thickness of 0.0005 m. This
does make the overall battery have a diameter of 0.0305 m rather than the 0.03 m specified as plate elements create
thickness on both sides of the mesh, but this difference is too minor for major concern. The bottom surface of the
shell is selected using Line select and assigned a new surface number.

A convection load of 5 W/K*m? and 20 C is applied to the outside surface of the shell. A temperature is applied to
the bottom surface of the shell. Thermal Conductivity for the parts must be set for this type of analysis. The interior
of the battery, part 1, should have an extremely low conductivity, 1E-9, as the problem states that its heat conduction
is negligible. The outer shell has a thermal conductivity of 15 W/K*m.

Temperature
C

Load Case: 1 of 1

Maximum Value: 50 °C
Minimum Value: 31.037 °C i
1 < Design Scenario 1 >

Figure 162-2. Temperature results on the outer surface of the Plate

Table 162-1. Comparison of Results

Theory Analysis | %Difference
Temperature (C) 32.1 31.04 3.3
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AVE - 163 Angular Deflection of Steel Step Shaft

Reference
Popov, E.P. Mechanics of Materials, Second Edition, Prentice-Hall, 1976, Example 3-7, p. 609-611.
Problem Description

A stepped shaft with properties of steel is attached to a wall at one end. Torsion loads are applied at two points
along the shaft.

0.050m dia.
0238m dic.
TE=150 F.m Tc=1000 N.m
] =} c d =
— [
. 0,30 | 0.50 -
020
025 -

Figure 163-1. Diagram of Problem

Theoretical Solution

This example uses prismatic beams, thus the simple torsion formula equations:

9= E — TdeLde + Tcd Lcd + TbcLbc Tab Lab

G‘] ‘]de ‘]cd ‘]bc ‘]ab
Where T is the combined value of torsion, L is the length of the shaft, G is the Shear Modulus, and J is the polar
moment of inertia.

G =80E9 N/m’

/G

_ch_ ”)(d ) ~383.5E -6 m*

I, =d, :ﬁ( —d})=57.52E—-6 m*

These values result in a total angular deflection at a of:

6=1.33

Autodesk Simulation Solution

The CAD model was imported to FEA Editor to be meshed. Since the default mesh of this part was too coarse, the
model was re-meshed using an absolute mesh size of 0.005. A split line was added from along the centerline of the
shaft for later use in adding coupled forces. In addition, two splits were created at the points where the loads need to
be added.

The bottom surface of the shaft is fully constrained as specified by a wall connection. Since the shaft is modeled as

solid brick elements and brick elements do not accept moments and torsional loads, there are a few options available
to apply the loads to the model such as adding beam elements. In this case, coupled forces were chosen to mimic
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the torsion loads. First a cylindrical coordinate system was defined along the centerline of the shaft. This
coordinate system was then applied to the edges created by split lines added earlier. Then the proper forces were
applied to the edges in the tangential (Y in the cylindrical coordinate) direction. To complete the shaft part, typical
steel material properties were assigned.

Since rotational displacement measures the twist of each element, beam elements were added at the top such that the
center of the beam part was aligned with the center of the part. The beams were directly attached to nodes on the
top end of the shaft and given very stiff properties to prevent possible deflections. The rotational displacement of
the beams gives an accurate description of the rotation of the end face of the shaft.

Nodal Rotation
Magnitude
“ (angle)

1.3788
1.2409

1.103
0.96513
0.82726
0.68938
0.55151
0.41363
0.27575
0.13788
0

Load Case: 1o0of 1
Maximum Value: 1.37876 ° (angle)

Minimum Value: 0 ° (angle)

1 < Design Scenario 1 >

Figure 163-2. Angular Deflection of Beam Elements

Table 163-1. Comparison of Results in Degrees

Theory | Analysis | %Difference
Deflection Angle 1.33 1.3788 3.67
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AVE - 164 Deflection of Simply Supported Beam and Spring System

Reference

Higdon, Archie; Ohlsen, Edward; Stiles, William; Weese, John; Riley, William, Mechanics of Materials, Third
Edition, John Wiley and Sons, 1976, Example 11-2, p. 609-611.

Problem Description

A 50-1b block drops 2in onto the center of a 6061-T6 aluminum alloy beam. The beam has a cross section of 3in
wide by lin high and is simply supported. In the center of the beam a helical spring, k=100 Ib/in, is in contact with
the beam but is unstressed before impact. The beam and spring system absorb 90% of the energy elastically.

A
i

2
| 5' |

|-

-

Figure 164-1. Diagram of Problem

Theoretical Solution

Since the action is assumed to be elastic and the materials obey Hooke’s law the load-deflection relation will be
linear. Using deflection relationships, contact force and flexural stress can be determined.
50(2 + A).9)= PA/2

_(P-Q)* _(P-Qo’hs2’) _ (P-QJass)
AT4gEI 48107 3N )12 (10*)

5 =
10
A=5, =5,

o

Where P is the dynamic contact force and Q is the force exerted by the spring. From these equations and a few
simple algebraic steps,
P=22531b and Q=133.0 Ib

Flexural Stress
_ Mc _ R(60)

- _ 5540 psi
T T )2 P

Where R is the reaction force at one end of the beam
R=(P-Q)/2=46.15 Ib
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Autodesk Simulation Solution

A model was created in the FEA Editor. There are three parts in this system; a beam, a spring, and a falling block.
The beam was created using the “Draw tab: Draw panel: Line button” and assigned a user-specified rectangular
cross section in the elements definition section of the tree control window. The material was originally defined as
Aluminum 6061-T6 and the density was edited to 0 to match the mass of the beam model used in the test. The beam
was also divided into 8 segments using the “Draw tab: Modify panel: Divide button”. The spring was also created
using the “Draw tab: Draw panel: Line button” and defined with an axial spring stiffness of 100 Ib/in. Lastly, the
block of brick elements was created 2in above the height of the beam using the Sketching functions of FEA Editor.
Again, the density of the brick was set to 0 to mimic the ideal situation of the text. Since the other properties of the
block were not specified, the values for Poisson’s Ratio and Modulus of Elasticity of Aluminum 6061-T6 were used.

The model was analyzed using the MES with Nonlinear Material models analysis type with duration of 0.2 seconds
and a capture rate of 500 frames per second. The ends of the beam element were constrained for the pin joint at one
end and the roller support at the other. The spring was also constrained at its lower end as the upper end is attached
to the beam.

The block was constrained to prevent movement out of the Z plane. A lumped mass was added to the block to
simulate the weight force of 50 Ib * 90% specified by the problem. Gravity was set at standard values in the —Z
direction. Results were observed using the Graph function at the center node of the beam.

‘——— Bending Stress About Local 2 AXis (5) (IDT(IN'2))

-500

-1000 —

-1500 —

-2000 —

-2500 —

-3000 —

-3500 —

-4000 —

-4500 —

-5000 —

-5500 —

o
e
o
[~
e
=
E
e
o
S
e
=
@®

0.1 0.12 0.14 0.16 0.18 0.2
Time (s)

Figure 164-2. Bending Stress at Center Point
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0p Reaction Force Z Component (5) (Ibf)

250

200 —

150

100 —

50 —

Figure 164-3. Dynamic contact force at Center Point

Table 164-1. Comparison of Results

Theory | Analysis | % Difference
Bending Stress 5525 5502 0.42
Contact Force 225.3 223.8 0.67
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AVE - 165 Temperature Drop across Contact

Reference

Holman, J.P., Heat Transfer, McGraw-Hill, Inc, 1981, Example 2-8, p. 51

Problem Description

Two 3 cm diameter bars made of 304 Stainless Steel are placed such that each has an end face completely touching
an end face of the other bar. A temperature of 100 degree Celsius is applied to one free end face and O degree

Celsius is applied to the opposite end face. With a contact resistance of 5.28e-4 m”C/W find the temperature drop
across the contact region.

«J0cm

Reéistance
Figure 165-1. Diagram of Problem
Theoretical Solution

This is a simple heat transfer problem so 1-D heat transfer equations are appropriate. In this case, ratios of
resistances can be used:

AT = e AT

th
Where AT is the total temperature difference of 100 C, and R, is the contact resistance, 5.28 x 10 m*C/W

Rrod = l = _1

k 16.2
SRyw = 2* R,y + R, =0.01287
AT, =4.10

Autodesk Simulation Solution

The model is generated in inventor Fusion and the geometry is transferred to Autodesk Simulation. A contact is
specified between the cylinders with a Total Resistance of 0.746967 C/W.

Total resistance = [Distributed resistance] + [Contact area]

A Steady-State Heat Transfer analysis must be specified before heat contact resistance is an available setting. A
25% mesh is applied to the model. Temperatures are applied both on the top surface and the bottom surface of the
model. The material is specified for both cylinders as AISI Type 304 Stainless Steel. After the analysis has been
performed, results are found by selecting nodes along the contact plane of the two cylinders. Then the
“Inquire:Results:Range” function is used to find a temperature difference of 4.09 C.
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Temperature -o
°C
100
90 Inquire: Results ‘ =Y
80 Current Load Case = 1 L
70 Node # 3 ( X = -0.015, ¥ = -1.83697e-018, Z = 0.1 )
60 Current Result Value: 47.95443132 °C
50 Node # 3159 ( ¥ = —0 015, ¥ = —1 83697e-018, Z = 0.1 )
40 Current Result Value: 52.04556848 °C
30 l g
20 "
10
0 4 b )
Summary: GERRE - 4091137157
[] Include results from hidden elements
[ Clem | [saveVelues.] [SaveToRepat.| [ Specifp. | [ Hep |
Load Case: 10of1
Maximum Value: 100 °C
Minimum Value: 9.5492e-007 °C Y. i X
1 < Design Scenario 1 >

Figure 165-1. Inquiring results at the contact plane

Table 165-1. Comparison of Results in Degrees C

Theory | Analysis | %Difference
AT 4.10 4.09 0.24
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AVE - 166 Natural Frequency of a Flat Plate

Reference
Young, Warren C., Roark’s Formulas for Stress and Strain, Sixth Edition, Case Number 17, p 717.
Problem Description

A flat metal plate 2 in by 10 in made from A36 Steel is fixed at three ends and simply supported on the fourth. Find
the first natural frequency of the plate.

<> ALGOR FEMPRO - [FEA Editor - [ave192.esx]]

ﬁﬁl\e Edit Selection Yiew Geometry Editor Tools Analysic Resuks Tooks window Help -8 X
NEH|SR
wEAL e we e s+ B A EH R
rEEBE (A8 NARLY BOCOCAS® B ek
RE@RE @ B[S

o [ =
E2 Units < English (in] > i
= [ Analysis Parameters
i
o[ Electiost
=g Model ¢ av
2 & Pats
= B 1 ¢Unnamed >
Element Type < f
Element Definitio
Material < Steel |,
Sufaces
& Meshes
= Coordinate Systems
. Global [Defaul)
< >
&r. (@] &)
#nalysis e | Natural Frequency (Madall |[+] Loadset 1< Unnamed> v | Constraint set w

Ready UM

Figure 166-1. FEA Model of the Plate

Theoretical Solution

The first natural frequency of the plate is calculated as

Ki D9 356017

T =

f=—%
27\ wa

Autodesk Simulation Solution

The model of the rectangular plate was created using the “Mesh Tab: Structured Mesh panel: 4-Point Rectangular”
command in the FEA Editor. A 8 x 40 Mesh was created with 4 mesh division per inch. The element type of this
part is assigned as a plate.

Plate elements were used and a thickness of 0.1 inch was specified arbitrarily because the problem description did
not specify the thickness. Material properties of Steel (ASTM A36) were used in both the Analysis and the Theory
calculations.

A Natural Frequency analysis was performed to determine the mode shapes and natural frequencies for the model.
The results were examined in the Results environment including the first natural frequency.
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Mode: 1 of 5
Frequency: 3761.73 cycles/s

< Design Scenario 1 >

Figure 166-2. Displaced Model

To obtain more accurate answers, the mesh can be redefined with more division per inch.

Table 166-1. Comparison of Results in Hertz (Hz)

Theory

Analysis

% Difference

frequency

3862

3762

-2.6
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AVE - 167 Deflection of Truss

Reference

Young, Warren C., Roark’s Formulas for Stress and Strain, Sixth Edition, Example 6-2, p. 83.

Problem Description

A truss is constructed of tubular steel members of various thicknesses. Loads of 1200 Ib and 600 Ib are applied and
the truss is fixed on one end to a wall. Find the maximum displacements in both the vertical and horizontal
directions. The truss has dimensions of 3 ft by 8 ft with a member running through the midpoint of the long
dimension. E=30E6

-12001b.
A=04142 A=007862 600t

=033 =0
A=03318 A=01464 A 2007862

A=007862 Y

-6001b |
X

Figure 167-1. FEA Model

Theoretical Solution

The deflections in this truss can be solved using the following method

P?l
D=) Pe=Pe +Pe,.= E
Where D is the total deflection, P is the force applied to a truss, e is the deformation, | is the length, A is the cross
sectional area, and E is Young’s Modulus. For this situation the total deflection can be broken into x and y

components.

s :

Figure 167-2. Node Numbers of Truss Elements

d, =Px, Rehe + PXy Poslos +PXg, Podlsq +Px,, Parlay +Px,, Parlaz + PX,, Paclsa _ 0.0317 in
A.I.ZE A25E A‘34E A41E 42 43
Pl Pl Pl P, P, Pl .
dy — Pylz 12712 + Py25 25725 + Py54 54754 + Py41 41741 + Py42 42742 + Py43 43743 — 01769 in
ALE AE ALE AE ALE AE
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Autodesk Simulation Solution

The truss model was created using the “Draw tab: Draw panel: Line button” of FEA Editor. Different parts were
used for different cross section values. Since there are 4 cross sections, there are 4 parts in the FEA model. Each
part is designated as a truss element type and assigned the appropriate cross sectional area. Since the material is not
important for this problem, a custom material was created. Only the Modulus of Elasticity, 30E6 psi, was defined.
Forces were applied at the nodes 2, 4, and 5 with values of -600 y, -1200 y and -600 y respectfully. The ends
attached to the wall are given fixed nodal boundary conditions. After the analysis is performed, the deflection
results were inquired using the probe function.

Displacement
Magnitude
in

0.17986
0.16187
0.14389
0.1259
0.10792
0.08993
0.071944
0.053958
0.035972
0.017986
0

0.179860

Load Case: 1o0of 1

Maximum Value: 0.17986 in

Minimum Value: 0 in I
X

1 < Design Scenario 1 >

Figure 167-3. Displaced Model

Results are compared in the following table

Table 167-1. Comparison of Results

Theory | Analysis | % Difference
Dx (inches) | 0.0317 0.0317 0.00
Dy (inches) | -0.1769 -0.1770 0.06
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AVE - 168 MES Thermal Loading of Shell Composite

Problem Description

A temperature load of 100 F is applied to a thin composite of two materials which is fixed by clamps on all edges.
The composite has dimensions 10 in by 20 in and is composed of material 1, 0.75 in thick, and material 2, 0.25.
Although the materials have different properties, they share a stress free reference temperature of 25 F. Find the
stress tensors in the thin composite.

Table 168-1. Temperature Dependent Material Properties

Symbol T=0 T=200 T=50 T=150
Young’s Modulus El 1.50E+06 2.50E+06 1.75E+06 2.25E+06
E2 5.00E+05 1.50E+06 7.50E+05 1.25E+06

Poisson’s Ratio vl2 0.2 0.3 0.225 0.275
G12 1.00E+05 2.00E+05 1.20E+04 1.20E+05
Shear Modulus G13 1.00E+04 2.00E+04 1.30E+04 1.30E+05
G23 2.00E+04 3.00E+04 2.30E+04 2.30E+05
Coefficient of al 5.00E-07 1.50E-06 7.50E-07 1.25E-06
thermal expansion o2 1.50E-06 2.50E-06 1.75E-06 2.25E-06

Theoretical Solution

This is a situation of thermoelastic materials:

[e]=[Cke]-(a)aT)

Where o is the stress tensor, ¢ is the strain tensor, a. is the vector of thermal expansion coefficients, C is the matrix

of material stiffness and AT is the temperature difference from applied to stress free. In this situation, the laminate
can be modeled using single layer orthogonal plane stress:

o, . E, w,E, 0[] /o ~193.55
o, |= ﬁ V12E2 El 0 & |\ &, AT |=|-174.19
oL, a9 o e, |le,| \O 0

When ¢ is 0 because of clamped ends and AT is 75 C.
Autodesk Simulation Solution

The model of the square plate was drawn using sketching function of FEA Editor. A 4 x 4 mesh was created using
the Mesh tab: Structured mesh: 4 point rectangular button. This option allows for the creation of a mesh with
specified divisions between 4 specified points. The analysis type was set as Mechanical Events Simulator (MES)
with time duration of 1s and a capture rate of 1 frame per second. Combined with the simple loading curve of 0
multiplier to 1 multiplier over the course of the analysis will achieve fast and accurate results.

The element type of the mesh is set as a shell element, which allows for composites in the MES analysis type. In the
Element Definition screen, the material model of this shell element is changed to “Temperature Dependent
Composite” and the element formulation was set to “Co-rotational”. In the Thermal tab of the Element Definition
screen, the stress free reference temperature is set to 25 F. In the Composite Tab, the thickness, orientation angle
and material properties of the composite are defined. Since there was no designation for orientation angle, we will
assume that the materials have the same orientation angle. Material properties can be set by clicking inside the
material column and row of appropriate material.
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Every edge was constrained by adding fixed nodal boundary conditions on each edge node. The load condition of
100 F was set on the Thermal/Electrical tab of the Analysis Parameters screen as the “Default Nodal Temperature”.

7 Results - [avel8l : AVE]

£ Results - [avel81 : AVE-2]

= ER S

Stress
Tensor Y-Y |
Ibff(in*2)
-150
-155
-160
-165
-170
-175
-180
-185
-190
-195
-200

Time: 1s

Time Step: 1 of 1
Maximum Value: -174.194 Ibf/(in"2)

Minimum Value: -174.194 |bf/(in"2)

ke

1 < Design Scenario 1 >

Stress
Tensor X-X
Ibff(in*2)
-150
-155
-160
-165
-170
-175
-180
-185
-190
-195
-200

Time: 1s

Time Step: 1 of 1

Maximum Value: -193.548 Ibf/(in"2)
Minimum Value: -193.548 |bf/(in"2)

1 < Design Scenario 1 >

Figure 168-1. Stress Tensors in the YY and XX direction is consistent with a uniform load

A comparison of the results with the Theoretical is found in the following table.

Table 168-2. Comparison of Stress Tensor results in psi

Theory Analysis % diff
ou -193.55 -193.548 0
Gy -174.19 -174.194 0
o 0 0 0
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AVE - 169 Deflection of a Spring Supported Beam

Reference

Bourni, Scmidt, and Sidebottom. Advanced Mechanics of Materials, Fifth Edition, Example 10-2.

Problem Description

A square cross-section beam of length 6.8 meters is supported by 7 springs with a load of 12 kN applied in the
center. Find the maximum deflection and bending stress. The beam has a moment of inertia around the bending

plane of 2.46e6 mm”4 and is made out of a material with a modulus of elasticity of 72 GPa. The springs each have a
stiffness of 110 kN/m and are spaced evenly under the beam.

6.8m

Figure 169-1. Problem Geometry

Theoretical Solution

Beam:

P=12 kN

1=2.45e6 mm”™4

S=4.9e-5 m”3 section modulus
L=6.8 m

Springs:
k=110 kN/m
n="7

Autodesk Simulation Solution

The initial beam is modeled using the “Draw tab: Draw panel: Line button”. The initial line, of total length 6.8 m, is
placed into part 1, surface 1, layer 1. Using the line selection tool, the initial single line is divided into six equal
segments to produce nodes at each spring attachment point. Part 1 is then defined as having an element type of beam
and assigned appropriate cross-section and material properties using the element definition and material definition
screens respectively.

The seven springs are modeled in a similar fashion. Using the “Draw tab: Draw panel: Line button”, seven single
lines are placed into part 2, surface 1, layer 1. Each of the single lines begins at a node on the beam and is defined at
a relative distance of 1 m from the beam in the negative Z direction. Part 2 is then assigned the element type of
spring. This defines each of the 7 lines as springs of the same type. Using the element definition screen, the springs
are assigned a stiffness value of 1,100,000 N/m. No additional material definition is needed for spring elements.
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FEA loads and constraints are applied to the model at appropriate points. A nodal force load of 12000 N is applied
to the central node of the beam element in the negative Z direction. The ends of the seven spring elements are fully

fixed.

Displacement
Magnitude
m

0.039706
0.035736
0.031765
0.027794
0.023824
0.019853
0.015883
0.011912
0.0079413
0.0039706
0

Load Case: 1o0of1
Maximum Value: 0.0397064 m
Minimum Value: 0 m

1 < Design Scenario 1 >

0.039706

Figure 169-2. Deflection in Meters

A comparison of the results with the theoretical is found in the following table.

Table 169-1. Comparison of Results

Theory Analysis % diff
Deflection (mm) 38.98 39.7 1.8
Bending Stress (MPa) 93.5 93.4 0.1
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AVE - 170 MES of Force Accelerated Block

Reference
Lindeburg, Michael R. EIT Review Manual. p. DE V-4.
Problem Description

A 100 kg block resting on a surface is pulled by a 500 N force. The force is oriented at a 30° angle from the surface.
The kinematic coefficient of friction between the block and the surface is 0.15. Find the acceleration of the block.

500 N
30°

n=0.15

Figure 170-1. Problem Geometry

Theoretical Solution

[
a, = Zr:n " ZFh =500* cos0 — p* (mg — 500 *sin(©))

M=100 kg
9=9.8 m/s*
F=500 N
06=30
u=0.15

ay, = 3.235m/s?

Autodesk Simulation Solution

Since the model has no displacement or forces in one plane, 2-D elements can be used to simplify both model
creation and analysis. To create the 2 separate parts, two “4 Point Rectangular” meshes were generated using the
“Structured Mesh” panel within the Mesh tab of the ribbon user interface.

The element definition screen will allow the user to select any thickness for the 2-D elements. The thickness is
irrelevant outside of determining the mass of each object. After the element definition has been defined, the
material properties can be set for the 2-D parts. The material can be the same for both parts, but the density must
allow the block rectangle to have a mass of 100 kg. Additionally, since the object is assumed to be rigid, a high
value should be set for a modulus of elasticity and a 0.3 value for Poisson's ratio.

FEA loads, constraints and surface contact pairs need to be applied to the model. The bottom edge of the surface
rectangle is constrained as fixed. Surface to surface contact (slide no bounce frictional) is defined between the
bottom surface of the upper block and the upper edge of the surface rectangle. A nodal load of 500 N is defined with
a Y component of 0.866 and a Z component of 0.5 to account for the 30 degree angle. In the analysis parameters
screen, gravity loading needs to be defined in the negative Z direction. A load curve , event duration and capture rate
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need to be set up as well. In this situation, it is appropriate to analyze the event 1.5 second at 50 captures per second.
At time 0, the force will have a multiplier of 1 and at 3 seconds, the multiplier for the forces should remain as 1.

The model is now ready for analysis. Results can be viewed either upon completion or monitored as the analysis
progresses. To view a graph of the acceleration, simply change the result type to displacement in the Y direction,
select a node, right-click to access the bump-out menu, and select the “Graph” option. A graph will appear with
displacement plotted against time. Using the “Results Inquire tab; Graph panel: Graph option pull-down menu”, the
graph can be made to display the second derivative, or acceleration, versus time.

Displacement . :
Y Component Acceleration vs. Time

m
3.6367
3.1821
2.8285
2.475
21214
1.7678
1.4143
1.0607
0.70713
0.35357
-5.2646e-008

Time: 1.5s

Maximum Value: 3.53566 m -

1 < Design Scenario 1 >

z

Minimum Value: -5.26457e-008 m I
Y

!

Figure 170-2. Embedded Graph of Acceleration versus Time
A comparison of the results with the theoretical is found in the following table.

Table 170-1. Comparison of Results

Theory Analysis % diff
Acceleration (m/s?) 3.235 3.193 1.3
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AVE - 171 Radiation between two Cylinders

Reference

Holman, J.P., Heat Transfer, Seventh Edition, 1990, pages 424-425.

Problem Description

Two concentric cylinders radiating to each other. Find the temperature of the outer cylinder.
Theoretical Solution

This type of problem is usually solved using a radiation network. The radiation network of this problem follows:
1

Ji ArFp 9

e AVAVAY,
T1=T; Y-
6] Ap 1-£2
£2 A2
1
Al Fi3 JJ/fl T2=Ty
A2 F23i 1€
€2 A2
T3=Troom 1 -
_— 20
Az F239

Figure 171-1. Radiation Chart

Inner Cylinder:
r=5cm
T;=1000 K
€=0.8

Outer Cylinder:
r=10 cm
€=0.2

L=20cm
Tamp=300 K

In addition to these variables, view factors are needed to solve the above radiation network.
Tﬁna|:724.9 K
Autodesk Simulation Solution

Since this model is symmetric about an axis, 2-D axisymmetric elements can be used to simplify building the model
as well as the analysis. 2-D elements can be created using the “4 Point Rectangular: Structured Mesh” command as
long as the mesh falls completely within the YZ plane. Build two parts, one rectangle 5 by 20 starting from the
origin and the second a 1 by 20 mesh starting a distance of 10 in the Y direction from the origin. The element
definition for each element should set the element type to 2-D axisymmetric. Since the theoretical solution does not
take into consideration potential differences in temperature along the length, a material property with extremely high
thermal conductivity is set for each part.
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To prepare the model for FEA loads, surfaces need to be defined in the appropriate areas. A surface can be defined
by selecting a set of lines, and modifying their surface number. In this situation, a surface should be set up on the
outer edge of the inner cylinder and the inner edge of the outer cylinder.

An applied temperature needs to be added along the center line of the inner cylinder. Applying a high stiffness factor
will keep the inner cylinder close to 1000 K. In addition, a radiation enclosure needs to be defined. This is done by
ensuring no objects are selected within the FEA Editor, right-clicking and selecting “Body-to-Body Radiation...”
from the bump-out menu. In this screen, surfaces defined earlier need to be defined as “Radiation surfaces” and the
appropriate emissivity applied. Each surface then needs to be selected to participate in the enclosure, and an ambient
temperature needs to be defined as 300 K. The model is now ready for analysis.

Temperature
K

999.9
.718.8

Load Case: 1 of 1
Maximum Value: 999.855 K

Minimum Value: 718.778 K

Y
1 < Design Scenario 1 > t

Figure 171-2. Temperature in K

A comparison of the results with the theoretical is found in the following table.

Table 171-1. Comparison of Results

Theory Analysis % diff
Temperature (K) 724.9 718.8 0.84
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AVE - 172 Steady-State Heat Transfer along a Rod

Reference

Lindeburgh, Michael R., Mechanical Engineering Reference Manual for the PE Exam, Tenth Edition, p 34-18 and
34-19.

Problem Description

A 0.5in by 0.5 in by 10 in rod has an applied temperature of 300 °F at one end and exists in an ambient environment
of 80 °F. The rod has a thermal conductivity of 80 BTU/(hr-ft-°F) and a convection coefficient with the environment
of 1.65 BTU/(hr-ft>-°F). Find the temperature 3 in from the base of the rod.

Theoretical Solution

_ ’ *
T3 =Tamp +(Tbase _Tamb)* COSh(m(L 3)) m= h*p

cosh(mL) ~Vk*A
T, = 248.2F

Autodesk Simulation Solution

Because heat differences across the cross-section of the rod are unimportant, a rod element type can be used for this
analysis. A 10 in long rod is created by using the "Draw tab: Draw panel: Line button”. This line is then divided into
10 line segments, to allow sampling at 3 in along the length. The element type is set to rod. The cross-sectional area
of 0.25 in? and the cross-section perimeter of 2 in need to be set in the element definition screen. Finally, the
material needs to be defined as having a thermal conductivity of 80 BTU/(hr-ft-°F). A nodal controlled temperature
of 300 °F was applied to one end of the rod. A relatively high stiffness of 80e3 BTU/hr/F was used to ensure that the
temperature of this node stays constant. In addition, a convection load was applied to the surface of the rod.

=0 B

Temperature
°F
300
29042
280.84
27127
261.69
25211
24254
232,96
22338
2138
204.23

_~248 531536
P

~

///

Load Case: 1o0of 1 /

Maximum Value: 300 °F

Minimum Value: 204.226 °F v&x

1 < Design Scenario 1 >

Figure 172-1. Temperature contour

Table 172-1. Comparison of Results

Theory Analysis % diff
Temperature (F) 248.4 248.5 0.04
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AVE - 173 Natural Frequency of a Beam, Spring and Mass System

Reference
Lindeburgh, Michael R., Mechanical Engineering Reference Manual for the PE Exam, Eleventh Edition, p 58-6.
Problem Description

A ten meter beam is attached to a wall at one end, a spring at the middle and a 10 kg mass at the opposite end. The
spring has a stiffness of 2e8 N/m. Find the natural frequency of the beam.

Theoretical Solution

d |k

L

Figure 173-1. Problem Geometry

2
.  kd
mL2

k= 2e8 N/m
m=10 kg
L=10m
d=5m

f=355.9 Hz
Autodesk Simulation Solution

The initial beam is modeled using the "Draw tab: Draw panel: Line button”. The initial line, of total length 10 m, is
placed into part 1, surface 1, layer 1. Using the line selection tool, the initial single line is divided into 10 equal
segments. An appropriate cross-section needs to be defined for the beam through the beam element definition
screen. This system should be governed by the stiffness of the spring, so high values such as 100 are entered for
moments of inertia. In addition, a material with a high modulus of elasticity but low mass is defined for the beam.

The spring is modeled in a similar fashion. Using the "Draw tab: Draw panel: Line button”, a line is added to the
middle node of the beam. A spring element is defined and a stiffness value is associated with the spring through the
element definition screen.

FEA loads and constraints are applied to the model at appropriate points. A nodal constraint which fixes the end of
the beam except in rotation around the Z-axis is applied to the end node of the beam. A fixed boundary condition is
applied to the free end of the spring. A lumped mass is attached to the other end of the beam with a mass of 10 kg.
In addition, out-of-plane movement of the beam should be restrained across the entire model. Out-of-plane in this
situation is translation in the Z direction.
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Mode: 1 of 1

Frequency: 355.844 cycles/s

< Design Scenario 1 >

Figure 173-2. First Mode Shape

A comparison of the results with the theoretical is found in the following table.

Table 173-1. Comparison of Results

Theory Analysis % diff

1% mode

Erequency (Hz) 355.9 355.8 0.03
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AVE - 174 Notched Plate

Reference

Young, Warren C., Roark’s Formulas for Stress and Strain, Sixth Edition, p. 728.

Problem Description

A flat steel plate is fixed on one end and pulled with a 1000 psi load on the other. The plate is 4.0 in by 1.5 in with a

thickness of 1.0 in. Notches of radius 0.45 in intersect the plate at the midpoint on both sides. Find the maximum
stress.

Fixed Radius = 0.45” P=1000 psi
BC;" \{/ T T
y 1.5” .
/] -
/] /-‘\ ¥ __:
, .
| 2
| rl _l)r R

Figure 174-1. Problem Geometry

Theoretical Solution

Area
R.Area

Omax = K*P*

k= 1.418, stress concentration factor
P=1000 psi

Area= 1.5 in?

R. Area= 0.6 in®

Omax=3545 psi
Autodesk Simulation Solution

This problem considers deflection and stress only in one direction. Therefore, 2-D elements can be used to speed
model creation time and analysis time. An outline of the plate with the notches is created in the sketching
environment. A 2-D mesh is created from the sketch by selecting the sketch in the tree view and selecting the
Generate 2-D Mesh button within the Mesh tab, Mesh panel. A thickness of 1 in is assigned for the element in the
element definition screen and material properties of Steel (ASTM — A36) are assigned in the material properties
screen.

To constrain the fixed end of the model, a fixed surface boundary condition is applied to one end. A pressure load
of -1000 psi is applied to the other end of the plate. A negative value is used to indicate the load should be in
tension rather than compression.

Since we are looking for a surface stress located directly on the edge of the notches, the smoothing option should be

turned off in order to sample individual nodal results. Smoothing would be more consistent if the objective was a
general stress, or a stress located inside the model or not at a specific nodal location.
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Stress
Tensor Y-Y
Ibf(in"2)

3582.1
3219.1
2856.1
24931
21301
1767.2
1404.2
1041.2
678.18
31519
-47 806

Load Case: 1 of 1
Maximum Value: 3582.11 |bf/(in"2)
Minimum Value: -47 806 Ibf/(in*2)

1 < Design Scenario 1 >

= @ |

Figure 174-2. Stress tensor Y-Y

A comparison of the results with the theoretical is found in the following table.

Table 174-1. Comparison of Results

Theory

Analysis

% diff

Maximum Stress (psi) 3545

3582

1.04
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AVE - 175 MES Deflection of a Spring Supported Beam

Reference

Spyrakos, Constantine C., Raftoyiannis, John. Linear and Nonlinear Finite Element Analysis in Engineering
Practice, p 399, 454-467.

Problem Description

A steel cantilever beam of length 100 in has an initial position such that its free end is 0.5 in above a spring. A force
of 810 pounds is applied at the end of the beam, which has a square cross-section of 3 in on a side. Find the end
deflection of the system.

Theoretical Solution

! d=0.%5in

Figure 175-1. Problem Geometry

Deflection = (F+kd)/((3EI/L"3)+k)
Autodesk Simulation Solution

The initial beam is modeled using the "Draw tab: Draw panel: Line button”. The initial line, of total length 100 in,
is placed into part 1, surface 1, layer 1. Using the line selection tool, the initial single line is divided into ten equal
segments. Part 1 is then defined as having an element type of beam and assigned appropriate cross-section and
material properties using the element definition and material definition screens respectively.

The spring is modeled in a similar fashion. Using the "Draw tab: Draw panel: Line button”, a single line is placed
into part 2, surface 1, layer 1. The single line begins at the node at the end of the beam and is defined at a relative
distance of 10 in from the beam in the negative Z direction. Part 2 is then assigned the element type of truss. In the
element definition screen, the truss element is assigned a curve material model. This will allow for a stress/strain
curve to be defined for the truss to simulate quick yielding for the distance specified in the problem and then a
spring-like stiffness for the remainder of the event.

FEA loads and constraints are applied to the model at appropriate points. A nodal force load of 810 Ib is applied to
the end node of the beam element in the negative Z direction. The end of the truss element and the end of the
cantilever beam are fully fixed. In addition, the nodes of the beam element should be constrained from out-of-plane
movement at every node. Since this is a MES analysis, the analysis parameters must be defined to specify an event
duration of 100 seconds and a capture rate of 1 per second. A ramped load curve with a constant slope is applied
from Time 0 to Time 100.
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Figure 175-2. Deflection in the Z direction at the node where the force is applied

A comparison of the results with the theoretical is found in the following table.

Table 175-1. Comparison of Results

Theory

Analysis

% diff

Deflection (mm)

1.13

1.1168

1.17
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AVE - 176 Flow of Steam through an Insulated Pipe

Reference
Chapman, A.J., Heat Transfer, Fourth Edition, p 442.
Problem Description

Steam at 300°C is flowing through an insulated pipe at a velocity of 5 m/s. The pressure is 2000 kN/m% The pipe
has and inside diameter of 15.41 cm, and outside diameter of 16.83 cm and has a conductivity of 45 W/m-°C. The
insulation is 3.5 cm thick and has a conductivity of 0.075 W/m-°C. The convection coefficient between the pipe and
the surroundings at 20°C is 5.75 W/m®C. Find the temperature at the inside surface of the pipe and at the outside
surface of the insulation.

Theoretical Solution
The convection coefficient between the steam and the pipe can be calculated using the material and flow properties.
For steam at 2000 kN/m?, the density is 7.9681 kg/m?, the viscosity is 20.1e-6 kg/m-s, the conductivity is 49.95e-3

W/m°C and the Prandtl number is 1.02. These values can be used in the following three equations to calculate the
convection coefficient.

_vDp

Re = 3.055e5
n
Nu = 0.023Re%8pPr03 = 564.9
k

h = NUE =168.5W/m?2°C

The overall heat transfer coefficient, U, for the pipe can be calculated using the following equation where r; is the
inside radius of the pipe, r, is the outside radius of the pipe and rs is the outside radius of the insulation.

-1
r3ln(r2j r3ln(r3j L
o P W, 2, =1.36W/nP°C
rlhinside k k h

pipe ins outside

The outside temperature of the pipe, Touside, Can be calculated from the following equation.

houtside(Toutside_ Tamb ) = U(Tsteam - Tamb )
T, =86°C

outside
The inside temperature of the pipe, Tinsige, Can be calculated from the following equation.

hinside(Tsteam - Tinside) = U(Tsteam - Tamb)
Tinsige = 297°C
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Autodesk Simulation Solution

Since the thickness of the pipe is irrelevant, 2-D elements can be used for this analysis. The cross-sections of the
pipe and insulation will be drawn as separate sketches in FEA Editor. The sketches will be meshed by selecting the
headings in the tree view, and accessing the 2-D Mesh Generation utility. Any thickness value can be input in the
element definition screen. The appropriate thermal conductivities for the pipe and insulation must be input in the
material specification screen.

Convection loads must be applied to the surfaces on the interior of the pipe and exterior of the insulation. When
defining the convection load on the interior of the pipe, the Film/Convection Coefficient Calculator can be used to
calculate the convection coefficient between the steam and the pipe based on the fluid properties and geometry of
the flow.

Temperature
C
296.79
27573
25467
23361
21255
191.49
170.43
149.36
128.3
107.24
86.182

Load Case: 1o0of 1

Maximum Value: 296.792 °C

R T
SeodRmia

..-.“‘
ll:

Minimum Value: 86.1821 °C

"
. L.

1 < Design Scenario 1 >

Figure 176-1. Temperature Profile
A comparison of the results with the theoretical is found in the following table.

Table 176-1. Comparison of Results

Theory Analysis % diff
Inside Temperature (°C) 297 296.8 0.0
Outside Temperature (°C) 86 86.2 0.2
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AVE - 177 Heat Lost through the Walls of a Furnace

Reference

Holman,J.P., Heat Transfer, Seventh Edition, p 86.

Problem Description

A small cubic furnace which is 50 cm x 50 cm x 50 cm on the inside, is made of fireclay brick (k = 1.04 W/m-°C)
with a thickness of 10 cm. The interior and exterior temperatures are kept constant at 500°C and 50°C, respectively.
Calculate the heat lost through the walls.

Theoretical Solution

The total shape factor for the furnace is the sum of the six wall sections, twelve edges and eight corners. These
components can be calculated using the equations below.

S\t = A _ (0.5m)(0.5m) _o5m
L 0.1m

Seqge = 0.54D = (0.54)(0.5m) = 0.27m
Seomer = 0.15L = (0.15)(0.1m) = 0.015m

Summing these values for all of the walls, edges and corners results in a total shape factor of 18.36 m. The heat loss
can be calculated using the equation below.

q =kSAS = (1.04)(18.36)(450) = 8.592KW

Autodesk Simulation Solution

A CAD solid model of 1/8" of the furnace was created and meshed in the FEA Editor as shown in Figure 177-1.

=0

Figure 177-1. CAD Solid Model of 1/8" of the Furnace
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Applied temperatures are applied to the interior and exterior surfaces of the model. No temperatures are applied to

the symmetry planes.

Heat Flow Rate
Jis

0.73079
0.47897
0.22714
-0.024687
-0.27651
-0.52834
-0.78017
-1.032
-1.2838
-1.6357
-1.7875

§
%

Load Case: 1 of 1

Maximum Value: 0.730795 J/s

Minimum Value: -1.78748 J/s

(7777777777777 7777777777777
V29 (5 7 07 7 L0 4 57 40 55 0 Y 5 7 50 0 08 B9 S50 50 9 0 B0 50 0 Y 060 59

1 < Design Scenario 1 >
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Figure 177-2. Heat Rate of Face Profile

The simulation results output a heat loss of 361.359 J/s per exterior surface. This is a 1/8" geometry, and the full
model is made up of 6 exterior surfaces. Each exterior surface is made up of 4 1/4" sections. So we have to multiply
361.359 J/s by 24 in order to calculate the heat loss for the full model.

(361.359 J/s per section) x (24 sections) = 8672.616 J/s = 8.673 kW

A comparison of the results with the theoretical is found in the following table.

Table 177-1. Comparison of Results

Theory

Analysis

% diff

Heat Loss (kW) 8.592

8.673

0.9
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AVE - 178 Natural Frequency of a Simply Supported Beam with a Mass in
the Middle

Reference

Avallone, Eugene A., Baumeister |11, Theodore, Mark's Standard Handbook for Mechanical Engineers, Ninth
Edition, p 5-70.

Problem Description

A simply supported beam is 48 in long and has a circular cross-section of 0.125 inch radius. The mass density is
0.0007324 Ibf-s?/in/in®. The modulus of elasticity is 30e6 psi and Poisson’s Ratio is 0.3. A uniform lumped mass of
0.1 Ibf-s%/in is placed at the center of the beam. Determine the first natural frequency of the system.

Theoretical Solution

The natural frequency, , can be calculated using the cross-sectional and material properties of the beam, the
lumped mass, m, and the mass of the beam, myem. The equation is shown below.

o= |— MEL_4700H2
(m+0.5my,, L3
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Autodesk Simulation Solution

The beam is modeled using the "Draw tab: Draw panel: Line button”. A line was created from the origin (0,0,0) to
(48,0,0) and divided into 40 segments. The cross-sectional properties were defined in the element definition screen
using the Cross-Section Libraries (0.125” radius round). The material properties were input in the material
definition screen (per the Problem Description on the preceding page).

The end at the origin was constrained against translation in all three global directions and against rotation about the
X-axis (to prevent rigid-body rotation about the beam axis). The opposite end was constrained against translation in
the Y and Z directions. A lumped mass of 0.1 Ibf-s%/in is added to the center node of the beam and is applied
equally in all three global directions.

Mode: 2 of 5 \

Frequency: 0.791915 cycles/s E:

< Design Scenario 1 >

Figure 178-1. Natural Frequency

A comparison of the results with the theoretical is found in the following table.

Table 178-1. Comparison of Results

Theory Analysis % diff
Natural Frequency (Hz) 0.792 0.792 0.0
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AVE - 179 Contact Pressure between a Punch and Foundation

Reference

Feng, Q., Prinja, N.K., NAFEMS Benchmark Tests for Finite Element Modeling of Contact, Gapping and Sliding,
Ref: R0081, Issue: 1, CGS-1.

Problem Description

A 40,000 N/m? pressure is applied to a punch which causes it to contact the foundation. The contact area is 1.0 m%
The modulus of elasticity for both materials is 100 MPa and Poisson's ratio is 0.3. Determine the contact pressure.

Theoretical Solution

In order for static equilibrium to exist, the contact pressure must be equal to the applied pressure. Therefore the
contact pressure must be 40,000 N/m?. Since the area is 1 m?, the contact force is 40,000 N.

Autodesk Simulation Solution

Please refer to AVE - 136 for the 2 D version of the same problem. The punch and foundation were built using a
CAD solid model program. Surface contact was defined between the parts by right clicking on the contact heading
in the tree view. The model was meshed. The specified material properties were defined in the material definition
screen. The bottom surface of the foundation was constrained against translation in the vertical (YY) direction. The
center lines of nodes along the top of the punch and bottom of the foundation parallel to the X axis were constrained
against translation in the Z direction. The center lines of nodes along the top of the punch and bottom of the
foundation parallel to the Z axis were constrained against translation in the X direction. These constraints make the
model statically stable. A 40,000 N/m? pressure was applied to the top surface of the punch.

Axiallcorce Total Contact Fo... & o
-39.381
-51.068 -40000.0004 N
-62.754
-74.441
-86.128
-97.814
-109.5 L
-121.19
-132.87
-144 56
-156.25

Load Case: 1o0of 1

Maximum Value: -39.3813 N

Minimum Value: -156.247 N

1 < Design Scenario 1 >

Figure 179-1. Contact Force

Table 179-1. Comparison of Results

Theory Analysis % diff
Contact Force (N) 40000 40000 0.0
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AVE - 180 MES Deflection of a Pointer Due to Thermal Expansion

Reference

Higdon, Ohlsen, Stiles, Weese, Riley, Mechanics of Materials, Third Edition, p 119.

Problem Description

Determine the movement of the pointer in Figure 180-1 with respect to the scale zero when the temperature

increases 50°C. The coefficients of thermal expansion for the steel and aluminum are 12e-6 per °C and 23e-6 per °C,
respectively.

smooth pins

mim

aluminum

Figure 180-1. Problem Geometry

Theoretical Solution

The elongation,5, for each part can be calculated from the coefficient of thermal expansion, o, temperature
difference, AT, and the original length, L, using the following equation.

0 =LoAT

Using the coefficients of thermal expansion for steel and aluminum, it can be calculated that the aluminum bar
elongates 0.575 mm and the steel bars elongate .3 mm. Since both the scale and the steel bar elongate the same
distance, the pin attaching the pointer to the aluminum bar is 0.275 mm above the scale zero. The ratio below can be
used to calculate the location of the end of the pointer with respect to the scale zero.

0.275mm _ d,,

25mm  125mm
d,,g =1.375mm

Autodesk Simulation Solution

The model will be analyzed with Autodesk Simulation using beam elements and will be drawn in the XZ plane. The
beams for the scale and the steel part can be placed in the same part number since they are of the same material. The
beams for the aluminum part and pointer must be placed in separate parts. Two beam elements will be required for
the pointer because a vertex will be needed where it meets the aluminum part.

The steel and aluminum parts will have a thermoelastic material model defined in the element definition screen. The
pointer will have an isotropic material model defined. A rectangular cross-section was also defined in the element
definition screen for all three parts. The specified thermal coefficients of expansion were defined for the entire
temperature range for the steel and aluminum parts. 200,000 N/mm? was defined for the modulus of elasticity of
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steel and 68,900 N/mm? was used for the modulus of elasticity of aluminum. Steel material properties were used for
the pointer, however no coefficient of thermal expansion was defined.

The bottom node of each of the vertical parts was fully constrained. Beam end releases were added to the steel and
aluminum parts (not the scale). The rotational constraint about the Y axis was released. An event duration of 1 s
and capture rate of 10 per second were defined. A default nodal temperature of 1°C was defined and follows a load
curve that starts at 20 at 0 seconds and increases to 70 at 1 second.

Displacement -on
Z Component
mm

1675
1.5075
1.34 -
11725 v
1.005 "
0.8375
0.67
0.5025
0.335 Inquire: Results Bl
0.1675
0

Current Time Step = 10

Node # 6 ( X = -110, Y = 0, Z = 500 )
Displaced Position : X = -110, ¥ = -7.90094e-017, 3
Displacement = DX: —4.9985e-012, DY: —7.90094e-017,
Current Result Value: 0.3 mm

Time: 1s Node # 7 ( X = -100, ¥ = 0, Z = 500 )

Displaced Position : X = -99.9928, Y = 1.6868e-013.
Displacement = DX: 0.00717198, DY: 1.6868e-013, DZ:

Time Step: 10 of 10 ‘ Current Result Value: 1.674998308 mn
Maximum Value: 1.675 mm ‘ [ v
o Summary:  Range »  1.374338308|
Minimum Value: 0 mm 7] Include resubs from hidden elements
[ Clear ] [ﬁave Vahes...] Save To Report. ] [ Specily... Help ]

1 < Design Scenario 1 >

Figure 180-2. Deflection in the Z direction
A comparison of the results with the theoretical is found in the following table.

Table 180-1. Comparison of Results

Theory Analysis % diff

Delta Z with respect 1.375 1.375 0.0
to pointer (mm)

Accuracy Verification Examples Manual, Version 2014 518



AVE - 181

AVE - 181 Natural Frequency of a Weighing Platform

Reference
Meriam, J. L., Kraige, L. G., Engineering Mechanics: Dynamics, Fourth Edition, p. 616.
Problem Description

The weighing system shown in Figure 181-1 has a mass, m, of 0.02588 Ibf-s%/in and a spring stiffness, k, of 0.4
Ibf/in. The distance b is 2 in and the distance c is 8 in. Determine the period of the system.

Figure 181-1. Problem Geometry

Theoretical Solution

Let y be the vertical displacement of the mass. Using the ratio of the two levers between the spring and the mass,
the displacement of the spring, Ysuing, Can be calculated to be

c 2
yspring = y(B) :

Therefore the force of the spring can be calculated as

c 2
Fspring = kyspring = kY(B) .

The force on the block, F, can be calculated using the ratio of the two levers and the spring force as
2 4
c c
F=Fpind = | =ky|—] -
sprlng( b) y( bj
The differential equation for the system is

. k(c)?

The period, 1, can be calculated as
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2 2
T= 27:(9) L. 27:(3) J 0.02588 _ ; h998s
c) \Vk 8 04

Autodesk Simulation Solution

The entire model was built in the FEA Editor environment of Autodesk Simulation. The mass was constructed from
an extruded four point mesh and was defined as brick elements. The dimensions were 2 in x 2 in x 1 in. The two
levers were defined as rigid elements. The links connecting the two levers and the left lever to the mass were
defined as truss elements. The spring was created as a spring element.

The brick elements were assigned a mass density of 0.00647 Ibf-s*/in® in the material specification screen. This will
result in the required mass. The rigid elements were assigned a high stiffness of 110 Ibf/in in the element definition
screen. The truss elements were assigned a cross-sectional area of 10 in® in the element definition screen and a
modulus of elasticity of 1e6 psi in the material specification screen. The spring element was assigned a 0.4 1bf/in
stiffness in the element definition screen.

The mass was constrained so that it can only translate vertically. The nodes at the pivots were constrained so that
they can only rotate about the axis perpendicular to the system. The node at the end of the spring not attached to the
lever was constrained against translation in all directions.

Mode: 10of 5
Frequency: 10.0111 cycles/s

Maximum Value: 99.4561 in

Minimum Value: 0 in l
X

1 < Design Scenario 1 >

Figure 181-2. First Natural Frequency
A comparison of the results with the theoretical is found in the following table.

Table 181-1. Comparison of Results

Theory

Analysis

% diff

Period (s)

0.0998

0.0998

0.0
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AVE - 182 Axial and Bending Forces Acting on a Wide Flanged Beam

Reference

Hibbeler, R.C., Mechanics of Materials, Fourth Edition, p 801.

Problem Description

A wide flanged beam is 40 feet long and has a cross-section shown in Figure 182-1. The beam is fixed at one end

and has three 500 Ibf forces applied in the X, Y and Z directions at the opposite end. Determine the worst stress in
the beam.

i

| 0.5”

T

0.5"

Bn
Figure 182-1. Problem Description

e

Theoretical Solution

We must first calculate the moments of inertia of the cross-section about the local 2 and 3 axes. These can be
calculated using the following equations.

l 3 1 3 1 3 B
1, =—(9)(0.5)° + —(0.5)(8)° + —(0.5)(8)° = 42.76in*
2 =15 (005 + - (0.5)8)" + = (0.5(8)
Iy = %(0.5)(9)3 + 2(%(8)(0.5)3 + (8)(0.5)(4.75)2) =211.04in*
The formula for the maximum stress is

P My, + My; _

Omax = — +
TCOA I,
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The force, P, is 500 Ibf. The area, A, is 12.5 in?.The moment, M, is the product of the beam length and the force
which is 240,000 in-lbf. The values y, and y; are the distances for the centroid of the cross section to the point of
maximum bending stress along the local 2 and 3 axes, respectively. The value for y, is 5 in and the value for y; is 4
in. Substituting these values into the maximum stress equation results in

500 (240000)(5) (240000)(4)
Omex = ——+ +
125  211.04 42.76

=28,177psi

Autodesk Simulation Solution

The beam was built in FEA Editor. The line was created in Surface 1. This will cause the local 2 axis to be parallel
to the global Y axis. The 40 foot long beam was divided into 40 segments. The cross-section library in the element
definition screen was used to input the cross-section dimensions. The material was set to Steel A36 in the material
specification screen.

The node at the left end of the beam was constrained against translation and rotation in all directions. Three 500 Ibf
nodal forces were applied to the other end of the beam along each of the global directions.

Worst Stress
Ibf/(in"2)

28177
25363
22549
19736
16922
14108
11295
8481
5667.4
2853.7
40

Load Case: 1 of 1

Maximum Value: 28176.8 Ibf/(in"2)

Minimum Value: 40 1bf/(in"2) I

1 < Design Scenario 1 >

Figure 182-2. Worst Beam Stress
A comparison of the results with the theoretical is found in the following table.

Table 182-1. Comparison of Results

Theory Analysis % diff
Worst Stress (psi) 28177 28176.8 0.0
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AVE - 183 MES of a Pinned Rod Released from Rest

Reference

Lindeburg, M. R., EIT Review Manual, 1997-98 Edition, p. 17-6.

Problem Description

A uniform rod is 1 m long and has a mass of 10 kg. It is pinned at one end by a frictionless pivot. The rod is
originally at a 45° angle with the horizontal. If it is released from rest, find the velocity of the tip when it becomes
horizontal.

Theoretical Solution

Initially, all of the rod's energy is potential energy. When the rod is horizontal, the potential energy will have been

converted to rotational kinetic energy. Therefore the conservation of energy principle can be used as shown in the
equation below.

STRRREIE

(10)(9.81)(%(1)5i”45j = {%J(m{)

o = 4.56rad/s
The velocity at the end of the rod can be calculated using the relationship

v =ro = (1)(4.56) = 4.56m/s
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Autodesk Simulation Solution

AVE - 183

A single line was drawn in the FEA Editor environment in the XY plane at a 45° angle. This line was assigned an
element type of beam. An appropriate combination of cross-section and mass density was defined so that the mass
of the rod would be 10 kg. The end at the pivot was constrained so that only rotation about the Z axis was allowed.
Standard gravity was applied to the model.

Displacement
Y Component
m

0
-0.070086
-0.14017
-0.21026
-0.28034
-0.35043
-0.42051
-0.4906
-0.56069
-0.63077
-0.70086

Time: 0.37 s
Time Step: 148 of 148

Maximum Value: 0 m

Minimum Value: -0.700857 m

1 < Design Scenario 1 >

O-r<
t3

Figure 183-1. Y displacement after 0.37 seconds.

"= Derivalive of Displacement ¥ Component (2)

0.0

054

20+

254

-3.0

35

40

45

o
g

0.05 0.10 015 020 025 0.30 035
Time (s)

Figure 183-2. Graph of the Y Velocity

Table 183-1. Comparison of Results

Theory Analysis % diff

Y Velocity (m/s) 4.56 4.54 0.44
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AVE - 184 MES of a Reinforced Concrete Beam

Reference

Biggs, M. R., Finite Element Modeling and Analysis of Reinforced-Concrete Bridge Decks, p. 5-7.

Problem Description

A concrete beam has a span of 20ft, a width of 10 in and a depth of 25 in. The concrete has a strength, f “c, of 6,000
psi and a modulus of 4,420 ksi. The reinforcing steel has a modulus of 29,000 ksi, a yield stress of 60 ksi and a
cross-sectional area of 2.37 in>. A uniform loading of 4,260 Ibf/ft is applied over the length of the beam.

Theoretical Solution

Maximum stresses attributable to the applied load were calculated in accordance with the code of the American
Concrete Institute. The vertical displacement results are plotted along the length of the beam in Figure 184-1.

Distance from Left Support (ft)

P P P PP S® P
P P PSP ELSL PSSP
o0 o0 AT @ of DT DT DT BT T 9T 0T T BT 0T D

-0.1 /
e\ /
o\ /

AN J/

AN 4

-0.6 \ /

-0.7

O & & & P
LSS

Z Deflection (in)

-0.8

-0.9

-1

Figure 184-1. Graph of the Z deflection along the length of the beam

Autodesk Simulation Solution

A brick element model was created in FEA Editor with dimensions of 240 in x 10 in x 25 in. There were 20
elements along the 240 inch length (Y axis), 2 elements along the 10 in length (X axis) and 4 elements along the 25
in length (Z axis). A normal pressure of 35.5 psi was applied to the 240 in x 10 in surface. This corresponds to the
4,260 Ib/ft distributed load. Boundary conditions were applied along the centerline of each end constraining the Y
and Z translations.

A duration of 1 second and a capture rate of 100 1/s were used. The load curve for the pressure was ramped up from
0 magnitude to full magnitude over 1 second.
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The reinforced concrete material model was assigned in the element definition dialog. The following material

properties were assigned:
o General Tab
o Mass density: 2.2e-4 Ibf*s%/in/in®
o Young's modulus: 4,420,000 psi
o Poisson's ratio: .15

e Strength Tab (Only the uniaxial compressive strength, f'c, was provided. For the uniaxial tensile
strength, the value 0.1f ‘. was used. For the biaxial compressive strength, the value 1.2f '; was

o Uniaxial tensile strength: 600 psi
o Uniaxial compressive strength: 6,000 psi
o Biaxial compressive strength: 7,200 psi
o Tension stiffening: Fracture energy, Linear
= Fracture energy/area: 10 in*Ibf/in
e Hardening Tab

Strain Stress

0 -4.800

-0.004 | -6,000
e Rebar Tab

o Number of rebars: 1

Volume ratio: 0.00948

Mass density: 0.00074 Ibf*s%/in/in’
Modulus of elasticity: 29,000,000 psi
Strain hardening modulus: 59,000 psi
Yield stress: 60,000 psi

Rebar direction: Y

O O 0O O O O

A comparison of the results with the theoretical is found in the following table.

Table 184-1. Comparison of Results

Theory Analysis

% diff

Vertical Displacement at Center of Beam (in) | -0.669 -0.672

0.45
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AVE - 185 Riks Analysis of a Curved Cylindrical Shell

Reference

Surana, K.S., Geometrically Nonlinear Formulation for the Curved Shell Elements, p. 603-607.

Problem Description

A force is applied to the center of a cylindrical shell section. The longitudinal edges are hinged and the curved
edges are free. The cylinder has a radius of 2540 mm and depth of 508 mm. The thickness is 12.7 mm. The section
spans an arc of 0.1 radians on either side of the force location. The material has a modulus of elasticity of 3.10275
kN/mm? and a Poisson's ratio of 0.3.

Theoretical Solution

In the technical paper, twelve equal displacements increments were applied. Equilibrium iterations were performed

at each increment until the following tolerances were met: A1<0.00001, A2<0.001. The total force is plotted against
the vertical deflection at the center point in Figure 185-1.

Force (kM) 5|

o 1 L L L n L 1 i n n L Il
[i] -5 =10 15 =20 25 =30

Deflection {mm)

Figure 185-1. Graph of the Force vs. Y Deflection at Center Point
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Autodesk Simulation Solution

AVE - 185

A quarter symmetry model was created using a two-object mesh with 3 divisions along each length. A 1,000 N

force was applied to the center node.

Hinged constraints were applied along the longitudinal edge. Symmetry

boundary conditions were applied along each of the symmetry planes. Thin shell elements were defined with the
specified material and thickness parameters. For the Riks analysis, an initial load factor increment of 0.06 was used

and a total of 100 steps were requested.

A comparison of the results with the theoretical is found in the following table.

Displacement
Y Component
mm

-4.4978
-5.997

-7.4963
--8.9955
o -10.495
-11.994
-13.493
-14.993

Time: 34 s
Time Step: 34 of 100

Maximum Value: 0 mm

1 < Design Scenario 1 >

Minimum Value: -14.9926 mm

<%

/]

ﬁggilqp

{-11.714973 4
s

&/ 4 714973
"V,
,

¥

Figure 185-2. Y displacement when center node displaces 15 mm due to applied force.

Figure 185-3. Load level table from the log file

Time Percent DT L Iter. Residual Load level
1.000000 1.00 1.000000 1 1 1.0000E+00 6.0000E-02
1.000000 1.00 1.000000 1 2 3.6482E-02 6.0000E-02
1.000000 1.00 1.000000 1 3 5.8780E-05 6.0000E-02c
2.000000 2.00 1.000000 1 1 1.0000E+00 1.2000E-01
2.000000 2.00 1.000000 1 2 4.0793E-02 1.2000E-01
2.000000 2.00 1.000000 1 3 8.3324E-05 1.2000E-01c
32.000000 32.00 1.000000 1 3 6.3965E-06 4.0700E-01c
33.000000 33.00 1.000000 1 1 1.0000E+00 3.9041E-01
33.000000 33.00 1.000000 1 2 5.4067E-03 3.9017E-01
33.000000 33.00 1.000000 1 3 5.4334E-06 3.9017E-01c
34.000000 34.00 1.000000 1 1 1.0000E+00 3.7313E-01
34.000000 34.00 1.000000 1 2 4.1472E-03 3.7296E-01
34.000000 34.00 1.000000 1 3 4.3084E-06 3.7296E-01c
35.000000 35.00 1.000000 1 1 1.0000E+00 3.5560E-01
35.000000 35.00 1.000000 1 2 2.8553E-03 3.5550E-01
35.000000 35.00 1.000000 1 3 3.0525E-06 3.5550E-01c
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The force applied at a given time has to be calculated using the following equation:

= [Load Level from the LOG file] x [Applied force] x [symmetry multiplier]
0.37296 x 1000 N x 4

1492 N

=1.492 kN

AVE - 185

Table 185-1. Comparison of Results When Vertical Deflection at the Force Location is -15 mm

Theory | Analysis | % diff
Force Applied at Center (kN) 1.5584 1.492 -4.2
Vertical Deflection (Y) of Point Along the Center of the Edge (mm) -11.3711 | -11.715 -2.9
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