Manual de introducción
Autodesk® FeatureCAM® 2017

© 2016 Delcam Limited. All Rights Reserved. Except where otherwise permitted by Delcam Limited, this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries: 123D, 3ds Max, Alias, ArtCAM, ATC, AutoCAD LT, AutoCAD, Autodesk, the Autodesk logo, Autodesk 123D, Autodesk Homestyler, Autodesk Inventor, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSketch, AutoSnap, AutoTrack, Backburner, Backdraft, Beast, BIM 360, Burn, Buzzsaw, CADmep, CAiCE, CAMduct, Civil 3D, Combustion, Communication Specification, Configurator 360, Constructware, Content Explorer, Creative Bridge, Dancing Baby (image), DesignCenter, DesignKids, DesignStudio, Discreet, DWF, DWG, DWG (design/logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DWGX, DXF, Ecotect, Ember, ESTmep, FABmep, Face Robot, FBX, FeatureCAM, Fempro, Fire, Flame, Flare, Flint, ForceEffect, FormIt 360, Freewheel, Fusion 360, Glue, Green Building Studio, Heidi, Homestyler, HumanIK, i-drop, ImageModeler, Incinerator, Inferno, InfraWorks, Instructables, Instructables (stylized robot design/logo), Inventor, Inventor HSM, Inventor LT, Lustre, Maya, Maya LT, MIMI, Mockup 360, Moldflow Plastics Advisers, Moldflow Plastics Insight, Moldflow, Moondust, MotionBuilder, Movimento, MPA (design/logo), MPA, MPI (design/logo), MPX (design/logo), MPX, Mudbox, Navisworks, ObjectARX, ObjectDBX, Opticore, P9, PartMaker, Pier 9, Pixlr, Pixlr-o-matic, PowerInspect, PowerMill, PowerShape, Productstream, Publisher 360, RasterDWG, RealDWG, ReCap, ReCap 360, Remote, Revit LT, Revit, RiverCAD, Robot, Scaleform, Showcase, Showcase 360, SketchBook, Smoke, Socialcam, Softimage, Spark & Design, Spark Logo, Sparks, SteeringWheels, Stitcher, Stone, StormNET, TinkerBox, Tinkercad, Tinkerplay, ToolClip, Topobase, Toxik, TrustedDWG, T-Splines, ViewCube, Visual LISP, Visual, VRED, Wire, Wiretap, WiretapCentral, XSI

All other brand names, product names or trademarks belong to their respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.
Contenidos

Manual de introducción en FeatureCAM

Iniciación de FeatureCAM por primera vez ... 2
Creación de ficheros nuevos .. 5
Interfaz de FeatureCAM .. 7
Cómo conseguir ayuda ... 8

Introducción al fresado 2,5D

Definición del bloque ... 11
Creación de figuras (fresado 2,5D) ... 11
Visualización de la pieza ... 15
Simulación de las trayectorias ... 16
Orden de fabricación de las operaciones de fabricación 18
 Operaciones de orden automático ... 19
 Opciones de orden manual (fresado 2,5D) ... 21
Documentación de pieza (Fresado 2,5D) ... 22
Control de las estrategias ... 24
Generación del código CN (fresado 2,5D) ... 26
Catálogo de herramientas .. 28
Cambio de posprocesador .. 29
Guardado del código CN ... 29

Introducción al torneado

Definición del bloque ... 32
Pasos preparatorios .. 33
Definición de la geometría .. 34
Creación de figuras ... 38
Visualización de la pieza .. 43
Simulación de las trayectorias .. 46
Orden de fabricación de las operaciones de fabricación 47
Documentación de pieza (Torneado) ... 50
Generación del código CN (torneado) ... 51
Cambio de posprocesador .. 51
Guardado del código CN ... 52

Introducción al torneado/fresado

Pasos previos .. 56
Definición de la geometría (torno/fresa) .. 57
Creación de figuras (torno/fresa) ... 59
Introducción al fresado de 3D 68

Definición del bloque (fresado 3D) ... 70
Definición de la geometría ... 71
Creación de la superficie de botella .. 75
Visualización de la pieza ... 76
Crear una figura de fresado de superficie ... 78
Simulación de las trayectorias ... 81

Introducción a la electroerosión por hilo 82

Definición del bloque (electroerosión por hilo) ... 83
Creación del perfil .. 84
Creación de figuras de electroerosión por hilo .. 85
Simulación de la trayectoria de electroerosión por hilo 87
Generación del código CN (electroerosión por hilo) 89
Incorporación de un ángulo de conicidad ... 90

Introducción al reconocimiento de figuras 94

Ejemplo del reconocimiento automático de figuras 95
Importación de modelos sólidos ... 96
Uso del reconocimiento automático de figuras .. 98
Simulación de trayectorias (RAF) .. 100
Ejemplo del reconocimiento interactivo de figuras 101
Importación de modelos sólidos ... 102
Uso del reconocimiento interactivo de figuras 104
Selección de herramientas (RIF) .. 107
Simulación de trayectorias (RIF) .. 109

Índice 111
FeatureCAM es un paquete de aplicaciones CAD/CAM que automatiza el mecanizado y reduce los tiempos de programación de piezas de fresado, torneado y electroerosión por hilo.

La funcionalidad disponible depende de la versión cuya licencia se haya adquirido.

FeatureCAM genera trayectorias a partir de las figuras de la pieza y selecciona automáticamente las herramientas apropiadas, configura las pasadas de desbaste y acabado y calcula los avances y velocidades.

Las instrucciones paso a paso de este Manual de Introducción destacan algunas de las características de este programa tan versátil. FeatureCAM es muy fácil de usar y no precisa conocimientos de cálculo especializados.
Iniciación de FeatureCAM por primera vez

1 En el menú de Inicio, seleccione Todos los programas > Autodesk, Inc > FeatureCAM.

También es posible iniciar el programa haciendo doble clic en el icono de FeatureCAM del escritorio.

La primera vez que se arranca FeatureCAM se ejecuta un programa que crea la base de datos de herramientas y materiales.

2 Haga clic en Aceptar para comenzar con la configuración. Se abre el cuadro de diálogo de Configuración de Herramientas y Materiales.

3 Para crear bases de datos locales, seleccione En mi ordenador local.

Si se desea que varios ordenadores compartan la misma información de herramientas y materiales:

a Selecione En otro ordenador al que se accederá en red.

b Haga clic en el botón de Buscar y utilice el cuadro de diálogo de Posición Base de Datos para seleccionar la carpeta en la que se encuentra la base de datos.
Es necesario crear una carpeta de bases de datos en la red propia en primer lugar y posteriormente copiar una base de datos MDB vacía desde el CD-ROM de FeatureCAM a esta ubicación. La base de datos por defecto se crea con MS Access y es conveniente que se acceda a ella con un controlador de bases de datos MS Jet. Se recomienda utilizar tipos de base de datos distintos, por ejemplo MS SQL Server. Para más información, consultar la ayuda en línea.

4 Haga clic en Siguiente.

5 Seleccione las herramientas a cargar:

![Configuración de Herramientas y Materiales]

- **Pulgadas** - únicamente carga las herramientas de pulgadas.
- **Métrico** - únicamente carga las herramientas métricas.
- **Ambos** - carga herramientas métricas y de pulgadas.

6 Haga clic en Siguiente.

7 Cuando se escoge cargar ambos tipos de herramienta, se pregunta cuál se va a utilizar con más frecuencia. Seleccione **Pulgadas** o **Métrico** y haga clic en Siguiente.

8 Haga clic en Finalizar para inicializar la base de datos.
Las bases de datos de herramientas determinan el conjunto de herramientas que FeatureCAM utiliza para realizar operaciones de fabricación. Para lograr unos mejores resultados, utilizar el Gestor de Herramientas (disponible en el menú de Fabricación) para personalizar la base de datos de tal manera que refleje las herramientas del taller.
Creación de ficheros nuevos

Al iniciar FeatureCAM se abre el Asistente de Nuevo Documento de Pieza.

1. Si no se abre el Asistente de Nuevo Documento de Pieza, haga clic en la opción del menú de Fichero > Nuevo.

2. Haga clic en la opción de Nuevo fichero en el Asistente de Nuevo Documento de Pieza y haga clic en Aceptar.
3 Seleccione el **tipo de fichero de pieza** que se desea crear.

![Asistente de Nuevo Documento de Pieza](image.png)

4 Seleccione las **Unidades** (Pulgadas o Milímetros).

> Es posible cambiar las unidades de las dimensiones predeterminadas más adelante si se selecciona **Opciones > Opciones Fichero** en el menú.

5 Haga clic en **Finalizar**.
Interfaz de FeatureCAM

La interfaz de FeatureCAM utiliza muchos de los elementos de Windows tradicionales: barras de herramientas, cuadros de diálogo, menús contextuales o los asistentes.

La barra de Título recoge el tipo de configuración de la pieza entre paréntesis, en este caso (Fresado), y el nombre del fichero de pieza entre corchetes, en este caso [FM_Pieza_con_abrazaderas]. Cuando hay cambios sin guardar en el fichero de pieza, un asterisco (*) acompaña al nombre.
Al igual que con el resto de los programas de Windows, existen varias maneras de dar instrucciones en FeatureCAM:

- Seleccionando botones de las barras de herramientas;
- Seleccionando opciones de menús;
- Seleccionando opciones de menús contextuales;
- Utilizando accesos directos a través del teclado.

Se recomienda, según se vaya conociendo FeatureCAM más a fondo, combinar varios métodos de emisión de órdenes para que el trabajo se realice con más rapidez.

Al hacer clic con el botón derecho del ratón se abren los menús contextuales. En función de la parte del programa en la que se encuentre el usuario se abrirá un menú u otro. Los menús recogen comandos y funciones comunes propios de la parte del programa en la que se abren.

Cómo conseguir ayuda

FeatureCAM tiene varias formas de proporcionar ayuda. La ayuda contextual se centra en la tarea actual. También es posible consultar los muchos ejemplos de la carpeta de **Examples** [Ejemplos], ubicada en el directorio raíz de FeatureCAM. Por último, cuando no es posible encontrar respuesta a la pregunta planteada, siempre es posible consultar la página web o ponerse en contacto con la asistencia técnica.

Ayuda en línea

La documentación de ayuda en línea es la principal fuente de información técnica acerca de FeatureCAM. Seleccione la opción del menú de **Ayuda > Contenidos** o haga clic en en la barra de herramientas **Estándar** para acceder a ella.

Ayuda contextual

Acceda a más información sobre la tarea actual de alguna de las siguientes maneras:

- Algunos comandos proporcionan la ayuda automáticamente a través de la barra de **Ayuda**.

 Paso 1: Seleccionar el primer punto

 - Pase el ratón por encima de los iconos de la barra de herramientas proporciona breves explicaciones.
- Pulse **F1** abre la correspondiente página de ayuda.
- La mayor parte de los cuadros de diálogo de FeatureCAM cuentan con un botón de **Ayuda**. Al hacer clic en él se abre la página de ayuda correspondiente.
- Haga clic en el botón de **Ayuda contextual** en la barra de herramientas. Cuando el cursor adquiere la forma de un signo de interrogación (?), haga clic sobre el elemento de un menú, botón o cuadro de diálogo para obtener más información acerca del mismo.

Enlaces
Se incluyen enlaces adicionales en el menú de **Ayuda** para buscar más información acerca de FeatureCAM en internet.

Acerca de
Seleccione la opción del menú de **Ayuda > Acerca de** para abrir un cuadro de diálogo con la información de la versión, el número de compilación, la licencia, y el copyright para la instalación de FeatureCAM. El cuadro de diálogo también puede utilizarse para abrir el Gestor de Licencias y para mostrar cualquier marca comercial y crédito de programas externos utilizados por FeatureCAM.
Introducción al fresado 2,5D

En este ejemplo crean algunas figuras sencillas y se generan sus trayectorias y sus códigos CN.

Para utilizar el ejemplo de fresado de 2,5D, abrir FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) y seguir estos pasos:

1. Crear el bloque (consultar "Definición del bloque" en la página 11).
2. Crear las figuras (consultar "Creación de figuras (fresado 2,5D)" en la página 11).
3. Ver la pieza (consultar "Visualización de la pieza" en la página 15).
4. Simular las trayectorias (consultar "Simulación de las trayectorias" en la página 16).
5. Crear la documentación de la pieza (consultar "Documentación de pieza (Fresado 2,5D)" en la página 22).
6. Configurar la automatización (consultar "Control de las estrategias" en la página 24).
7. Cambiar el posprocesador (consultar "Cambio de posprocesador" en la página 29).
8. Generar el código CN (consultar "Generación del código CN (fresado 2,5D)" en la página 26).
10. Guardar el código CN (consultar "Guardado del código CN" en la página 29).
Definición del bloque

El bloque es el material inicial del que se corta la pieza. Cuando se crean piezas nuevas, se abre la página de Dimensiones del asistente del Bloque. Permite definir la forma y la dimensión del bloque, el material del bloque, el cero del programa de pieza y el sistema de coordenadas para el modelado.

1 En la página de Dimensiones del asistente del Bloque:

- Introducir un Espesor de 1 (25mm).
- Introducir una Anchura de 4 (100mm).
- Introducir una Longitud de 5 (120mm).
- Hacer clic en Finalizar.

2 Hacer clic en Aceptar para aceptar los valores predeterminados del asistente del Bloque.

Creación de figuras (fresado 2,5D)

En este paso se ilustra la creación de figuras de cajera rectangular y de agujero.
1 Creación de la figura de agujero.

a Haga clic en el paso **Figuras** del panel **Pasos**.

b En el asistente de **Nueva Figura**, seleccionar **Agujero** en la sección de **Desde dimensiones** y hacer clic en **Siguiente**.

c Introducir un **Diámetro** de 0,5 (12mm) y hacer clic en **Aceptar**.

d Introducir una posición del centro del agujero de **X 1,0** (25mm) e **Y 1,0** (25mm) y hacer clic en **Siguiente**.

Se abre la página de **Estrategias**. La página determina los tipos de operación que se utilizan para cortar la figura. Las operaciones por defecto de las figuras de agujero son el punteado y el taladrado, en ese orden. Cuando los agujeros tienen chaflanes, la opción por defecto es la de cortar el chaflán con la operación de punteado.

e Aceptar la configuración de estrategia predeterminada haciendo clic en **Siguiente**.
La página de **Operaciones** recoge las operaciones de corte de la figura, las herramientas seleccionadas automáticamente y los avances y velocidades.

En el botón del menú de **Acabado**, seleccionar la opción de **Acabado**.

2 Creación de la figura de cajera rectangular

 a Haga clic en el paso **Figuras** del panel **Pasos**.

 b En el asistente de **Nueva Figura**, en la sección de **Desde dimensiones**, seleccionar **Cajera rectangular** y hacer clic en **Aceptar**.

 c Aceptar las dimensiones predeterminadas haciendo clic en **Siguiente**.

 d Introducir una ubicación para la cajera de **X 0,75** (15mm), **Y 2,5** (60mm) y **Z 0** (0mm) y hacer clic en **Siguiente**.
La página de **Estrategia** indica que se han creado las operaciones de desbaste y acabado.

3 Utilizar el paso de **Figuras** para crear un segundo agujero de diámetro 0,5 (12 mm), ubicado en X=4 (95 mm) e Y=3 (75 mm).

4 Utilizar el paso de **Figuras** para crear una segunda cajera rectangular en la misma dirección que la primera, pero ubicada en X=2,5 (55 mm), Y=0,5 (15 mm).

5 Seleccionar **Fichero > Guardar** y guardar la pieza como **milling.fm**.
Visualización de la pieza

Para poder ver la pieza en una orientación distinta, se puede seleccionar una de las vistas predefinidas estándares. Estas opciones están disponibles en la barra de herramientas Estándar:

1. Para cambiar la vista a isométrica, hacer clic en el botón **Isométrica** en la barra de herramientas Estándar.

2. Para cambiar la vista a una vista frontal, desde el botón del menú Vista Principal.

![Diagrama de visualización de la pieza](Image)
hacer clic en el botón **Frontal** .

3 Hacer clic en el botón **Isométrica** para volver a la vista isométrica.

Simulación de las trayectorias

Ahora que se han creado las figuras, FeatureCAM automáticamente:

- Selecciona las herramientas y las operaciones más apropiadas;
- Recomienda las estrategias de mecanizado;
- Calcula las velocidades y los avances;
- Genera las trayectorias de herramienta y crea el código CN.

Para ver la simulación de la trayectoria de herramienta:

1. Seleccionar el paso **Trayectorias** del panel **Pasos**. Esto muestra la barra de herramientas **Simulación**.

2. Hacer clic en el botón **Simulación 3D** , y después hacer clic en **Ejecutar** para iniciar la simulación. Si aparece el cuadro de diálogo **Opciones Orden Automático**, hacer clic en **Aceptar** para cerrarlo. Esto acepta las opciones de orden por defecto.
Se visualiza la renderización de sólido 3D del proceso de corte.

Si en la simulación todas las herramientas son grises, seleccionar Opciones > Simulación > General en el menú y hacer clic en la opción de Colores Htas; hacer clic en Aceptar para cerrar el cuadro de diálogo. Se visualizan las herramientas en distintos colores para saber las herramientas que mecanizan cada figura.

Hacer clic en el botón de Ejecutar de la barra de herramientas de Simulación para ver los cambios.
3. Hacer clic en el botón de Hasta Siguiente Operación \(\rightarrow \). Se visualiza la operación de punteado.

4. Repetir el paso 3 para visualizar cada operación hasta completar la simulación.

5. Hacer clic en Expulsar \(\uparrow \). Esto elimina la barra de herramientas Simulación.

Orden de fabricación de las operaciones de fabricación

La pestaña Lista Op en la ventana de Resultados muestra todas las operaciones necesarias para mecanizar las figuras. Una señal de aviso \(\downarrow \) amarilla al lado de una operación indica la posibilidad de un problema con la operación. En este caso, si se ve algún aviso, ignorarlo.
Esta sección aborda:
- Las opciones de orden automático. (consultar "Operaciones de orden automático" en la página 19)
- Las opciones de orden manual. (consultar "Opciones de orden manual (fresado 2,5D)" en la página 21)

Operaciones de orden automático

El usuario puede utilizar normas o plantillas de operación para configurar el orden automático de las operaciones. La guía de torneado aborda el uso de plantillas de operación (consultar "Orden de fabricación de las operaciones de fabricación" en la página 47).

1. Seleccionar la opción de **Orden Automático** de la pestaña de **Lista Op.** Esta opción aplica a las operaciones las normas de orden automático.

2. Cambiar el orden automático para agrupar las operaciones que utilicen la misma herramienta.
 a. Hacer clic en el botón de **Opciones de Orden**.
 b. En el cuadro de diálogo de **Opciones Orden Automático**, activar la opción de **Minimizar cambios hta**, desactivar todas las demás y hacer clic en **Aceptar**.

3. Simular la pieza.
 a. Seleccionar el paso de **Trayectorias** en el panel de **Pasos**. Se abre la barra de herramientas de **Simulación**.
 b. Hacer clic en el botón de **Simulación 3D**.
 c. Hacer clic en el botón de **Ejecutar**.
Si aparece el cuadro de diálogo **Opciones Orden Automático**, hacer clic en **Aceptar** para cerrarlo. La simulación realiza en primer lugar todos los punteados, a continuación los taladrados y por último el desbaste y el acabado de fresado de las cajeras.

d Hacer clic en el botón de **Detener** cuando haya finalizado la simulación para abandonar el modo de simulación.

4 Cambiar el orden automático para trasladar las operaciones de acabado al final de la lista.

a Hacer clic en el botón de **Opciones Orden**.

b En el cuadro de diálogo de **Opciones Orden Automático**, activar la opción de **Realizar al final operac. acabado**, desactivar todas las demás y hacer clic en **Aceptar**.

Esto modifica el orden de las operaciones en la **Lista de Operaciones**.

5 Simular la pieza.

a En la barra de herramientas de **Simulación**, hacer clic en **Ejecutar**.

Los cortes de acabado de las dos cajeras se realizan en último lugar.

b Hacer clic en el botón de **Detener** cuando la simulación haya finalizado.

6 Cambiar el orden automático para hacerlo coincidir con el orden de las figuras en el panel de **Vista Pieza**.

a Hacer clic en el botón de **Opciones de Orden**.

b Deseleccionar todo y hacer clic en **Aceptar**.
c Abrir el panel de Vista de Pieza haciendo clic en . El diagrama de árbol recoge todas las configuraciones y figuras creadas.

d Hacer clic en el elemento rect_pock2 de la configuración Setup1 y colocarlo antes del hole2.

7 Simular la pieza.

a En la barra de herramientas de Simulación, hacer clic en Ejecutar .

La segunda cajera se corta como la segunda figura.

b Hacer clic en Detener .

Opciones de orden manual (fresado 2,5D)

Las operaciones de orden automático han establecido el orden en función de una serie de normas. También es posible fijar un orden de operaciones exacto manualmente.

1 Seleccionar la opción de Orden manual de la pestaña de Lista Op.
2 En el cuadro de diálogo de Orden de Operaciones Fijo, seleccionar No mostrar este aviso de nuevo y hacer clic en Aceptar.
3. Seleccionar la operación de **punteado** de hole2 de la lista y arrastrarla a la operación de **taladrado** de hole1.

4. Simular la pieza.
 a. En la barra de herramientas de **Simulación**, hacer clic en **Ejecutar**. La simulación ejecuta las operaciones siguiendo el orden nuevo.
 b. Hacer clic en **Parada** cuando la simulación haya finalizado.

5. Seleccionar **Orden automático** para restablecer el orden automático.

6. Hacer clic en **Aceptar** para cerrar el cuadro de diálogo de **Orden de Operaciones Automático**.

 *Si se desea borrar la simulación y eliminar la barra de herramientas de **Simulación**, hacer clic en **Expulsar**.*

Documentación de pieza (Fresado 2,5D)

Además de simular la fabricación de la pieza, la simulación también genera listas completas de operaciones y herramientas. Las herramientas seleccionadas se basan en la base de datos de herramientas que se tenga. Se puede imprimir toda esta información para usarla como una lista para el operador.
1. Hacer clic en la pestaña de **Detalles** en la ventana de **Resultados** para mostrar la hoja de las Operaciones de Fabricación.

Detalles de Fabricación

- **Pieza:** BOTTLE
- **Configuración:** outside (1 of 1)
- **Fecha:** lunes, 08 de junio de 2016 16:25:46
- **Rostro:** L 44,000 mm x W 105,000 mm x T 22,000
- **Material:** ALUMINUM, 111.00 Einnell, 0.8

Operación 1

- **sm1_srf_obj11** (desbaste 1, Nivel Z), Fijaci
- **A/V:** 0 RPM, 0 MMPM (0.002 MMPO)
- **Herramienta:** #1 (endmill4375.4reg, 11.112)
- **Profundidad:** 5,000 mm
- **Otro:** Paso: 3,700 mm, Sobreespesor: 1,270 mm, Tolerancia: 0
- **Aviso:** TSOV1W, Herramienta modificada 'endmill4375'

Error Leve: FS001SE: Tabla de avance y velocidad r el material del bloque. AL
Dureza del bloque: 111
Material de la herramienta: HS
Acabado de la herramienta: DR

Operación 2

- **sm1_srf_obj11** (acabado 1, paralela a y=-90
- **A/V:** 0 RPM, 0 MMPM (0.002 MMPO)
- **Herramienta:** #1 (endmill4375.4reg, 11.112)
- **Otro:** Paso: 5,000 mm
- **Sobreespesor:** 0,000 mm, Tolerancia: 0
- **Aviso:** TSOV1W, Herramienta modificada 'endmill4375'

Error Leve: FS001SE: Tabla de avance y velocidad r el material del bloque. AL
Dureza del bloque: 111
Material de la herramienta: HS
Acabado de la herramienta: DR
2 Seleccionar la opción **Lista Herramientas** en la parte superior de la pestaña **Detalles** para mostrar la hoja de Detalles Herramientas Fabricación. Contiene todas las herramientas usadas para crear la pieza utilizando el almacén de herramientas que se haya seleccionado.

![Hoja de detalles de herramientas](image)

Se puede imprimir esta documentación desde la opción del menú **Fichero > Imprimir**.

Control de las estrategias

Se pueden controlar las estrategias usadas para fabricar la pieza desde el cuadro de diálogo Propiedades.

1 Abrir el panel **Vista de Pieza**.
2 Hacer clic en el botón derecho del ratón en **agujero1** debajo del nodo Configuración1, y seleccionar la opción de Propiedades.

3 En el cuadro de diálogo de Propiedades:

 a Seleccionar la pestaña Estrategia
 b Deseleccionar la opción Punteado
 c Hacer clic en Aceptar.

4 Seleccione el paso Trayectorias del panel Pasos.
5 En la barra de herramientas de Simulación, hacer clic en el botón de Simulación 3D, y después hacer clic en Ejecutar para iniciar la simulación.

No hay punteado para el primer agujero. Si se observa la lista de operaciones, solo se incluye una operación de punteado. FeatureCAM optimiza el proceso de fabricación de la pieza, pero usted controla el nivel de optimización automático.

6 Hacer clic en Expulsar. Esto elimina la barra de herramientas Simulación.

Generación del código CN (fresado 2,5D)

FeatureCAM genera el código CN para fabricar las piezas en una máquina CNC. Se puede generar el código CN después de haber simulado la pieza, y por tanto haber calculado las trayectorias de herramienta.

1 Seleccionar el paso Código CN del panel Pasos. Esto abre el cuadro de diálogo de Código CN.
2 Hacer clic en el botón de **Programa CN** para generar el código.
Para cambiar la posición de las herramientas en el cambiador de herramientas:

1. Seleccionar el paso Código CN del panel Pasos. Esto abre el cuadro de diálogo de Código CN.

2. Hacer clic en botón de Asignar htas a nuevas posiciones. Se abre el Catálogo de Herramientas con el orden de herramientas actual.

3. Trasladar la broca centradora a la 5ª posición en el cambiador de herramientas:
 a. En la tabla, seleccionar Center_5.
 b. Introducir un Nº Hta de 5 en la lista de Ranuras.
 c. Hacer clic en Configurar.

 No es posible cambiar el número en la tabla.
4 Hacer clic en **Aceptar** para guardar los cambios y cerrar el cuadro de diálogo de **Catálogo de Herramientas**.

Cambio de posprocesador

Para cambiar el posprocesador:

1. Seleccione **Fabricación > Posprocesar** del menú. Se abre el cuadro de diálogo de **Opciones de Posprocesado**.

2. Haga clic en **Buscar** para ver los posprocesadores disponibles.

 La carpeta predeterminada para los posprocesados es `..\FeatureCAM\Examples\Posts`.

3. Seleccione el posprocesador deseado y haga clic en **Abrir**.

 El nuevo posprocesador aparece en el campo de **Fichero CNC**.

4. Haga clic en **Aceptar** para salir del cuadro de diálogo de **Opciones de Posprocesado** y utilice el posprocesador nuevo; haga clic en **Cancelar** para salir de cuadro de diálogo y conservar el posprocesador original.

5. Seleccione el paso **Trayectorias** del panel **Pasos**.

6. Ejecute una simulación de la pieza para volver a generar el código CN.

Guardado del código CN

Para guardar un programa CN:

1. Seleccionar el paso **Código CN** del panel **Pasos**. Esto abre el cuadro de diálogo de **Código CN**.

2. Hacer clic en el botón de **Guardar CN** del cuadro de diálogo de **Código CN**.
3 En el cuadro de diálogo de **Guardar CN**, aceptar el nombre de fichero y el de carpeta predeterminados y hacer clic en **Aceptar**.
Introducción al torneado

En este ejemplo se crea una pieza se torneado sencilla y se generan sus trayectorias y sus códigos CN.

Para utilizar el ejemplo de torno/fresa, abrir FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) con un **Tipo de Configuración de Torno/Fresa o de Torneado** y seguir los siguientes pasos:

1. **Crear el bloque** (consultar "Definición del bloque" en la página 32).
2. **Seguir los pasos previos** (consultar "Pasos preparatorios" en la página 33).
3. **Configurar la geometría** (consultar "Definición de la geometría" en la página 34).
4. **Crear las figuras** (consultar "Creación de figuras" en la página 38).
5. **Ver la pieza** (consultar "Visualización de la pieza" en la página 43).
6. **Simular las trayectorias** (consultar "Simulación de las trayectorias" en la página 46).
7. **Ordenar las operaciones de fabricación** (consultar "Orden de fabricación de las operaciones de fabricación" en la página 47).
8. **Crear la documentación de la pieza** (consultar "Documentación de pieza (Torneado)" en la página 50).
9. **Cambiar el posprocesador** (consultar "Cambio de posprocesador" en la página 29).
10. **Generar el código CN** (consultar "Generación del código CN (torneado)" en la página 51).
11. **Guardar el código CN** (consultar "Guardado del código CN" en la página 29).
Definición del bloque

El bloque es el material inicial del que se corta la pieza. Por defecto, el asistente del **Bloque** (página **Dimensiones**) abre la pantalla cuando se crea una nueva pieza. Permite configurar la forma y las dimensiones del bloque, el material del bloque, el punto cero del programa de la pieza, y el sistema de coordenadas para el modelado.

1. En la página de **Dimensiones** del asistente del **Bloque**:

 ![Diagrama de Dimensiones del Bloque]

 a. Introducir un D.E. (diámetro exterior) de 4 (100 mm).
 b. Introducir una Longitud de 5 (125 mm).
 c. Introducir un D.I. (diámetro interior) de 0 (0 mm).
 d. En el botón del menú de **Finalizar**, seleccionar la opción de **Finalizar y Editar Propiedades**.

 ![Botones de Finalizar y Editar Propiedades]

 Se abre el cuadro de diálogo de **Propiedades del Bloque**.
En el cuadro de diálogo de Propiedades del Bloque, introducir una Z de 0,0625 (1,5mm) y hacer clic en Aceptar.

Pasos preparatorios

Los pasos preparatorios determinan el sistema de coordenadas y el almacén de herramientas.

1. Seleccionar Opciones > Modos Introducción Datos para Torneado > 3D (XYZ) del menú para poder introducir las coordenadas como valores de X, Y, y Z.

2. Seleccionar Fabricación > Configurar Almacén de Herramientas del menú para mostrar el cuadro de diálogo Seleccionar Almacén Htas Activo.

3. Seleccionar la opción herramientas de la Lista de Almacén Htas, y hacer clic en Aceptar.

4. Para mostrar la pieza completa:
a Hacer clic en el botón del menú Modo de desplazar y hacer zoom para mostrar el menú Vista:

b Hacer clic en Centrar Todo.

Definición de la geometría

Para diseñar la pieza:

1 Dibuje dos líneas:

 a Haga clic en el paso de Geometría del panel de Pasos.
Se abre el cuadro de diálogo de **Constructores Geométricos**.

b Seleccione la opción de **Crear más de 1** y haga clic en el botón de **Línea desde dos puntos**. Se abre la barra de **Editar Figura/Geometría**.

c Cree de dos líneas que definan el perfil exterior en la barra de **Editar Figura/Geometría**:

Para el punto 1, introduzca un **XYZ 1** de X 2 (50 mm), Y 0, Z -3,5 (-88 mm).

Para el punto 2, introduzca un **XYZ 2** de X 1 (25 mm), Y 0, Z -3,5 (-88 mm).

Pulse **Intro**. Se dibuja la línea en la ventana de gráficos.

d Cree una segunda línea:

Para el punto 1, introduzca un **XYZ 1** de X 1 (25 mm), Y 0, Z -3,5 (-88 mm).

Para el punto 2, introduzca un **XYZ 2** de X 1 (25 mm), Y 0, Z 0.
Pulse **Intro** para crear una segunda línea.

2 Cree un chaflán para recortar las líneas.

 a Haga clic en el paso de **Geometría** del panel de **Pasos**.

 b En el cuadro de diálogo de **Constructores Geométricos**, en la lista de opciones de **Fillet**, haga clic en el botón de **Chaflán**.

 c En la barra de **Editar Figura/Geometría**, introduzca:

 Una **anchura** de **0.25** (6mm).
 Una **altura** de **0.25** (6 mm).

 d Posicione el cursor del ratón cerca de la posición del chaflán. El chaflán se coloca en su sitio.

 e Haga clic para incorporar el chaflán al dibujo. El chaflán recorta las líneas automáticamente.

3 Para tornear la pieza es necesario convertir estas tres líneas individuales en una única curva (encadenar la curva).

 a Seleccione el paso **Curvas** del panel **Pasos**.

 b En el cuadro de diálogo **Creación de Curvas**, seleccione el botón **Seleccionar Partes Curva**.

 En la ventana de gráficos, haga clic en las posiciones 1, 2 y 3. Cada segmento cambia de color cuando se selecciona.
c En la barra de **Editar Figura/Geometría**, nombre el **giro** de la curva y pulse **Intro**.

4 Cree una tercera línea; se utilizará para crear la figura de mandrinado.

 a Haga clic en el paso de **Geometría** del panel de **Pasos**.
 b En el cuadro de diálogo de **Constructores Geométricos**, haga clic en el botón de **Línea desde dos puntos**.
 c En la barra de **Editar Figura/Geometría**:
 Para el punto 1, introduzca un **XYZ 1** de X \(0,625\) (16 mm), Y 0, Z 0.
 Para el punto 2, introduzca un **XYZ 2** de X \(0,625\) (16 mm), Y 0, Z \(-3,75\) (-94 mm).
 d Pulse **Intro**.

5 Para encadenar la curva de mandrinado:

 a Seleccione el paso **Curvas** del panel **Pasos**.
 b En el cuadro de diálogo **Creación de Curvas**, seleccione el botón **Seleccionar Partes Curva**.
 c En la ventana de gráficos, haga clic en las posiciones 4 y 5 (se selecciona la misma línea dos veces).
 d En la barra de **Editar Figura/Geometría**, nombre el **mandrinado** de la curva y pulse **Intro**.
Creación de figuras

A continuación se explica cómo crear figuras de torneado.

1. Seleccione el botón de Perfiles de torneados 2D, en la barra de herramientas de Modo Visualización, para cambiar a una representación 2D simplificada de la pieza.

Para abrir la barra de herramientas de Modo Visualización, seleccione la opción del menú de Vista > Barras de herramientas, seleccione la opción de Modo Visualización y haga clic en Aceptar.

1. Creación de una figura de torneado.

 a. Haga clic en el paso Figuras del panel Pasos.
b En los documentos de Torno/Fresa, el asistente de **Nueva Figura** pregunta por el tipo de figura que se desea crear. Seleccione la opción de **Torneado** y haga clic en **Siguiente**.

c Seleccione **Cilindrado** en la sección de **Desde Curva** y haga clic en **Siguiente**.

d En el campo de **Curva** seleccione **torno** de la lista.

Haga clic en el botón de **Seleccionar curva** para seleccionar la curva gráficamente. El cuadro de diálogo se minimiza para que se visualice la ventana de gráficos.

Haga clic en la curva anteriormente nombrada **torno**.

En este caso particular se pueden seleccionar dos objetos: una línea y una curva. Siempre que FeatureCAM necesite clarificar la selección realizada, se abre el cuadro de diálogo de **Seleccionar**.

En el cuadro de diálogo de **Seleccionar**, seleccione **torno** y haga clic en **Aceptar**.
e En el botón del menú de **Finalizar**, seleccione la opción de **Finalizar y Crear Más** para continuar con la creación de figuras.

2 Creación de una figura de refrentado.
 a En el asistente de **Nueva Figura**, seleccione la opción **Torneado**, y haga clic en **Siguiente**.
 b En la lista de **Desde dimensiones**, seleccione **Refrentado** y haga clic en **Siguiente**.
 c En la página de **Dimensiones**:
 Introduzca un **Espesor** de 0,0625 (1,5 mm).
 Introduzca un **Diámetro exterior** de 4 (100 mm).
 Introduzca un **Diámetro interior** de 0.
 Haga clic en **Siguiente**.
d) Haga clic en **Finalizar y Crear Más**.

3 Creación de la figura de agujero.
 a) En el asistente de **Nueva Figura**, seleccione la opción **Torneado**, y haga clic en **Siguiente**.
 b) En la lista de **Desde dimensiones**, seleccione **Agujero** y haga clic en **Siguiente**.
 c) En la página de **Dimensiones**:
 - Introduzca una **Profundidad** de 3,75 (94 mm).
 - Introduzca un **Diámetro** de 1,0 (24 mm).
 d) En la página de **Posición**, introduzca una **Z** de 0.
 e) Haga clic en **Finalizar y Crear Más**.

4 Creación de una figura de mandrinado siguiendo el mismo procedimiento que con la figura de cilindrado. Utilice la curva de nombre **Mandrinado**.

5 Creación de una figura de ranurado.
 a) En el asistente de **Nueva Figura**, seleccione la opción **Torneado**, y haga clic en **Siguiente**.
 b) En la lista de **Desde dimensiones**, seleccione **Ranurado** y haga clic en **Siguiente**.
c En la página de Dimensiones:
Selezione una Posición de D.I.
Selezione una Orientación de Eje X.
Introduzca un Diámetro de 1,25 (31 mm).
Introduzca una Profundidad de 0,125 (3 mm).
Introduzca una Anchura de 0,25 (6 mm).
Mantenga el resto de las configuraciones en 0.
Haga clic en Siguiente.

d En la página de Posición, introduzca una Z de -3 (-75 mm).
e Haga clic en Finalizar y Crear Más.

6 Creación de una figura de roscado.

a En el asistente de Nueva Figura, seleccione la opción Torneado, y haga clic en Siguiente.
b En la lista de Desde dimensiones, seleccione Roscado y haga clic en Siguiente.
c En la página de Dimensión:
Selezione Indicar dimensiones del roscado desde una rosca estándar.
Selezione D.E.
En el campo de Designación, seleccione 2,0000- 4,5 UNC (M50-15 en métrico).
Haga clic en Siguiente.
d En la página de Dimensiones:
Selezione un Roscado de A la dcha.
Introduzca una Long. Rosca de 1,0 (24 mm).
Haga clic en Siguiente.
Haga clic en **Finalizar y Crear Más**.

7 Creación de una figura de tronzado.

- **a** En el asistente de **Nueva Figura**, seleccione la opción **Torneado**, y haga clic en **Siguiente**.

- **b** En la lista de **Desde dimensiones**, seleccione **Tronzado** y haga clic en **Siguiente**.

- **c** En la página de **Dimensiones**:
 - Introduzca un **Diámetro** de 4 (100 mm).
 - Introduzca un **Diámetro interior** de 0.
 - Introduzca una **Anchura** de 0,122 (3 mm).
 - Haga clic en **Siguiente**.

- **d** En la página de **Posición**, introduzca una Z de -4,5 (-112 mm).

- **e** Haga clic en **Finalizar**.

Visualización de la pieza

Se ha estado trabajando en una vista 2D.
Para poder ver la pieza en una orientación distinta, se puede seleccionar una de las vistas predefinidas estándares. Estas opciones están disponibles en la barra de herramientas **Estándar**:

1. Para volver a una vista 3D del modelo, hacer clic en el botón **Perfiles Torneados 2D** en la barra de herramientas **Modo Visualización**.
2. Hacer clic en el botón **Vista Isométrica** en la barra de herramientas **Estándar**.
3. Sombrear la pieza.
 a. Abrir el panel **Vista de Pieza**, y seleccionar **mandrinado1** situado debajo del nodo **Configuración1**.
 b. Hacer clic en el botón **Sombrear seleccionado** en la barra de herramientas **Modo Visualización**.
 c. Seleccionar **roscado1** en el panel **Vista Pieza**.
d Hacer clic en el botón Sombrear seleccionado de nuevo.

4 Hacer clic en el botón Deshacer Sombreado en Todo en la barra de herramientas Modo Visualización para volver a la vista de malla de alambre.
Simulación de las trayectorias

Ahora que se han creado las figuras, FeatureCAM automáticamente:

- Selecciona las herramientas y las operaciones más apropiadas;
- Recomienda las estrategias de mecanizado;
- Calcula las velocidades y los avances;
- Genera las trayectorias de herramienta y crea el código CN.

Para ver la simulación de la trayectoria de herramienta:

1. Seleccionar el paso **Trayectorias** del panel **Pasos**. Esto muestra la barra de herramientas **Simulación**.

2. Hacer clic en el botón **Simulación 3D** y después hacer clic en **Ejecutar** para iniciar la simulación. Si aparece el cuadro de diálogo **Opciones Orden Automático**, hacer clic en **Aceptar** para cerrarlo. Esto acepta las opciones de orden por defecto.

Se visualiza la renderización de sólido 3D del proceso de corte. Por defecto, se utiliza la vista 3/4 cuando se corta o se taladra el D.I. de la pieza.

Cuando la vista 3/4 no se utiliza, seleccionar **Opciones > Simulación > Bloque Cilíndrico** en el menú, hacer clic en la opción de **Vista 3/4 para torneado en D.I.** y hacer clic en **Aceptar** para cerrar el cuadro de diálogo. Hacer clic en el botón de **Ejecutar** de la barra de herramientas de **Simulación** para ver los cambios.
3 Hacer clic en el botón de Hasta Siguiente Operación. Se abre la operación de planeado.

4 Repetir el paso 3 para visualizar todas las operaciones hasta que se haya cortado toda la pieza.

5 Hacer clic en Expulsar. Esto elimina la simulación.

Orden de fabricación de las operaciones de fabricación

La pestaña Lista Op en la ventana de Resultados muestra todas las operaciones necesarias para mecanizar las figuras. Una señal de aviso amarilla al lado de una operación indica la posibilidad de un problema con la operación. En este caso, si se ve algún aviso, ignorarlo.

El usuario puede utilizar normas o plantillas de operación para configurar el orden automático de las operaciones. La guía del fresado 2,5D aborda el uso de las normas de uso (consultar "Operaciones de orden automático" en la página 19).

Esta sección cambia el orden automático modificando la plantilla de Operación de torneado.

Para modificar la plantilla

1 Seleccionar la opción de Orden Automático en la pestaña de Lista Op. Esta opción aplica a las operaciones las normas de orden automático.

2 Cambiar el orden automático para agrupar las operaciones que utilicen la misma herramienta.
a Hacer clic en el botón de **Opciones de Orden**.

b En el cuadro de diálogo de **Opciones de Orden Automático**, seleccionar **Usar plantilla**.

c Hacer clic en **Editar plantilla**.

3 En el cuadro de diálogo de **Orden de Figuras**:

a Seleccionar **Torneado D.E. Desbaste**.

b Hacer clic en **hasta que Torneado D.E.** se encuentre por debajo de **Torneado D.I. Acabado**.

c Hacer clic en **Aceptar** para cerrar el cuadro de diálogo de **Orden de Figuras**.

4 Hacer clic en **Aceptar** para cerrar el cuadro de diálogo de **Opciones Orden Automático**.

5 Simular la pieza.

a Seleccionar el paso de **Trayectorias** en el panel de **Pasos**. Se abre la barra de herramientas de **Simulación**.
b) Hacer clic en el botón de Simulación 3D y hacer clic en el botón de Ejecutar para iniciar la simulación.
El desbaste y el acabado D.E. ahora tienen lugar después de que se taladre el agujero.

c) Hacer clic en el botón de Detener cuando haya finalizado la simulación para abandonar el modo de simulación.
Además de simular la fabricación de la pieza, la simulación también genera herramientas y listas de operaciones completas. Las herramientas seleccionadas se basan en las de la base de datos local. Es posible imprimir toda esta información para utilizarla como lista de tareas de un operario.

1. Hacer clic en la pestaña de Detalles en la ventana de Resultados para abrir la hoja de Operaciones de fabricación.

![Imagen de la hoja de operaciones de fabricación]

Es posible revisar esta hoja con las barras de desplazamiento.

2. Seleccionar la opción de la Lista de Herramientas de la parte superior de la pestaña de Detalles para visualizar la hoja de Detalles de fabricación de herramienta. Contiene todas las herramientas utilizadas para crear la pieza partiendo del almacén de herramientas seleccionado.

 Es posible imprimir esta documentación desde la opción del menú de Fichero > Imprimir.
Generación del código CN (torneado)

FeatureCAM genera el código CN para fabricar las piezas en una máquina CNC. Se puede generar el código CN después de haber simulado la pieza, y por tanto haber calculado las trayectorias de herramienta.

1. Seleccionar el paso Código CN del panel Pasos. Esto abre el cuadro de diálogo de Código CN.

2. Hacer clic en el botón de Visualización del código CN para generar el Código CN.

Cambio de posprocesador

Para cambiar el posprocesador:

1. Seleccione Fabricación > Posprocesar del menú. Se abre el cuadro de diálogo de Opciones de Posprocesado.

2. Haga clic en Buscar para ver los posprocesadores disponibles.

La carpeta predeterminada para los posprocesados es ..\FeatureCAM\Examples\Posts.

3. Seleccione el posprocesador deseado y haga clic en Abrir.

El nuevo posprocesador aparece en el campo de Fichero CNC.
4 Haga clic en Aceptar para salir del cuadro de diálogo de Opciones de Posprocesado y utilice el posprocesador nuevo; haga clic en Cancelar para salir de cuadro de diálogo y conservar el posprocesador original.

5 Seleccione el paso Trayectorias del panel Pasos.

6 Ejecute una simulación de la pieza para volver a generar el código CN.

Guardado del código CN

Para guardar un programa CN:

1 Seleccionar el paso Código CN del panel Pasos. Esto abre el cuadro de diálogo de Código CN.

2 Hacer clic en el botón de Guardar CN del cuadro de diálogo de Código CN.
3 En el cuadro de diálogo de **Guardar CN**, aceptar el nombre de fichero y el de carpeta predeterminados y hacer clic en **Aceptar**.
Introducción al torneado/fresado

Este tutorial permite al usuario familiarizarse con:

- La creación de piezas para tornos con funciones de fresado.
- La combinación de figuras de torneado y fresado.
- La creación de figuras de fresado en el diámetro exterior y las caras de la pieza.
- La simulación de piezas de torno/fresa.

Para ejecutar este tutorial hace falta la licencia de Torno/Fresa.

Para utilizar el ejemplo de torno/fresa, iniciar FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) con un Tipo de Configuración de Torno/Fresa y seguir estos pasos:

1. Seguir los pasos previos (consultar "Pasos previos" en la página 56).
2. Configurar la geometría (consultar "Definición de la geometría (torno/fresa)" en la página 57).
3. Crear las figuras (consultar "Creación de figuras (torno/fresa)" en la página 59).
4. Ver la pieza (consultar "Visualización de la pieza" en la página 60).
5. Crear tres agujeros radiales en la pieza (consultar "Creación de tres agujeros radiales en la cara" en la página 61).
7 Crear tres ranuras (consultar "Creación de tres ranuras" en la página 65).
8 Simular las trayectorias (consultar "Simulación de las trayectorias" en la página 66).
Pasos previos

Los pasos previos definen el bloque, el sistema de coordenadas y la vista.

1. En la página de Dimensiones del asistente del Bloque:
 - Seleccionar una forma de Cilindro.
 - Introducir un D.E. (diámetro exterior) de 3.
 - Introducir una Longitud de 2.
 - Introducir un D.I. (diámetro interior) de 0.

2. Hacer clic en Siguiente hasta que se alcance la página de Cero del Programa Pieza.

3. Seleccionar Alinear a Cara del bloque.

4. Hacer clic en Siguiente.

5. Hacer clic en para posicionar el punto de referencia de la pieza.

6. En el menú de Finalizar, seleccionar el botón de Finalizar.

7. En el menú de Modo de desplazar y hacer zoom , seleccionar Centrar Todo.

8. En el menú, seleccionar Opciones > Modos Introducción Datos para Torneado > Diámetro (DZ) para introducir coordenadas como valores de Diámetro y Z.
Definición de la geometría (torno/fresa)

Explicación del diseño de la pieza:

1 Dibujar tres líneas:

 a Seleccionar el paso de Geometría del panel de Pasos. Se abre el cuadro de diálogo de Constructores Geométricos.

 b Seleccionar la opción de Crear más de 1 y hacer clic en el botón de Líneas conectadas. Se abre la barra de Editar Figura/Geometría.

 c Para crear dos líneas que definan el perfil exterior, en la barra de Editar Figura/Geometría:

 Para el punto 1, introducir un D/Z 1 de D 2,5, Z 0.
 Para el punto 2, introducir un D/Z 2 de D 2,5, Z -1,5.
 Pulsar Intro para crear una línea.

 d Crear una segunda línea con los valores:
 Para el punto 2, introducir un D/Z 2 de D 2,75, Z -1,5.
 Pulsar Intro para crear una segunda línea.

 e Crear una tercera línea con los valores:
 Para el punto 2, introducir un D/Z 2 de D 2,75, Z -2.
Pulsar **Intro** para crear una tercera línea.

2 Crear un fillet para recortar las líneas.

 a) Seleccionar el paso de **Geometría** del panel de **Pasos**.
 b) En el cuadro de diálogo de **Constructores Geométricos**, en la lista de opciones de **Fillet**, hacer clic en el botón de **Fillet de Esquina**.
 c) En la barra de **Editar Figura/Geometría**, introducir un radio (R) de 0,125.
 d) Posicionar el cursor del ratón en la esquina entre las líneas primera y segunda y hacer clic para crear el fillet. El fillet recorta las líneas automáticamente.

3 Para tornear la pieza es necesario encadenar las curvas.

 a) Seleccione el paso **Curvas** del panel **Pasos**.
 b) En el cuadro de diálogo de **Creación de Curvas**, seleccionar el botón de **Seleccionar partes de curva**.
 c) En la ventana de gráficos, hacer clic en la primera línea y posteriormente en la tercera.
 d) En la barra de **Editar Figura/Geometría**, nombrar el **giro** de la curva y pulsar **Intro**.
Creación de figuras (torno/fresa)

A continuación se explica cómo crear figuras de torneado.

1. Hacer clic en el botón **Perfiles Torneados 2D**, en la barra de herramientas **Modo Visualización**, para cambiar a una representación 3D de la pieza.

2. Crear una figura de Torneado.

 a. Haga clic en el paso **Figuras** del panel **Pasos**.
 b. En el asistente de **Nueva Figura**, seleccione la opción **Torneado**, y haga clic en **Siguiente**.
 c. Seleccionar **Torneado** en la sección de **Desde Curva** y hacer clic en **Siguiente**.
 d. En el campo de **Curva** seleccionar cilindrado en la lista.
Hacer clic en el botón de **Seleccionar curva** para seleccionar la curva gráficamente. El cuadro de diálogo se minimiza para que se visualice la ventana de gráficos.

Hacer clic en la curva anteriormente nombrada **Torno**.

En el cuadro de diálogo de **Seleccionar**, seleccionar **torno** y hacer clic en **Aceptar**.

e Hacer clic en **Finalizar**.

Visualización de la pieza

1. En la barra de herramientas de **Estándar**, seleccionar el botón de **Vista Isométrica**.

![Imagen de vista isométrica](image1)

> *Si se abre una representación 2D de la pieza, hacer clic en el botón de **Perfiles de torneado 2D**, en la barra de herramientas de **Modo de Visualización**.*

2. Sombrear la pieza:

 a. Abrir el panel de **Vista de Pieza** y seleccionar **turn1** en el nodo de **Setup1**.

 b. Hacer clic en el botón de **Sombrear Seleccionado** de la barra de herramientas de **Modo Visualización**.

![Imagen de sombreado de pieza](image2)
Creación de tres agujeros radiales en la cara

Aquí se muestra cómo añadir tres agujeros a la pieza.

1. Para volver a una vista 2D del modelo, hacer clic en el botón **Perfiles Torneados 2D** en la barra de herramientas **Modo Visualización**.

2. Crear un agujero.
 - Haga clic en el paso **Figuras** del panel **Pasos**.
 - En el asistente de **Nueva Figura**, seleccionar la opción **Torno/Fresa**, y hacer clic en **Siguiente**.

 c. Hacer clic en el botón **Deshacer Sombreado en Todo** en la barra de herramientas **Modo Visualización** para volver a la vista de malla de alambre.

3. Para cambiar la vista a una vista superior; en el botón del menú de **Vista Principal**, hacer clic en el botón de **Superior**.
c En el campo Desde Dimensiones, seleccionar Agujero, y hacer clic en Siguiente.

d En el cuadro de diálogo Dimensiones:
 Introducir un Chaflán de 0,0.
 Introducir una Profundidad de 1,0.
 Introducir un Diámetro de 0,25.

e Haga clic en Finalizar y Crear Más.

3 Crear un patrón desde figura:

a En el asistente de Nueva Figura, seleccionar la opción Torno/Fresa, y hacer clic en Siguiente.

b En el campo Desde Figura, seleccionar Patrón, y hacer clic en Siguiente.

c Seleccionar el agujero que se acaba de crear y hacer clic en Siguiente.

d Seleccionar Radial en plano XY de la Conf., y hacer clic en Siguiente.

e En la página Patrón - Dimensiones:
 Introducir el Número 3,0.
 Introducir un Diámetro de 2,0.
 Introducir un Ángulo Espaciado de 120.
 Introducir un Ángulo de 60.

f Hacer clic en Finalizar.

g Hacer clic en Cancelar.

4 Ver la representación de malla de alambre 3D de la pieza:

a Hacer clic en el botón Perfiles Torneados 2D, en la barra de herramientas Modo Visualización, para cambiar a una representación 3D de la pieza.

b Hacer clic en el botón Vista Isométrica en la barra de herramientas Estándar.

Grabado del planeado

A continuación se explica cómo grabar la pieza:

- Creación del texto para grabados.
- Creación de una figura de ranurado.

1. Generar curvas.

a. Seleccione el paso Curvas del panel Pasos.

b. En el cuadro de diálogo de Creación de Curvas, seleccionar el botón de Asistente de Curvas.

c. En el asistente de Curva:

 Seleccionar Otros métodos como método de construcción.

 Seleccionar Texto como constructor.

 Hacer clic en Siguiente.
Introducción al torneado/fresado

En la página de Texto para Grabados, configurar las propiedades del texto.

Introducir un Texto de TURNMILL.
Seleccionar un Tipo tray. de Linear.
Introducir una posición de X 0,0; Y -0,045; Z 0,0.
Introducir un Ángulo de -90.
En la lista de Justificación, seleccionar Centro.
Introducir una Modificación de escala de X 0,4; Y 0,4.
Hacer clic en el botón de Texto para abrir el cuadro de diálogo de Texto.
En la lista de Texto, seleccionar Machine Tool Gothic.
Introducir un Tamaño de 72.
Hacer clic en Aceptar para cerrar el cuadro de diálogo.

Hacer clic en Finalizar para cerrar el asistente.

Crear una figura de ranurado.

Seleccionar el texto de TURNMILL (curve1) en la ventana de gráficos.

Haga clic en el paso Figuras del panel Pasos.
En el asistente de Nueva Figura, seleccionar la opción Torno/Fresa, y hacer clic en Siguiente.
En el campo de Desde curva, seleccionar Ranurado y hacer clic en Siguiente.
En la página de Curva, hacer clic en Siguiente (ya se ha seleccionado el texto en el paso 2a).
f En la página de Posición, hacer clic en Siguiente.

g En la página de Dimensiones:
Introducir una Anchura de 0,0625.
Introducir una Profundidad de 0,02.
Seleccionar Planeado.
Seleccionar Simple (Grabado).

h Hacer clic en Finalizar.

Creación de tres ranuras

A continuación se explica cómo añadir tres ranuras de fresado a la pieza.

1 Crear una figura de ranurado:

 a Haga clic en el paso Figuras del panel Pasos.
 b En el asistente de Nueva Figura, seleccionar la opción Torno/Fresa, y hacer clic en Siguiente.
c En la sección de **Desde dimensiones**, seleccionar **Ranura**. Seleccionar **Realizar patrón desde esta figura** y hacer clic en **Siguiente**.

d En la página de **Dimensiones**:
Introducir una **Longitud** de 1,0.
Introducir una **Anchura** de 0,5.
Introducir una **Profundidad** de 0,25.
Hacer clic en **Siguiente**.

e En la página de **Patrones**, seleccionar **Radial alrededor del eje índice** y hacer clic en **Siguiente**.

f En la página de **Posición**:
Introducir un **Ángulo B** de 90.
Introducir un **Radio** de 1,25.
Introducir una **Z** de 0,25.
Hacer clic en **Siguiente**.

g En la página de **Dimensión**:
Introducir un **Número** de 3.
Introducir un **Áng. Espac.** de 120.

h Hacer clic en **Finalizar**.

Simulación de las trayectorias

Para simular la trayectoria:

1. Seleccionar el paso **Trayectorias** del panel **Pasos**. Esto muestra la barra de herramientas **Simulación**.

2. Seleccionar un fichero CNC para una máquina que sea compatible con el centro de torneado. Por ejemplo:

 ..\Examples\Posts\TurnMill\Skeleton\skeleton-1-turret.cnc
3 Hacer clic en el botón de Simulación 3D y hacer clic en el botón de Ejecutar para iniciar la simulación. Si aparece el cuadro de diálogo Opciones Orden Automático, hacer clic en Aceptar para cerrarlo. Esta acción acepta las opciones de orden predeterminadas.

Se simulan las trayectorias, incluidas las rotaciones de pieza.

4 Hacer clic en Expulsar. Esto elimina la barra de herramientas Simulación.
Introducción al fresado de 3D

Este tutorial permite al usuario familiarizarse con:

- El modelado de superficies de 3D.
- La fabricación de superficies con figuras de fresado de superficies.
- Las operaciones de fabricación.
- La selección de herramientas.
- Los atributos de fabricación de 3D.

Para ejecutar los ejemplos de esta sección hace falta la licencia de Fresado 3D. En estos ejemplos únicamente se utilizan pulgadas. El almacén de herramientas básico tiene que estar instalado.

En este ejemplo se crea una pieza sencilla y se generan sus trayectorias y sus códigos CN.

Para utilizar el ejemplo de fresado de 3D, abrir FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) y seguir estos pasos:

1. Configurar el bloque (consultar "Definición del bloque (fresado 3D)" en la página 70).
2. Configurar la geometría (consultar "Definición de la geometría" en la página 71).
3. Crear la superficie de la botella (consultar "Creación de la superficie de botella" en la página 75).
4. Ver la pieza (consultar "Visualización de la pieza" en la página 76).
5 Crear una figura de fresado de superficies (consultar "Crear una figura de fresado de superficie" en la página 78).

6 Simular las trayectorias (consultar "Simulación de las trayectorias" en la página 81).
Definición del bloque (fresado 3D)

El bloque es el material inicial del que se corta la pieza.

1 En la página de Dimensiones del asistente del Bloque:

![Dimensiones del asistente del Bloque]

- a. Introducir un Espesor de 2.
- b. Introducir una Anchura de 3.
- c. Introducir una Longitud de 6,25.
- d. Hacer clic en Finalizar.

2 Hacer clic en Aceptar para aceptar los valores predeterminados del cuadro de diálogo de Propiedades del Bloque.
Definición de la geometría

Explicación del diseño de la pieza:

1. En el menú, seleccionar Vista > Barras de herramientas, en la lista de Herramientas:
 - b. Seleccionar Geometría.
 - c. Hacer clic en Aceptar.

2. Crear tres líneas verticales:
 - a. En la barra de herramientas de Geometría, seleccionar Vertical en el menú de Línea.
 - b. En la barra de Editar Figura/Geometría, introducir un XYZ de X 1, Z 0 y pulsar Intro.
 - c. Crear una segunda línea introduciendo un XYZ de X 5,25; Z 0 y pulsar Intro.
 - d. Crear una tercera línea introduciendo un XYZ de X 6, Z 0 y pulsar Intro.

3. Crear tres líneas horizontales:
 - a. En la barra de herramientas de Geometría, seleccionar Horizontal en el menú de Línea.
b Introducir un XYZ de Y 0,5; Z 0 y pulsar Intro.

c Crear una segunda línea introduciendo un XYZ de Y 1,125; Z 0 y pulsar Intro.

d Crear una tercera línea introduciendo un XYZ de Y 1,5, Z 0 y pulsar Intro.

4 Creación de una línea pasante:

a En la barra de herramientas de Geometría, seleccionar Punto, Ángulo en el menú de Línea.

b En la barra de Editar Figura/Geometría, introducir un ángulo A de 30.

c En la ventana de gráficos, hacer clic en la intersección entre la segunda línea horizontal y en la segunda vertical, en el punto 1, para crear una línea pasante.

5 Crear arcos.

a En la barra de herramientas de Geometría, seleccionar Radio, 2 Puntos en el Menú de Arcos.
b En la barra de **Editar Figura/Geometría**, introducir un radio R de 0.5 y hacer clic en la línea vertical alrededor del punto 2 y en la línea horizontal alrededor del punto 3.

![Diagrama muestra puntos 2 y 3 con radio 0.5]

c Crear el segundo arco:

En la barra de **Editar Figura/Geometría**, introducir un radio R de 1.0 y hacer clic en la línea horizontal alrededor del punto 4 y en la línea pasante alrededor del punto 5.

![Diagrama muestra puntos 4 y 5 con radio 1.0]

d Crear el tercer arco haciendo clic en la lista pasante alrededor del punto 6 y en la línea horizontal alrededor del punto 7.

![Diagrama muestra puntos 6 y 7]

6 Para fresar la pieza es necesario encadenar las curvas.

a Seleccione el paso **Curvas** del panel **Pasos**.

b En el cuadro de diálogo **Creación de Curvas**, seleccione el botón **Seleccionar Partes Curva**.
c Hacer clic en la intersección de las líneas vertical y horizontal en el punto 6 y en la intersección de las líneas vertical y horizontal en el punto 9.
Creación de la superficie de botella

1. Seleccionar el paso de Superficies del panel de Pasos.
2. En el asistente de Superficie, seleccionar Superficie de revolución y hacer clic en Siguiente.

3. En la página de Superficie de revolución:
 a. Introducir un Ángulo inicial de 0.
 b. Introducir un Ángulo final de 180.
 c. FeatureCAM automáticamente selecciona la curva encadenada en el campo de Curva.
d En el campo de Eje, hacer clic en el botón de Seleccionar línea y seleccionar la línea horizontal alrededor del punto 1.

Hacer clic en Finalizar.

Visualización de la pieza

1 Para cambiar la vista a isométrica, hacer clic en el botón Isométrica en la barra de herramientas Estándar.

2 Controlar la visualización de la pieza con las Opciones de visualización.

a En el menú, seleccionar Opciones > Visualización. Se abre el cuadro de diálogo de Opciones de visualización.

b Seleccionar la opción de Mostrar sólo límites de superficies y hacer clic en Aplicar.
Únicamente se visualizan los límites exteriores y los bucles recortados de las superficies. No aparecen más líneas en el interior de la superficie. Esto acelera la visualización de modelos de gran tamaño.

c Desactivar la opción de **Mostrar sólo límites de superficies** y hacer clic en **Aplicar**.

Se visualizan las superficies con líneas en el interior de la superficie. Se mejora la visualización, pero en modelos de gran tamaño la visualización de la pieza es más lenta.

d Introducir una **Finura de superficie Malla de alambre** de 20 y hacer clic en **Aplicar**.

Se visualizan las superficies con más líneas. Reducir el valor de **Finura de superficie** mejora la calidad de la visualización, pero ralentiza los gráficos.

e Hacer clic en **Aceptar** para cerrar el cuadro de diálogo.

3 En el menú de **Ocultar** de la barra de herramientas de **Avanzado**, hacer clic en el botón de **Ocultar Toda la Geometría**.

4 En el menú de **Mostrar** de la barra de herramientas de **Avanzado**, hacer clic en el botón de **Mostrar todas las Superficies**.

5 Hacer clic en el botón de **Ocultar** de la barra de herramientas **Estándar** para sombrear la pieza.
Crear una figura de fresado de superficie

A continuación se explica cómo crear figuras de superficie. Posteriormente se generan trayectorias para varias superficies con una serie de estrategias de trayectorias 3D.

1. En la barra de herramientas de Estándar, hacer clic en el botón de Seleccionar y seleccionar la superficie (superficie 1). Cuando está seleccionado se visualiza en color rojo.

2. Seleccionar el paso Figuras del panel Pasos.

3. En el asistente de Nueva Figura, en la lista de Desde Superficie, seleccionar la opción de Fresado de Superficie y hacer clic en siguiente.
4 En la página de **Superficie de Pieza**, hacer clic en **Siguiente**.

5 En la página de **Nueva Estrategia**, seleccionar la opción de **Seleccionar operaciones de desbaste, semiacabado, y acabado...** y hacer clic en **Siguiente**.

![Nueva Estrategia](image)

6 En la página de **Desbaste**:

![Nueva estrategia - Desbaste](image)

a Seleccionar la opción de **Desbaste Nivel Z**.

b Seleccionar **Clasificar pasadas como Cajero 3D**.

c Hacer clic en **Siguiente**.
7 En la página de **Semiacabado**, seleccionar **Ninguno** y hacer clic en **Siguiente**.

![Imagen de Semiacabado](image1)

8 En la página de **Acabado**, seleccionar **Isolínea**.

![Imagen de Acabado](image2)

9 Hacer clic en el botón de **Finalizar**.
Simulación de las trayectorias

Para visualizar la trayectoria simulada:

1. Seleccionar el paso Trayectorias del panel Pasos. Esto muestra la barra de herramientas Simulación.

2. Hacer clic en el botón de Simulación 3D y hacer clic en el botón de Ejecutar para iniciar la simulación. Si aparece el cuadro de diálogo Opciones Orden Automático, hacer clic en Aceptar para cerrarlo. Esto acepta las opciones de orden predeterminadas.

Las trayectorias se simulan con más precisión, incluidas las rotaciones de pieza.
Introducción a la electroerosión por hilo

Este tutorial permite al usuario familiarizarse con la creación de trayectorias de electroerosión por hilo. Aborda:

- La configuración del material y el espesor del hilo.
- La creación de figuras de electroerosión por hilo.
- La configuración de estrategias de corte de electroerosión por hilo.
- La simulación de trayectorias de electroerosión por hilo.

Para ejecutar este tutorial hace falta la opción de Electroer. hilo.

Para utilizar el ejemplo de electroerosión por hilo, abrir FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) con un Tipo de Configuración Electroer. Hilo y seguir los siguientes pasos:

1 Definir el bloque (consultar "Definición del bloque (electroerosión por hilo)" en la página 83).
2 Crear el perfil (consultar "Creación del perfil" en la página 84).
3 Crear una figura de electroerosión por hilo (consultar "Creación de figuras de electroerosión por hilo" en la página 85).
4 Simular la trayectoria de electroerosión por hilo (consultar "Simulación de la trayectoria de electroerosión por hilo" en la página 87).
5 Generar el código CN (electroerosión por hilo) (consultar "Generación del código CN (electroerosión por hilo)" en la página 89).
6 Incorporar un ángulo de conicidad (consultar "Incorporación de un ángulo de conicidad" en la página 90).

Definición del bloque (electroerosión por hilo)

Los pasos previos definen el resto, el sistema de coordenadas y la vista.

1 En la página de **Dimensiones** del asistente del **Bloque**:

 ![Image of Dimensiones](image)

 a Introducir un **Espesor** de 0.5.
 b Introducir una **Anchura** de 4.
 c Introducir una **Longitud** de 4.
 d En el botón del menú de **Finalizar**, seleccionar el botón de **Acabado**.
Creación del perfil

En este paso se define el perfil.

1. Seleccione el paso Curvas del panel Pasos.
2. En el cuadro de diálogo de Creación de Curvas, seleccionar el botón de Asistente de Curvas.
3. En el Asistente de Curva:
 a. En el método de construcción, seleccionar Otros métodos.
 b. Seleccionar un constructor de Rectángulo.
4 Hacer clic en **Siguiente**. En la página de **Rectángulo**:

a Seleccionar **Esquina, anchura y altura**.

b Introducir un punto de esquina de 1, 1, 0.

c Introducir un radio de esquina de 0.5.

d Introducir una **Anchura** de 2.0.

e Introducir una **Altura** de 2.0.

f Hacer clic en **Finalizar**.

Creación de figuras de electroerosión por hilo

A continuación se explica cómo crear figuras de electroerosión por hilo.

1 Haga clic en el paso **Figuras** del panel **Pasos**.
2 En el asistente de **Nueva Figura**, seleccionar la opción de **Matriz** en la lista de **2 Ejes** y hacer clic en **Siguiente**.

3 En la página de **Curvas**, hacer clic en el botón de **Seleccionar curva o geometría**, seleccionar la curva creada y hacer clic en **Siguiente**.

4 En la página de **Posición**, hacer clic en **Siguiente**.

5 En la página de **Dimensiones**, introducir un **Espesor** de 0,5 y hacer clic en **Siguiente**.

6 En la página de **Iniciar**, hacer clic en **Siguiente**.
En la página de **Estrategias**:

![Imagen de la página de Estrategias](image)

- En el campo de **Operaciones**, seleccionar **Retracción**.
- Seleccionar la opción de **Tronzado**.
- Seleccionar la opción de **Contorno**.
- Hacer clic en **Finalizar**.

Simulación de la trayectoria de electroerosión por hilo

Ahora que se han creado las figuras, FeatureCAM automáticamente:

- Selecciona las herramientas y las operaciones más apropiadas;
- Recomienda las estrategias de mecanizado;
- Calcula las velocidades y los avances;
- Genera las trayectorias de herramienta y crea el código CN.

Para ver la simulación de la trayectoria de herramienta:

1. Seleccionar el paso **Trayectorias** del panel **Pasos**. Esto muestra la barra de herramientas **Simulación**.

2. Hacer clic en el botón de **Simulación 2D** de la barra de herramientas de **Simulación**.

3. Centrar la barra deslizante de **Velocidad de simulación** para fijar la velocidad de la simulación.
4. En el botón de menú de Simulación, seleccionar el botón de Hasta Siguiente Operación para visualizar la operación de retracción. Si aparece el cuadro de diálogo Opciones Orden Automático, hacer clic en Aceptar para cerrarlo.

Para ralentizar la simulación, arrastrar la barra deslizante de Velocidad de simulación hacia la derecha.

5. Hacer clic en el botón de Hasta Siguiente Operación de nuevo para visualizar la operación de tronzado.
6 Hacer clic en el botón de **Hasta Siguiente Operación** de nuevo para visualizar la operación de contorno final.

7 Hacer clic en **Expulsar**.

Generación del código CN (electroerosión por hilo)

FeatureCAM genera el código CN para fabricar las piezas en una máquina CNC. Se puede generar el código CN después de haber simulado la pieza, y por tanto haber calculado las trayectorias de herramienta.

1 Seleccionar el paso **Código CN** del panel **Pasos**. Esto abre el cuadro de diálogo de **Código CN**.

2 Hacer clic en el botón **Mostrar el código CN** para generar el código CN.
Incorporación de un ángulo de conicidad

En este ejemplo se explica cómo añadir un ángulo de desmoldeo a una pieza de electroerosión por hilo.

1 Abrir el panel de Vista de Pieza, seleccionar la figura de matriz1 del nodo Configuración1 y hacer clic en el botón de Propiedades de la barra de herramientas de Editar Figura/Geometría.
2 En el cuadro de diálogo de Propiedades de matriz1:

- a. Seleccionar **Constante**.
- b. Seleccionar un tipo de conicidad de **Izquierda**.
- c. Introducir un grad. de **10** como ángulo de conicidad.
- d. Hacer clic en **Aplicar**.

3 Hacer clic en el botón de **Ocultar Bloque** en el menú de **Ocultar** de la barra de herramientas de **Avanzado**.

4 Hacer clic en el botón de **Vista Isométrica** de la barra de herramientas **Estándar**.
5 Volver al cuadro de diálogo de Propiedades, asignar al tipo de conicidad un valor de Derecha y hacer clic en Aplicar.

6 Cambiar el tipo de conicidad de nuevo a Izquierda y hacer clic en Aceptar para cerrar el cuadro de diálogo de Propiedades.

7 Seleccione el paso Trayectorias del panel Pasos.

8 Hacer clic en el botón de Simulación 3D y en el de Ejecutar.

9 Hacer clic en el botón de Transformar de la barra de herramientas de Estándar.
10 Hacer clic dentro de la curva. FeatureCAM elimina esa parte del bloque.

11 Hacer clic en Expulsar.

12 En el menú de Mostrar de la barra de herramientas de Avanzando, hacer clic en el botón de Mostrar Bloque.
Introducción al reconocimiento de figuras

FeatureCAM cuenta con dos tipos de reconocimiento de figuras:

- **Reconocimiento Automático de Figuras** (consultar "Ejemplo del reconocimiento automático de figuras" en la página 95) — Reconoce automáticamente todas las figuras de un modelo sólido.

- **Reconocimiento Interactivo de Figuras** (consultar "Ejemplo del reconocimiento interactivo de figuras" en la página 101) — Reconoce figuras específicas de un modelo sólido.
Ejemplo del reconocimiento automático de figuras

En este ejemplo se explica cómo utilizar el reconocimiento automático de figuras para reconocer las figuras de un modelo sólido.

Para utilizar el ejemplo de reconocimiento automático de figuras, abrir FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) y seguir los siguientes pasos:

1 Importar el modelo sólido de `ug_plate.x_t` (consultar "Importación de modelos sólidos" en la página 96).

2 Utilizar el reconocimiento automático de figuras para crear las figuras (consultar "Uso del reconocimiento automático de figuras" en la página 98).

3 Simular las trayectorias (consultar "Simulación de trayectorias (RAF)" en la página 100).
Importación de modelos sólidos

En esta sección se explica cómo importar modelos sólidos en FeatureCAM.

Para importar el modelo sólido:

1. Si se abre el cuadro de diálogo de Dimensiones, haga clic en Cancelar para cerrarlo.

2. Seleccione la opción del menú de Fichero > Importar para abrir el cuadro de diálogo de Importar.

3. Abra la carpeta de \FeatureCAM\Examples\FeatureRECOGNITION.

4. Seleccione el fichero de ug_plate.x_t y haga clic en Abrir.

5. Se abre el cuadro de diálogo de Resultados de Importación.

6. Seleccione la opción de Usar el asistente para establecer la posición de la configuración inicial y el tamaño del bloque y haga clic en Siguiente.

7. Se abre la página de Seleccionar Dirección Z de la Configuración Inicial.

8. Haga clic en Siguiente.

9. Se abre la página de Seleccionar Orientación X de la Configuración Inicial.

11. Haga clic en Finalizar para cerrar el asistente de importación.

Se importa la pieza en el documento.
12 Pulse las teclas de **Ctrl+1** para seleccionar una vista isométrica.

Para acceder a más información de las opciones del asistente de importación, haga clic en el botón de **Ayuda** de cada página.
Uso del reconocimiento automático de figuras

En esta sección se explica cómo crear figuras con el reconocimiento automático de figuras.

Para utilizar el reconocimiento automático de figuras:

1. Hacer clic en la opción del menú de **Construir > Reconocimiento Automático de Figuras**.
 Se abre el cuadro de diálogo de **Reconocimiento Automático de Figuras**.

2. En la lista, seleccionar el sólido importado.

3. Hacer clic en **Opciones**.
 Se abre el cuadro de diálogo de **Opciones RAF**.

4. En el cuadro de diálogo de **Opciones RAF**:
 a. Seleccionar la opción de **Crear figura de planeado**
 b. Seleccionar la opción de **Crear patrón de agujeros**
 c. Desactivar la opción de **Crear figura 3D**

5. Hacer clic en **Aceptar** para cerrar el cuadro de diálogo de **Opciones RAF**.

6. Hacer clic en **Siguiente**.
 Se abre la página de configuración. Se puede utilizar esta página para seleccionar las configuraciones en las que se crean las figuras reconocidas. En este ejemplo únicamente se utiliza una configuración.

7. Hacer clic en **Siguiente**.
 Se abre la página de figuras. Contiene una lista que recoge todas las figuras reconocidas y un botón para acceder en la ventana de gráficos a una vista previa en malla de alambre.

 ![Figura reconocida](image)

 Se pueden desactivar las figuras de la lista que no se deseen crear. En este tutorial no hace falta crear una cara de planeado.

8. Desactivar el elemento de **planeado 01** de la lista.
9 Hacer clic en **Finalizar** para crear las figuras seleccionadas.

La **Vista de Pieza** recoge las figuras creadas.

En la **Vista Pieza**, pasar el cursor por encima del nombre de los elementos para destacarlos en la ventana de gráficos.
Simulación de trayectorias (RAF)

Ahora se pueden simular las trayectorias para ver los resultados del reconocimiento de figuras.

Para simular trayectorias:

1. Seleccionar el paso Trayectorias del panel Pasos. Esto muestra la barra de herramientas Simulación.

 Hacer clic en el botón Simulación 3D, y después hacer clic en Ejecutar para iniciar la simulación. Si aparece el cuadro de diálogo Opciones Orden Automático, hacer clic en Aceptar para cerrarlo. Esto acepta las opciones de orden por defecto.

 Se inicia la simulación en la ventana de gráficos.

 Cuando se producen colisiones, la simulación se pone en pausa y se abre un mensaje de aviso.

2. Cuando se complete la simulación, examinar la pieza para cerciorarse de que no hay colisiones y de que todas las figuras se han mecanizado correctamente.

3. En la barra de herramientas de Simulación, hacer clic en Detener para salir de la simulación.
Ejemplo del reconocimiento interactivo de figuras

En este ejemplo se explica cómo utilizar el reconocimiento interactivo de figuras para reconocer figuras en un modelo sólido.

Para utilizar el reconocimiento interactivo de figuras, iniciar FeatureCAM (consultar "Iniciación de FeatureCAM por primera vez" en la página 2), crear un fichero nuevo (consultar "Creación de ficheros nuevos" en la página 5) y seguir estos pasos:

1 Importar el modelo sólido de Integrex.sat (consultar "Importación de modelos sólidos" en la página 102).

2 Crear las figuras con el reconocimiento interactivo de figuras (consultar "Uso del reconocimiento interactivo de figuras" en la página 104).

3 Seleccionar las herramientas (consultar "Selección de herramientas (RIF)" en la página 107).

4 Simular las trayectorias (consultar "Simulación de trayectorias (RIF)" en la página 109).
Importación de modelos sólidos

En esta sección se explica cómo importar modelos sólidos en FeatureCAM.

Para importar el modelo sólido:

1. Si se abre el cuadro de diálogo de Dimensiones, haga clic en Cancelar para cerrarlo.
2. Haga clic en la opción del menú de Fichero > Importar para abrir el cuadro de diálogo de Importar.
3. Abra la carpeta de \FeatureCAM\Examples\FeatureRECOGNITION.
4. Seleccione el fichero de Integrex.sat y haga clic en Abrir.
 Se abre el cuadro de diálogo de Resultados de Importación.
5. Seleccione la opción de Usar el asistente para establecer la posición de la configuración inicial y el tamaño del bloque.
6. Haga clic en Siguiente.
 Se abre la página de Seleccionar Dirección Z de la Configuración Inicial.
 Se abre la página de Seleccionar Orientación X de la Configuración Inicial.
8. Haga clic en Siguiente.
 Se abre la página de Tipo Bloque.
 Se abre la página de Dimensiones del Bloque.
10. Seleccione la opción de Calcular tamaño bloque desde tamaño de pieza y haga clic en Siguiente.
 Se abre la página de Seleccionar Posición XYZ de la Configuración Inicial.
11. Haga clic en LL.
 Esta opción posiciona la configuración (el origen del sistema de coordenadas de la pieza en la máquina) en la esquina inferior izquierda del bloque.
 Se importa la pieza en el documento.
13 Pulse las teclas de **Ctrl+3** para seleccionar una vista isométrica.

Para acceder a más información de las opciones del asistente de importación, haga clic en el botón de **Ayuda** de cada página.
Uso del reconocimiento interactivo de figuras

En esta sección se explica cómo crear figuras el reconocimiento interactivo de figuras. En este ejemplo se crean figuras de lateral y de agujero.

Creación de figuras de lateral
Para crear figuras de lateral:

1. Hacer clic en el botón de Figuras en el panel de Pasos. Se abre el cuadro de diálogo de Nueva Figura.
2. En la sección de Desde Curva, hacer clic en Lateral.
3. Seleccionar Extraer con RECONOCIMIENTO Figura.
5. Seleccionar la opción de Selec. spf laterales y hacer clic en Siguiente. Se abre la página de Superficie.
6. En la ventana de gráficos, seleccionar la superficie en la que se desea crear la figura de lateral.
7. En la página de Superficies, hacer clic en Añadir desde las entidades seleccionadas para añadir la superficie a la lista.
8. Hacer clic en la flecha del botón de Finalizar y seleccionar la opción de Finalizar y Crear Más.
Se crea la figura y se abre el cuadro de diálogo de **Nueva Figura**.

9 Seleccionar las opciones de **Lateral** y **Extraer con RECONOCIMIENTOFigura** y hacer clic en **Siguiente**.

Se abre la página de **Extracción de Figura**.

10 Seleccionar la opción de **Selec. spf laterales** y hacer clic en **Siguiente**.

Se abre la página de **Superficie**.

11 En la ventana de gráficos, seleccionar las superficies en las que se desea crear las figuras de lateral, tanto en la parte frontal de la pieza como en la posterior.

Frontal:

![Imagen frontal de la pieza]

Posterior:

![Imagen posterior de la pieza]

- **Mantener la tecla de Mayús presionada y hacer clic para seleccionar varias superficies.**
- **Pulsar las teclas de Ctrl+3 o Ctrl+7 para seleccionar las vistas isométricas posterior y frontal.**
12 En la página de **Superficies**, hacer clic en la opción de **Añadir desde las entidades seleccionadas** 📈 y añadir las superficies a la lista.

13 Hacer clic en la flecha del botón de **Finalizar** y seleccionar la opción de **Finalizar** para crear las figuras y cerrar el cuadro de diálogo.

Creación de las figuras de agujero

Para crear figuras de agujero:

1 Hacer clic en el botón de **Figuras** 📚 en el panel de **Pasos**. Se abre el cuadro de diálogo de **Nueva Figura**.

2 En la sección de **Desde Dimensiones**, seleccionar la opción de **Agujero**.

3 La opción de **Extraer con RECONOCIMIENTOFigura** tiene que estar activada.

4 Hacer clic en **Siguiente**. Se abre la página de **Método Reconocimiento de Agujeros**.

5 Seleccionar la opción de **Reconocer y construir agujeros múltiples** y hacer clic en **Siguiente**. En la ventana de gráficos aparece una vista previa de los agujeros reconocidos.

Seleccionar los agujeros que se van a crear. Los agujeros seleccionados se colorean de rojo.

6 Hacer clic en **Sele. Todo** para seleccionar todos los agujeros reconocidos.

7 Hacer clic en **Finalizar** para crear las figuras de agujero y cerrar el asistente.
Selección de herramientas (RIF)

En el reconocimiento de figuras se pueden crear figuras aunque no se tengan herramientas para mecanizarlas.

En este ejemplo no hay ninguna herramienta capaz de taladrar los agujeros grandes. Cuando se ejecuta la simulación se abre el mensaje de *Fallo al Crear el Código*.

En este caso se puede:

- añadir a la biblioteca de herramientas una herramienta nueva capaz de mecanizar la figura; o
- mecanizar la figura con una de las herramientas existentes.

En este ejemplo se utiliza una herramienta existente.

Para seleccionar la herramienta con la que mecanizar la figura:

1. En la ventana de *Resultados*, seleccione la pestaña de *Lista Op*.

 Se abre la *Lista de Operaciones*. Las operaciones a las que no se haya asignado una herramienta no tienen ningún nombre de herramienta y van acompañadas de un signo de exclamación rojo.

2. Haga doble clic en una operación en la que no haya herramienta para abrir el cuadro de diálogo de propiedades de figura.

3. Haga clic en la pestaña de *Herramientas*.

 Contiene una lista con las herramientas disponibles.
4 Seleccione la casilla que hay a la izquierda de una herramienta, como TD_03970_X:J, para utilizar esta herramienta.

5 Haga clic en Aceptar para aceptar los cambios y cerrar el cuadro de diálogo.

Las figuras de agujero que se parecen entre sí se crean como patrones y no como figuras individuales, por lo que solo hay que configurar una figura para que los cambios se apliquen a todas las demás.

La tolerancia de la selección de herramientas depende de la opción de Tolerancia diámetro hta de la pestaña de Selección Hta del cuadro de diálogo de Atributos de Mecanizado. Aumente este valor para ampliar el número mayor de herramientas que se puede seleccionar para mecanizar una figura.
Simulación de trayectorias (RIF)

Se puede ejecutar una simulación 3D para comprobar que las figuras se han creado correctamente y que no hay colisiones.

1. Hacer clic en el paso de Trayectorias del panel de Pasos. Se abre la barra de herramientas de Simulación.

2. En la barra de herramientas de Simulación, seleccionar la opción de Simulación 3D y hacer clic en Ejecutar para iniciar la simulación.

Si se abre el cuadro de diálogo de Opciones Orden Automático, hacer clic en Aceptar para cerrarlo. Esta acción acepta las opciones de orden predeterminadas.

Se inicia la simulación en la ventana de gráficos.

3. Hacer clic en Detener para abandonar la simulación.
Índice

A
Abrir una pieza - 5
Acabado - 78
Ángulo de desmoldeo - 90
Arco - 71
Asistencia técnica - 8
Ayuda - 8
 Asistencia técnica - 8
 Ayuda En Línea - 8
 Ayuda según el contexto - 8
 Enlaces de ayuda - 8
Ayuda En Línea - 8
Ayuda según el contexto - 8

B
Barra de herramientas Modos de Visualización - 38
 Perfil torneado 2D - 38, 59, 60
Barras de Herramientas
 Barra de herramientas Modos de Visualización - 38
Base de datos - 2
 Base de datos de herramientas - 2
 Base de datos de materiales - 2
Base de datos de herramientas - 2
 Herramientas en pulgadas - 2
 Herramientas imperiales - 2
 Herramientas métricas - 2
Base de datos de materiales - 2
Bloque - 11, 32, 56, 70, 83

C
Catálogo de herramientas - 28
Centrar todo - 33, 56
Chaflán - 34
Código CN - 26, 51, 89
 Catálogo de herramientas - 28
 Guardar Código CN - 29
Configuración
 Configuración de Fresado - 5
 Pulgadas - 5
 Unidades imperiales - 5
 Unidades métricas - 5
 Configuración de Fresado - 5
Conicidad - 90
Creación de geometría - 34, 71
 Ángulo de desmoldeo - 90
 Arco - 71
 Chaflán - 34
 Conicidad - 90
 Curva - 34, 57, 62, 84
 Encadenar curvas - 34, 57, 71
 Fillet - 57
 Grabado - 62
 Línea - 34, 57, 71
 Perfil - 84
 Texto - 62
 Creación de superficie - 75
Superficie de revolución - 75
Curva - 34, 57, 62, 84
Arco - 71
Perfil - 84

D
Desbaste - 78
Documentación Pieza - 22, 50
Duplicar agujeros - 61

E
Electroerosión por Hilo - 82
Encadenar curvas - 34, 57, 71
Enlaces de ayuda - 8
Estrategia
Estrategias dominantes - 24
Opciones de orden - 19, 47
Orden automático - 19, 47
Orden de operaciones - 18, 47
Orden manual - 21
Estrategias dominantes - 24

F
Fabricación
Código CN - 26, 51, 89
Posprocesador - 29
Figura
Duplicar agujeros - 61
Figura de agujero - 11, 38, 61
Figura de cajera - 11
Figura de Electroerosión por Hilo - 85
Figura de fresado de superficie - 78
Figura de mandrinado - 38
Figura de ranurado - 65
Figura de ranurado - 38
Figura de refrentado - 38
Figura de roscado - 38
Figura de torneado - 38, 59
Figura de tronzado - 38
Fillet - 57
Fresa/Torno - 54
Fresado
Figura de fresado de superficie - 78
Fresado 2,5D - 10
Fresado 3D - 68
Fresado 2,5D - 10
Fresado 3D - 68

G
Geometría
Mostrar todas las superficies - 76
Ocultar toda la geometría - 76
Grabado - 62
Guardar Código CN - 29

H
Herramientas
Base de datos de herramientas - 2
Catálogo de herramientas - 28
Herramientas en pulgadas - 2
Herramientas imperiales - 2
Herramientas métricas - 2
Herramientas en pulgadas - 2
Herramientas imperiales - 2
Herramientas métricas - 2

I
Inicio de FeatureCAM - 2

L
Limpieza del área
Desbaste - 78
Línea - 34, 57, 71
Lista - 22
Lista de herramientas - 22
Lista de operaciones - 22
Lista del operador - 22
Índice

M
Modos de entrada - 33, 56
Mostrar todas las superficies - 76

O
Ocultar toda la geometría - 76
Opciones de orden - 19, 47
Operaciones - 18, 47
 Estrategias dominantes - 24
 Opciones de orden - 19, 47
 Operaciones dominantes - 24
 Orden automático - 19, 47
 Orden manual - 21
 Plantilla de operaciones - 47
Operaciones de fabricación - 18, 47
 Acabado - 78
 Desbaste - 78
 Estrategias dominantes - 24
 Opciones de orden - 19, 47
 Operaciones dominantes - 24
 Orden automático - 19, 47
 Orden manual - 21
 Plantilla de operaciones - 47
 Semiacabado - 78
 Ventana de Resultados - 18, 19, 21, 22, 47, 50
Operaciones de mecanizado - 18, 47
 Acabado - 78
 Desbaste - 78
 Estrategias dominantes - 24
 Opciones de orden - 19, 47
 Operaciones dominantes - 24
 Orden automático - 19, 47
 Orden manual - 21
 Plantilla de operaciones - 47
 Semiacabado - 78
 Ventana de Resultados - 18, 19, 21, 22, 47, 50
Operaciones dominantes - 24
 Orden automático - 19, 47
 Orden de operaciones - 18, 47
 Estrategias dominantes - 24
 Opciones de orden - 19, 47
 Operaciones dominantes - 24
 Orden automático - 19, 47
 Orden manual - 21
 Plantilla de operaciones - 47
 Orden manual - 21

S
Semicabado - 78
Simulación de trayectoria de herramienta 3D - 16, 46, 66, 81, 87
Simulación de trayectorias de herramienta - 16, 46, 66, 81, 87
Simulación de trayectoria de herramienta 3D - 16, 46, 66, 81, 87
Sistema de coordenadas - 33, 56
Sombreado - 43, 60, 76
Superficie de revolución - 75

T
Texto - 62
Torneado - 31
Torno/Fresa - 54
 Trayectoria de herramienta
 Simulación de trayectorias de herramienta - 16, 46, 66, 81, 87

U
Unidades
 Herramientas en pulgadas - 2
 Herramientas imperiales - 2
 Herramientas métricas - 2
 Pulgadas - 5
 Unidades imperiales - 5
 Unidades métricas - 5
 Unidades imperiales - 5
 Unidades métricas - 5
Índice

V

Ventana
- Ventana de Resultados - 18, 19, 21, 22, 47, 50

Ventana de Gráficos
- Ventana de Resultados - 18, 19, 21, 22, 47, 50

Ventana de Resultados - 18, 19, 21, 22, 47, 50

Vista frontal - 15

Vista isométrica - 15, 43, 60, 76

Vistas
- Centrar todo - 33, 56
- Perfil torneado 2D - 38, 59, 60
- Vista frontal - 15
- Vista isométrica - 15, 43, 60, 76
- Visualización de la pieza - 15, 43, 60, 76

Visualización de la pieza - 15, 43, 60, 76
- Mostrar todas las superficies - 76
- Ocultar toda la geometría - 76
- Sombreado - 43, 60, 76