

Unleashing Hidden Powers of Inventor with the API
Part 4. Working with iProperties with Inventor API

Brian Ekins – Autodesk, Inc.

 This last article in the series looks in detail at the iProperties portion of the programming interface
and develops some practical examples.

Key Topics:

q The iProperties portion of the Inventor's object model

q iProperty program examples

 Target Audience:

Autodesk Inventor users who want to increase their productivity with Inventor by writing
programs. You should be familiar with VBA programming environment (See “Getting started with
Inventor’s VBA” article).

About the Author:
Brian is an Autodesk Inventor API evangelist and works with professionals and companies to help make using
Inventor's programming interface easier. Brian began working in the CAD industry over 25 years ago. He has worked
in CAD administration, as an application engineer, CAD API designer, and consultant. Brian was the original designer
of Inventor's API and has presented at conferences and taught classes throughout the world to thousands of users and
programmers.

brian.ekins@autodesk.com

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API

 2

Introduction
The goal of this class is to provide enough information that anyone will be able to write a program to automate
working with Inventor’s iProperties. The article is not intended to be a coverage of VBA programming or even
an exhaustive iProperties, but focuses on the features that are most commonly used. We’ll begin by looking at
the interface for programming iProperties. Finally, we’ll look at several examples that demonstrate all of these
concepts.

VBA Revisited
Visual Basic for Applications (VBA) is a programming environment developed by Microsoft and licensed by other
companies to integrate into their applications. Autodesk licenses VBA and includes it in AutoCAD and Inventor..
This provides all customers of Inventor with a free development environment. You access VBA through
Inventor using the Macro | Visual Basic Editor command in the Tools menu, or by pressing Alt-F11. Once
the VBA environment is open, the first thing I recommend you do is change some of the VBA settings. In the
VBA environment run the Options command from the Tools menu. Change the Auto Syntax Check and
Require Variable Declaration settings to those shown below.

The VBA programs you write can be saved in Inventor documents or in external files. For 99% of the cases,
saving it in an external file is best, so that’s what we’ll cover here. This external file is referred to as a VBA
project and Inventor saves it as an .ivb file. A single project can contain any number of macros (programs).
There is a default VBA project that Inventor loads at startup. The default VBA project is defined in the File tab
of the Inventor application options, as shown below. This is where your programs will be saved.

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API
 3

Apprentice
There’s one other technique of accessing some of Inventor’s functionality. There’s a utility component
referred to as Apprentice that provides a programming interface to a small portion of the information in
an Inventor document. Apprentice doesn’t have a user-interface and is exclusively a programming
component. Design Assistant and Inventor View are both programs that use Apprentice to access
document information. iProperties are one of the things that you have access to through Apprentice.

There are a couple of reasons to use Apprentice when possible. First, programs using Apprentice will run
much faster than the equivalent program in Inventor. This is because Apprentice doesn’t have a user-
interface and it only provides partial access to information in the document so it doesn’t need to load as
much of the document as Inventor does. Second, Apprentice is freely available by installing Inventor
View, (which includes Apprentice), from autodesk.com.

We’ll see some examples of the use of apprentice in some of the samples.

 Collection Objects
Another concept that‘s important to understand when working with Inventor’s programming interface is
collection objects. Collection objects are represented in the object model diagram by boxes with rounded
corners. In the object model picture to the right the Documents, PropertySets, and PropertySet objects
are collection objects.

The primary job of a collection object is to provide access to a group of related objects (the set of
children for that parent). For example, the Documents object provides access to all of the documents
that are currently open in Inventor. A collection provides access to its contents through two properties;
Count and Item. The Count property tells you how many items are in the collection and the Item
property returns a specific item. All collections support these two properties. Another important feature
of many collections is the ability to create new objects. For example the Documents collection supports
the Add method which is used to create new documents. It also supports the Open method which is
used to open existing documents from the disk. These will be used in some of the samples that follow.

Programming Inventor’s iProperties

iProperties in the User-Interface
Before looking at the programming interface for iProperties let’s do a quick review of iProperties from an
end-user perspective. iProperties are accessed through the iProperties dialog. There are several tabs at the
top that organize the available properties. There are also some tabs on this dialog that are not actually
iProperties. For example, the General tab provides access to information about the document, the Save tab
provides access to options that control how the thumbnail image is captured,
and the Physical tab provides access to the various physical properties of the
part or assembly document. If you need access to this information it is available
through programming objects other than properties.

The picture below on the left illustrates a typical tab of the iProperties dialog
where you have access to a specific set of iProperties. Through the dialog, you
can view and edit the values of iProperties. The set of iProperties shown on
each tab are predetermined by Inventor and cannot be changed. However,
using the Custom tab (shown in the picture below on the right) you can add additional iProperties to the
document. This allows you to associate any information you want with the document.

Application

Documents

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API

 4

Application

Documents

Document

Property

PropertySets

PropertySet

iProperties in Inventor’s Programming Interface
The object model for iProperties is shown to the right. The diagram starts with the Application object and
goes through the Documents collection to get the Document object. Remember that the Document object
is the base class for all document types so it can represent any type of Inventor document. From the
Document object we then access the PropertySets object which is the top-level property related object and
provides access to the various iProperties associated with that particular document.

Accessing iProperites
Accessing iProperties through Inventor’s programming interface is reasonably simple. The object model
for iProperties is shown to the right. The first thing to notice is that they’re accessed through the
Document object. Properties are owned by documents and to get access to properties you need to go
through the document that owns them.

 Even though the programming interface for iProperties is simple, people still tend to struggle with it. I
believe this is primarily because of not understanding how to access a specific property. Before
discussing iProperties in detail, a brief discussion of naming is appropriate to help describe the concepts
Inventor uses. The picture below shows a person and three different ways to identify this person. His
full legal name is a good way to identify him, although a bit formal. His social security number is good,
but not very user friendly. His nickname, although commonly used, can have problems since it’s not as
likely to be unique Bill could decide tomorrow he would rather be called Billy or Will. The point is that
there are three ways to identify this person, each one with its own pros and cons.

Legal Name: William Harry Potter

Nickname: Bill

SSN: 365-58-9401

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API
 5

Legal Name: William Harry Potter

Nickname: Bill

SSN: 365-58-9401

When working with iProperties you’ll also need to specify specific objects. Like Bill, iProperties also have
several names. Understanding this single concept should help you overcome most of the problems other
people have had when working with iProperties. The various iProperty objects, their names and best use
suggestions are described below.

PropertySets Objects
The PropertySets object serves as the access point to iProperties. The PropertySets object itself doesn’t
have a name but is simply a utility collection object that provides access to the various PropertySet
objects. Using the Item method of the PropertySets object you’ll specify which PropertySet object you
want. The Item method accepts an Integer value indicating the index of the PropertySet object you
want, but more important, it also accepts the name of the PropertySet object you want. The next
section discusses PropertySet objects and their various names.

PropertySet Objects
The PropertySet object is a collection object and provides access to a set of iProperties. The PropertySet
object is roughly equivalent to a tab on the iProperties dialog. The Summary, Project, Status, and
Custom tabs of the dialog contain the iProperties that are exposed through the programming interface.
There are four PropertySet objects in an Inventor document; Summary Information, Document
Summary Information, Design Tracking Properties, and User Defined Properties. (You will find the details
of these property sets and the pre-defined properties at the end of this article).

PropertySet objects are named so that you can find a particular PropertySet object. A PropertySet object
has three names; Name, Internal Name, and Display Name. Using the analogy of Bill above, the Name
is equivalent to his legal name, the Internal Name is equivalent to his social security number, and the
Display Name is equivalent to his nickname. Let’s look at a specific example to illustrate this. There is a
PropertySet object that has the following names:

Name: Inventor Summary Information
Internal Name: {F29F85E0-4FF9-1068-AB91-08002B27B3D9}
DisplayName: Summary Information

Any one of these can be used as input to the Item method in order to get this particular PropertySet
object. I would suggest always using the Name for the following reasons. The Name cannot be
changed, is guaranteed to be consistent over time, and is an English human readable string. The
Internal Name cannot be changed and will remain consistent but it is not very user-friendly and makes
your source code more difficult to read and maintain. The Display Name is not guaranteed to remain
constant. The Display Name is the localized version of the name and will change for each language. A
chart showing the names of the four standard PropertySet objects is at the end of this paper.

Below is an example of obtaining one of the PropertySet objects. In this case the summary information
set of iProperties.

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API

 6

Public Sub GetPropertySetSample()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the summary information property set.
 Dim invSummaryInfo As PropertySet
 Set invSummaryInfo = invDoc.PropertySets.Item("Inventor Summary Information")
End Sub

Property Objects
A Property object represents an individual property. Each Property object also has three names; Name,
Display Name, and ID. Many of the same principles discussed for PropertySet objects applies here. The
Name is an English string that is guaranteed to remain constant. The Display Name is the localized
version of the Name and can change, so it’s not a reliable method of accessing a particular property.
The ID is a number and is similar to the Internal Name of the PropertySet object, but is a simple Integer
number instead of a GUID. For consistency I would recommend using the name of the property when
you need to access a specific one. Below is an example of the three identifiers for a particular property.

Name: Part Number
DisplayName: Part Number
ID: 5 or kPartNumberDesignTrackingProperties

The following code gets the iProperty that represents the part number.

Public Sub GetPropertySample()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the design tracking property set.
 Dim invDesignInfo As PropertySet
 Set invDesignInfo = invDoc.PropertySets.Item("Design Tracking Properties")

 ' Get the part number property.
 Dim invPartNumberProperty As Property
 Set invPartNumberProperty = invDesignInfo.Item("Part Number")
End Sub

You may see program samples that use identifiers like kPartNumberDesignTrackingProperties to specify
a specific property. These identifiers are defined in the Inventor type library and provide a convenient
way of specifying the ID of a property. For the part number, instead of specifying the ID as 5 you can
use kPartNumberDesignTrackingProperties. This makes your code more readable. If you want to use
the ID instead of the Name you need to use the ItemByPropId property instead of the standard Item
property of the PropertySets object. As stated before, for consistency I would recommend using the
Name in both cases.

Something else you’ll see in a lot of sample code is where several property calls are combined into a
single line. The code below does the same thing as the previous sample but it’s getting the PropertySet
object returned by the PropertySets Item property and immediately calling the Item property on it to get
the desired property.

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API
 7

Public Sub GetPropertySample()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the part number property.
 Dim invPartNumberProperty As Property
 Set invPartNumberProperty = invDoc. _
 PropertySets.Item("Design Tracking Properties").Item("Part Number")
End Sub

Now that we have a reference to a specific property we can use its programming properties to get and
set the value. The Property object supports a property called Value that provides this capability. For
example, the line below can be added to the previous sample to display the current part number.

MsgBox "The part number is: " & invPartNumberProperty.Value

This next line sets the value of the part number iProperty.

invPartNumberProperty.Value = "Part-001"

The Value property uses an interesting programming feature that is useful to understand when working
with iProperties. The Value property is of type Variant. A Variant is a special type that can represent
almost any other type. For example, a Variant can hold a String, Double, Date, or most any other type.
iProperties take advantage of this since they allow the value to be one of many different types. You see
this when working with custom (user defined) properties, as shown in the picture below. When creating
or modifying a custom iProperty you define the type; Text, Date, Number, or Yes or No. This results in
an iProperty being created where the value contains a String, Date, Double, or Boolean value.

When setting the value of any of Inventor’s predefined iProperties, Inventor forces them to be the
correct type and will convert them automatically, when possible. If you supply a value that can’t be
converted to the expected type, it will fail. In the table at the end of this paper the type of each property
is listed. Most of the standard iProperties are Strings, with a few Date, Currency, Boolean, and Long
values. There is also one other slightly unusual type called IPictureDisp. This type is used for the
thumbnail picture associated with a document. Using this you can extract the thumbnail picture from a
document.

Creating Properties
The primary reason to be aware of the Variant type is when you create your own custom iProperties.
Interactively, as shown in the previous picture, you specify the type of property you’re going to create;
Text, Date, Number, or Yes or No. When you create them using Inventor’s programming interface you
don’t explicitly specify the type but it is implicitly determined based on the type of variable you input.

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API

 8

New iPropertiies can only be created within the Custom (user defined) set of properties. New iProperties
are created using the Add method of the PropertySet object. The sample below illustrates creating four
new iProperties, one of each type.

Public Sub CreateCustomProperties()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the user defined (custom) property set.
 Dim invCustomPropertySet As PropertySet
 Set invCustomPropertySet = invDoc.PropertySets.Item(_
 "Inventor User Defined Properties")

 ' Declare some variables that will contain the various values.
 Dim strText As String
 Dim dblValue As Double
 Dim dtDate As Date
 Dim blYesOrNo As Boolean

 ' Set values for the variables.
 strText = "Some sample text."
 dblValue = 3.14159
 dtDate = Now
 blYesOrNo = True

 ' Create the properties.
 Dim invProperty As Property
 Set invProperty = invCustomPropertySet.Add(strText, "Test Test")
 Set invProperty = invCustomPropertySet.Add(dblValue, "Test Value")
 Set invProperty = invCustomPropertySet.Add(dtDate, "Test Date")
 Set invProperty = invCustomPropertySet.Add(blYesOrNo, "Test Yes or No")
End Sub

A common task is when you have a value you want to save as a custom property within a document. If
the property already exists you just want to update the value. If the property doesn’t exist then you
need to create it with the correct value. The code below demonstrates getting the volume of a part and
writing it to a custom property named “Volume”. With the volume as an iProperty it can be used as
input for text on a drawing. The portion of this macro that gets the volume and formats the result is
outside the scope of this paper but helps to demonstrate a practical use of creating and setting the value
of an iProperty.

Public Sub UpdateVolume()
 ' Get the active part document.
 Dim invPartDoc As PartDocument
 Set invPartDoc = ThisApplication.ActiveDocument

 ' Get the volume of the part. This will be returned in
 ' cubic centimeters.
 Dim dVolume As Double
 dVolume = invPartDoc.ComponentDefinition.MassProperties.Volume

 ' Get the UnitsOfMeasure object which is used to do unit conversions.

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API
 9

 Dim oUOM As UnitsOfMeasure
 Set oUOM = invPartDoc.UnitsOfMeasure

 ' Convert the volume to the current document units.
 Dim strVolume As String
 strVolume = oUOM.GetStringFromValue(dVolume, _
 oUOM.GetStringFromType(oUOM.LengthUnits) & "^3")

 ' Get the custom property set.
 Dim invCustomPropertySet As PropertySet
 Set invCustomPropertySet = _
 invPartDoc.PropertySets.Item("Inventor User Defined Properties")

 ' Attempt to get an existing custom property named "Volume".
 On Error Resume Next
 Dim invVolumeProperty As Property
 Set invVolumeProperty = invCustomPropertySet.Item("Volume")
 If Err.Number <> 0 Then
 ' Failed to get the property, which means it doesn't exist
 ' so we'll create it.
 Call invCustomPropertySet.Add(strVolume, "Volume")
 Else
 ' We got the property so update the value.
 invVolumeProperty.Value = strVolume
 End If
End Sub

Saving Properties

To save any changes you make to properties you need to save the document. The Save method of the
Document object does this. However, when working with Apprentice it’s possible to only save the
iProperty changes to the document, which is much faster than saving the entire document. The
FlushToFile method of the PropertySets object saves any iProperty changes. The sample below
demonstrates this by opening a document using Apprentice, changing a property value, saving the
change, and closing everything. Remember that Apprentice cannot be used from within Inventor’s VBA.
It must be from another application’s VBA or from Visual Basic.

Public Sub ApprenticeUpdate()
 ' Declare a variable for Apprentice.
 Dim invApprentice As New ApprenticeServerComponent

 ' Open a document using Apprentice.
 Dim invDoc As ApprenticeServerDocument
 Set invDoc = invApprentice.Open("C:\Temp\Part1.ipt")

 ' Get the design tracking property set.
 Dim invDTProperties As PropertySet
 Set invDTProperties = invDoc.PropertySets.Item("Design Tracking Properties")

 ' Edit the values of a couple of properties.
 invDTProperties.Item("Checked By").Value = "Bob"
 invDTProperties.Item("Date Checked").Value = Now

 ' Save the changes.
 invDoc.PropertySets.FlushToFile

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API

 10

 ' Close the document and release all references.
 Set invDoc = Nothing
 invApprentice.Close
 Set invApprentice = Nothing
End Sub

Example Programs
There are some associated sample programs that provide more complete examples of the various topics
covered in this paper and provide practical examples in various programming languages of how to use
Inventor’s programming interface.

PropertySamples.ivb
CopyProperties – Copies a set of properties from a selected document into the active document.

DumpPropertyInfo – Displays information about all of the property sets and their properties.

Properties.xls
An Excel file where each sheet contains a list of properties and values. There are two Excel macros that are
executed using the buttons on the first sheet.

Set Properties of Active Document – Copies the properties of the selected Excel sheet into the active
document.

Set Properties of Documents – Copies the properties of the selected Excel sheet into all of the Inventor
documents in the selected directory. This sample uses Apprentice.

You can find these files accompanied with this article.

Inventor User Defined Properties, {D5CDD505-2E9C-101B-9397-08002B2CF9AE}

Inventor Summary Information, {F29F85E0-4FF9-1068-AB91-08002B27B3D9}
Property Name Id Id Enum Type
Title 2 kTitleSummaryInformation String
Subject 3 kSubjectSummaryInformation String
Author 4 kAuthorSummaryInformation String
Keywords 5 kKeywordsSummaryInformation String
Comments 6 kCommentsSummaryInformation String
Last Saved By 8 kLastSavedBySummaryInformation String
Revision Number 9 kRevisionSummaryInformation String
Thumbnail 17 kThumbnailSummaryInformation IPictureDisp

Inventor Document Summary Information, {D5CDD502-2E9C-101B-9397-08002B2CF9AE}
Property Name Id Id Enum Type
Category 2 kCategoryDocSummaryInformation String
Manager 14 kManagerDocSummaryInformation String
Company 15 kCompanyDocSummaryInformation String

 Autodesk Inventor® Programming

Understanding iProperties

Unleashing hidden powers of Inventor with the API
 11

Design Tracking Properties, {32853F0F-3444-11D1-9E93-0060B03C1CA6}
Property Name Id Id Enum Type
Creation Time 4 kCreationDateDesignTrackingProperties Date
Part Number 5 kPartNumberDesignTrackingProperties String
Project 7 kProjectDesignTrackingProperties String
Cost Center 9 kCostCenterDesignTrackingProperties String
Checked By 10 kCheckedByDesignTrackingProperties String
Date Checked 11 kDateCheckedDesignTrackingProperties Date
Engr Approved By 12 kEngrApprovedByDesignTrackingProperties String
Engr Date Approved 13 kDateEngrApprovedDesignTrackingProperties Date
User Status 17 kUserStatusDesignTrackingProperties String
Material 20 kMaterialDesignTrackingProperties String
Part Property Revision Id 21 kPartPropRevIdDesignTrackingProperties String
Catalog Web Link 23 kCatalogWebLinkDesignTrackingProperties String
Part Icon 28 kPartIconDesignTrackingProperties IPictureDisp
Description 29 kDescriptionDesignTrackingProperties String
Vendor 30 kVendorDesignTrackingProperties String
Document SubType 31 kDocSubTypeDesignTrackingProperties String
Document SubType Name 32 kDocSubTypeNameDesignTrackingProperties String
Proxy Refresh Date 33 kProxyRefreshDateDesignTrackingProperties Date
Mfg Approved By 34 kMfgApprovedByDesignTrackingProperties String
Mfg Date Approved 35 kDateMfgApprovedDesignTrackingProperties Date
Cost 36 kCostDesignTrackingProperties Currency
Standard 37 kStandardDesignTrackingProperties String
Design Status 40 kDesignStatusDesignTrackingProperties Long
Designer 41 kDesignerDesignTrackingProperties String
Engineer 42 kEngineerDesignTrackingProperties String
Authority 43 kAuthorityDesignTrackingProperties String
Parameterized Template 44 kParameterizedTemplateDesignTrackingProperties Boolean
Template Row 45 kTemplateRowDesignTrackingProperties String
External Property Revision Id 46 kExternalPropRevIdDesignTrackingProperties String
Standard Revision 47 kStandardRevisionDesignTrackingProperties String
Manufacturer 48 kManufacturerDesignTrackingProperties String
Standards Organization 49 kStandardsOrganizationDesignTrackingProperties String
Language 50 kLanguageDesignTrackingProperties String
Defer Updates 51 kDrawingDeferUpdateDesignTrackingProperties Boolean
Size Designation 52 String
Categories 56 kCategoriesDesignTrackingProperties String
Stock Number 55 kStockNumberDesignTrackingProperties String
Weld Material 57 kWeldMaterialDesignTrackingProperties String

