
Autodesk®

Maya® 2009 software

Maya Assets

Interaction with File Referencing
File referencing now uses the published names for
reference edits rather than the original attribute
names. This allows published attributes to tolerate
name changes, unlike standard file referencing
architecture. Beyond name changes, you can now
change or rewire the entire contents of the asset
without breaking the file reference, as long as the
published attributes are still meaningful for the
newly wired asset.

You can export containers in your scene as references.
File referencing allows you to modularize a parent
scene into multiple referenced files so that different
people can work on different aspects of it without
having to access the parent scene itself. Referenced
objects in the main scene update automatically as
changes are made to its reference files.

Although you can edit a referenced object encapsulated
by a container and save those edits to the referenced
file, the real power of containers and referencing comes
from the fact that changes to published attributes
are stored according to their published names. These
reference edits are saved to the parent file instead of the
referenced file.

This means that you can replace references in your
scene and, so long as the container names and
attributes match the previous container, your edits
will apply to the new container.

Reference edits in the parent file also allows other
artists to modify the contents of the containers in
the referenced files without affecting the behavior
of the parent file.

Maya Assets

In Autodesk® Maya® 2009 software, Maya Assets enable
you to encapsulate a set of nodes and treat them like a
single node, with only the important attributes exposed.

Containers and Published Attributes
Think of a container as a set of other nodes.
The contents of one container cannot overlap with
another container, but the containers can be nested.
[Note: Nodes inside of a container must originate from
the same file or be referenced containers.]

This builds on the concept of container nodes in
previous versions of Maya, where container nodes
were used mostly to simplify the Hypergraph display.

Examples of the new container node capabilities:
•	 Tight integration with the primary editors in Maya.
•	 Simplification of complex hierarchies.
•	 Additional options for creating containers.
•	 Customizable definition and organization of container

attributes.
•	 Ability to associate parenting relationship data with

a container.
•	 Ability to transfer values, connections, and

relationships between containers.

Additionally, locking support and file referencing
integration let you create containers that can be
referenced and treated as a ‘black box’ by other users.

The following sections explain these concepts in
more detail.

2

Figure 1. Maya container with custom icon.

Any attribute on a contained node can be published
to the interface of the container with a user-defined
name. This relationship is stored by a connection
from the published attribute to the container. This
connection is only used for tracking. [Note: This differs
from Autodesk® Maya® 2008 software where published
attributes were dynamic attributes connected to
published attributes as drivers. Maya 2008 files are
converted to the new architecture during file read].

The traditional method of creating a customized
attribute interface involved adding dynamic attributes
to a control node, then wiring the dynamic attribute into
the related attribute. The container/published attribute
architecture provides a number of advantages:

•	 The published attribute can still be manipulated
directly.

•	 Improved performance with the elimination of the extra
connection, avoiding unnecessary dirty evaluation.

•	 No more duplication of data.

Interaction with Commands
All Maya commands that operate on attributes accept
either the original attribute name or the published
name as an argument, so you can achieve the same
result if you perform an operation like “setKeyframe”
on the original attribute name or the published name.

3

Container Proxy
Although you can apply a regular proxy reference
to a referenced container, this greatly reduces
your ability to interact with the container since its
published attributes are not available. To remedy
this problem you can export a referenced container
as a proxy container instead.

Figure 2. Street container with Street_GRP
published root transform proxy.

Figure 4. Channel Box display of lightPost
container’s published attributes.

Figure 3. Attribute Editor display of lightPost
container showing container and published attributes.

A proxy container, like a proxy reference, allows
you to substitute a potentially complex referenced
container for a simpler file. Proxy containers are useful
for simplifying complex scenes and help to improve
navigation or performance when you are primarily
concerned with the behavior of components in your scene.

When you create a proxy container, the proxy file
consists of a locator representing the container’s root
node and an additional locator for each parent or
child anchor for the container. You can add additional
geometry in the proxy file to better represent the
geometry it is being substituted for. Proxy containers
retain published attribute values and connections
even when reloaded with their proxy files in the main
scene. Also, any published parent or child anchors will
still appear in the scene’s hierarchy so you can move
the encapsulated objects around as needed.

User Interface (UI) Integration
Containers and published attributes are tightly
integrated into the primary windows and editors
in Maya, specifically:

Attribute Editor
Published attributes display in the Attribute Editor
with the appropriate widgets for their type. For example,
a published color attribute displays with a color-wheel and
color-slider. Numeric attributes display with sliders
and appropriate minimum and maximum values.

By default, all containers have two view modes: flat
and node-based. These can be set individually per
container. Flat mode lists the attributes in the order
they are published and node-based groups publish
attributes into collapsible frames with one frame per
node. Additionally, you can define custom grouping
and ordering by setting the view mode to ‘template’
and creating custom views. (See the Template section.)

Channel Box
The Channel Box uses the viewMode for ordering
published attributes in the same manner as the
Attribute Editor (with the restriction that the Channel
Box shows only numeric attributes and attributes set
as keyable or displayable).

The Channel Box also has a new Show menu that allows
attribute filtering on all nodes (not just containers).
An additional attribute filter (Published) lets you restrict
the display to only published attributes.

The Containers option in the Show menu lets you
limit the Channel Box to display only container
attributes for selected objects. You can also choose
to display the container first in the Channel Box when
any container member is selected. When an attribute
in the container is highlighted in the Channel Box,
the related node is selected in the scene, and displays with
the appropriate manipulator for translate/rotate/scale.

Outliner
New options in the Outliner let you display a
container-centric view of your scene, with nodes
organized under their related container. You can
also see a published hierarchy view in which only
nodes that are published as Root Transform, Parent
Anchor, or Child Anchor are shown. You can drag
and drop to edit container membership or to reorder
the nodes under a container.

You can also view published attributes under their
container in the Outliner. Attributes are ordered as
specified by the container’s view mode and obey the
attribute filters.

Assets also accept custom icons which (when using a
20x20 XPM image file) are drawn as the container’s
node icon in the Outliner. This custom icon is also
used as the Published Root Transform’s node icon to
help distinguish the asset’s hierarchy from a regular
Maya hierarchy and from other asset hierarchies.

Hypergraph and Hypershade
New Hypergraph/Hypershade features for containers
include:

•	 Associate a background image with a container
and an icon with a collapsed container.

•	 Drag and drop to perform connections between
containers.

•	 Major performance improvements.
•	 Black Box mode, which prevents expanding a

container in the Connections view of the Hypergraph
and culls the display of the asset’s non-published
nodes in the Hierarchy view.

The following enhancements apply to both containers
and non-containers:
•	 Ability to hide relationship connections

(connections where data does not flow such as
between set nodes and their members).

•	 Ability to collapse multiple connections between
nodes into a “fat connection”.

4

Figure 5. The difference between Container-centric display and published hierarchy display in the Outliner.

Figure 6. Hypergraph display of nested containers and Merge Connections of published attributes.

Asset Editor
A new Asset Editor window lets you accomplish
asset-related tasks:
•	 Publishing/unpublishing Parent and Child Anchors

and Root Transform nodes.
•	 Publishing/unpublishing attributes.
•	 Publishing aliased attributes.
•	 Binding/unbinding published attributes.
•	 Re-organizing nodes in a container.
•	 Defining a template and views for an asset.

High-level Relationship Data
In addition to attributes, certain kinds of relationship
data can be published to the container. The motivation
for publishing such relationships is two-fold: it clearly
defines the allowed interface with external nodes and
it allows higher-level operations to understand how to work
with the container. It also allows container commands to
transfer such relationships between containers and to
fully support them during file referencing.

The first supported relationship is a parent and child
hierarchy. By publishing a node as a Parent Anchor, you
specify that the node is allowed to serve as a parent to
nodes outside the container. Similarly, a Child Anchor
denotes that a given node in a container can be
parented to external nodes. Any number of nodes can
be published as parent/child anchors with user-defined
names to differentiate them.

The second supported relationship is a published root
transform. By publishing a node as a Root Transform,
you specify that the node is allowed to serve as a parent
and a child to nodes outside the container. Furthermore,
you can define a selection priority within the viewport
when using Container-Centric Selection, which uses
the asset’s Root Transform as the first priority when
selecting an object associated with the asset.

 Figure 7. Asset Editor display of Street Light container and published interface.

Current Container
Newly created nodes are automatically placed in
the current container. You can set any unlocked
container to be the current container, letting you fill
a container on the fly. For example, if you create a
container and make it current, then build a shader, all
the new shader nodes go into the current container
automatically. In this respect, containers can be thought
of like visual namespaces.

As with standard published attributes, file referencing
and ‘copy attribute values’ understand the published
parenting relationships and know how to swap in the
new parent or child (regardless of its name). For example,
when creating a character that holds 5 props, put each
prop in its own container. Publish the top transform
on each as a parent with the name “HoldMe” and save
these as separate files. Reference one prop file into
the scene and parent the prop to the character’s hand,
then use ‘Replace reference’ to swap in any of the
other props.

5

Figure 8. Glass Box container display in the Outliner versus the Black Box container display.

Black Box
A ‘Black box’ attribute has been added to containers.
Enabling this attribute means:
•	 Only published nodes appear in the Outliner,

Hypergraph (both DAG and Dependency Graph views).
•	 Container-centric selection is enforced regardless

of the container-centric preference you set, so
you can only select published nodes.

•	 Pickwalking only allows walking to published nodes.
•	 Containers cannot be expanded in the

Hypergraph.
•	 The Dependency Graph Traversal tool doesn’t allow

navigation to a non-published node.
•	 The Attribute Editor navigator buttons don’t allow

navigating to a non-published node.

Locking
Maya 2009 adds the ability to select a container and
lock its unpublished attributes. Locking unpublished
attributes does the following:
•	 Locks the container node.
•	 Locks the nodes within the container.
•	 Disallows modification of unpublished attribute values.
•	 Prevents making or breaking connections to

unpublished attributes.

When a container is locked, the standard node locking
rules apply. In addition, you cannot:
•	 Add or remove nodes from the container.
•	 Unlock member nodes inside the container.
•	 Publish or unpublish attributes.

When a file with locked containers is referenced, its
locking state cannot be modified from the parent file.

6

Figure 9. Asset Template XML structure and syntax.

Templates
A container template can be used to define the user
interface of the asset and to specify different views
for different users of that interface.

The template file format allows hierarchical template
definition with inheritance from multiple types,
similar to C++ style classes. The template can be used
to pre-populate a container with the desired interface
as well as to validate its structure.

For example, to create a set of assets with the same
interface (so their controls/animation can be easily
swapped) you can create a container and publish
its attributes, then export a template and use it to
pre-populate the other containers with the same interface.

The container interface is saved with the node itself, so
usage of templates is optional. Because it is a separate
file, you can create a library of asset templates
independent of specific scene files.

The other purpose of the template is to specify the
UI organization of container attributes. You can
define the grouping and ordering of attributes to be
used in the Outliner, Attribute Editor, Asset Editor,
and Channel Box. Each template can have multiple
views, so users can switch between different views
depending on their task.

Templates can be nested into packages for easier storing
on disk, and so multiple templates can be bundled into a
single file for an asset.
Maya uses an XML format for templates, which stores
published attributes, views, nested templates as well
as labels (aliases) for published attributes and data types
for published attributes.

Container Creation Techniques
As in previous versions, you can simply select which
nodes you want in a container. New creation options
let you decide whether to include children, parents,
upstream connections, and downstream connections.

Transfer of Data Between Containers
The new copyAttr command and its corresponding
menu item (Edit > Transfer Attribute Values) let you
transfer external connections, published attributes
values, and relationships between nodes. The

transfer is based on attribute names. This capability
was originally implemented for containers based on
published names, but has been extended to work on
arbitrary nodes. You can specify whether the copy
is performed on all matching attributes or only on
attributes selected in the Channel Box or specified
by command line.

As with the file referencing enhancements for
containers, this capability means you can treat the
container as a ‘black box’ when working external to it.

An example workflow: A template is defined for an
asset and five variations on this asset are created, all
conforming to the template. One user may publish the
“width” as the scale of pCube1 and one may publish
the “width” as the radius of pSphere3. Another user
can then apply his animation/settings from one asset
to all the others.

Autodesk and Maya are registered trademarks or trademarks of Autodesk, Inc., in the USA and/or other countries. All other brand names, product
names, or trademarks belong to their respective holders. Autodesk reserves the right to alter product offerings and specifications at any time without
notice, and is not responsible for typographical or graphical errors that may appear in this document. © 2009 Autodesk, Inc. All rights reserved.

Export Containers: Build an Asset Library
You can build a customized library of assets by
exporting container nodes. When a container node
is exported, its contents, its creation information,
the original name of the asset file, and custom notes
are also exported.

Application Programming Interface (API)
The container API consists of the classes MFnContainer
and MContainerMessage and contains the following
functions:
•	 Create a container containing a specified list of nodes
•	 Query the nodes in a container
•	 Traverse the container hierarchy of subcontainers
•	 Query the published attributes on a container
•	 Publish an attribute to a container
•	 Register a callback when attributes are bound or

published

