

Unleashing Hidden Powers of Inventor with the API
Part 2 of 4: Using iProperties with Inventor VBA

Brian Ekins – Autodesk, Inc.

 The second article in this four-part series provides an introduction to the basic concepts you need
to understand when programming Inventor. These concepts are put into practice as we use API
to query and modify iProperties using VBA.

Key Topics:

q Understand how Inventor provides a programming interface

q Inventor's object model

q Using API to query and modify iProperties of a document

 Target Audience:

Autodesk Inventor users who want to increase their productivity with Inventor by writing programs

About the Author:
Brian is an Autodesk Inventor API evangelist and works with professionals and companies to help make using
Inventor's programming interface easier. Brian began working in the CAD industry over 25 years ago. He has worked
in CAD administration, as an application engineer, CAD API designer, and consultant. Brian was the original designer
of Inventor's API and has presented at conferences and taught classes throughout the world to thousands of users and
programmers.

brian.ekins@autodesk.com

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API

 2

Introduction
The goal of this class is to provide enough information that anyone will be able to write a program to automate
working with Inventor’s iProperties. The class is not intended to be a comprehensive coverage of VBA
programming or even iProperties, but focuses on the features that are most commonly used. We’ll begin by
looking briefly at VBA and the steps required to begin writing a program. Then we’ll discuss the concepts
around Inventor’s programming interface. Next we’ll look at the interface for programming iProperties. Finally,
we’ll look at several examples that demonstrate all of these concepts.

VBA Basics
Visual Basic for Applications (VBA) is a programming environment developed by Microsoft and licensed by other
companies to integrate into their applications. Autodesk licenses VBA and includes it in AutoCAD and Inventor..
This provides all customers of Inventor with a free development environment. If you are unfamiliar with VBA
please see the companion article, “Getting started with Inventor VBA”.

You access VBA through Inventor using the Macro | Visual Basic Editor command in the Tools menu, or by
pressing Alt-F11. Once the VBA environment is open, the first thing I recommend you do is change some of
the VBA settings. In the VBA environment run the Options command from the Tools menu. Change the
Auto Syntax Check and Require Variable Declaration settings to those shown below.

The Basics of Inventor’s Programming Interface
Inventor supports the ability for you to automate tasks by writing programs. Inventor does this using some
Microsoft technology called COM Automation. This is the same technology used when you write macros for
Word or Excel. The technology itself isn’t important, but what is important is what it allows you to do.

COM Automation allows applications, like Inventor, to provide a programming interface in a fairly standard
structure that can be used by most of the popular programming languages available today. This provides two
benefits to you. First, if you’ve programmed other applications that use COM Automation (Word, Excel,
AutoCAD) Inventor will have a lot of similarities. Second, it’s very flexible in how you access the programming
interface so you can choose your favorite programming language and integrate with other applications.

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API
 3

The topics below discuss the basic concepts you’ll need to understand when
working with Inventor (or any COM Automation programming interface).

Objects
A COM Automation interface exposes it functions through a set of objects. A
programming object has many similarities to real-world objects. Let’s look at
a simple example to understand how object oriented programming
terminology can be used to describe a physical object.

A company that sells chairs might allow a customer to design their own chair
by filling out an order form, like the one shown to the right. The options on
the order form define the various properties of the desired chair. By setting
the properties to the desired values the customer is able to describe the
specific chair they want.

In addition to properties, objects also support methods. Methods are
basically instructions that the object understands. In the real world,
these are actions you would perform with the chair. For example, you
could move the chair, cause it to fold up, or throw it in the trash. In
the programming world the objects are smart and instead of you
performing the action you tell the object to perform the action itself;
move, fold, and delete.

In Inventor, some examples of objects are extrude features, work
planes, constraints, windows, and iProperties. Inventor’s
programming interface defines the set of available objects and their
associated methods and properties. By obtaining the object you’re
interested in you can find out information about it by looking at the
values of its properties and edit the object by changing these values
or by calling the objects methods. The first step in manipulating any
object is getting access to the object you want. This is explained in
the next section.

The Object Model
As discussed above, Inventor’s API is exposed as a set of objects. By gaining access to these objects
through the API you can use their various methods and properties to create, query, and modify them. Let’s
look at how the object model allows you to access these objects. Understanding the concept of the object
model is a critical concept to using Inventor programming interface.

The object model is a hierarchical diagram that illustrates the relationships between objects. A small portion
of Inventor’s object model is shown in the figure to the right. Only the objects relating to iProperties are
shown. In most cases you can view these as parent-child relationships. For example, the Application is the
parent of everything. The Document object is a parent for the various property related objects. To obtain
a specific object within the object model you typically start at the top and then go down child-by-child to the
object you want. For example, you would start with the Application object and from it get the Document
that contains the iProperty you’re interested in. From the Document you then get the PropertySet that is
the parent of the iProperty and finally you get the desired Property object.

PartDocument

Application

Documents

Property

PropertySets

PropertySet

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API

 4

The Application Object
One of the most important objects in the object model is the Application object. This object represents
the Inventor application and is the top-most object in the hierarchy. The Application object supports
methods and properties that affect all of Inventor but its most important trait is that through it you can
access any other Inventor object. You just need to know how to traverse the object model to get to the
specific object you want. We’ll look at how to write a program to do this and some shortcuts you can
take to make it a little bit easier. When using Inventor’s VBA there is the global variable called
ThisApplication that always contains the Application object. So with Inventor’s VBA you don’t need to do
anything but use this variable.

Collection Objects
Another concept that‘s important to understand when working with Inventor’s programming interface is
collection objects. Collection objects are represented in the object model diagram by boxes with rounded
corners. In the object model picture to the right the Documents, PropertySets, and PropertySet objects
are collection objects.

The primary job of a collection object is to provide access to a group of related objects (the set of
children for that parent). For example, the Documents object provides access to all of the documents
that are currently open in Inventor. A collection provides access to its contents through two properties;
Count and Item. The Count property tells you how many items are in the collection and the Item
property returns a specific item. All collections support these two properties.

Typically, when using the Item property you specify the index of the item you want from the collection
(i.e. Item 1, 2, 3 …). For example, the code below prints out the filenames of all of the documents
currently open by using the Count and Item properties of the Documents collection object. (This and
most of the following samples use Inventor’s VBA and take advantage of the ThisApplication global
variable.)

Public Sub ShowDocuments()
 ' Get the Documents collection object.
 Dim invDocs As Documents
 Set invDocs = ThisApplication.Documents

 ' Iterate through the contents of the Documents collection.
 Dim i As Integer
 For i = 1 To invDocs.Count
 ' Get a specific item from the Documents collection.
 Dim invDocument As Document
 Set invDocument = invDocs.Item(i)

 ' Display the full filename of the document in the
Immediate window.
 Debug.Print invDocument.FullFileName
 Next
End Sub

Another technique of going through the contents of a collection is to use
the For Each statement. This can also be more efficient and results in a
faster program in many cases. The macro below accomplishes exactly the
same task as the previous macro but uses the For Each statement.

Application

Documents

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API
 5

Public Sub ShowDocuments2()
 ' Get the Documents collection object.
 Dim invDocs As Documents
 Set invDocs = ThisApplication.Documents

 ' Iterate through the contents of the Documents collection.
 Dim invDocument As Document
 For Each invDocument In invDocs
 ' Display the full filename of the document in the Immediate window.
 Debug.Print invDocument.FullFileName
 Next
End Sub

When the Item property is used with a value indicating the index of the item, the first item in the
collection is 1 and the last item is the value returned by the collection’s Count property. For some
collections the Item property also supports specifying the name of the item you want. Instead of
specifying the index of the item you can supply a String that specifies the name of the object. We’ll see
this later when working with iProperties.

Another important feature of many collections is the ability to create new objects. For example the
Documents collection supports the Add method which is used to create new documents. It also supports
the Open method which is used to open existing documents from the disk. These will be used in some
of the samples that follow.

Programming Inventor’s iProperties

iProperties in the User-Interface
Before looking at the programming interface for iProperties let’s do a quick review of iProperties from an
end-user perspective. iProperties are accessed through the iProperties dialog. There are several tabs at the
top that organize the available properties. There are also some tabs on this dialog that are not actually
iProperties. For example, the General tab provides access to information about the document, the Save tab
provides access to options that control how the thumbnail image is captured, and the Physical tab provides
access to the various physical properties of the part or assembly document. If you need access to this
information it is available through programming objects other than properties.

The picture below on the left illustrates a typical tab of the iProperties dialog where you have access to a
specific set of iProperties. Through the dialog, you can view and edit the values of iProperties. The set of
iProperties shown on each tab are predetermined by Inventor and cannot be changed. However, using the
Custom tab (shown in the picture below on the right) you can add additional iProperties to the document.
This allows you to associate any information you want with the document.

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API

 6

Application

Documents

Document

Property

PropertySets

PropertySet

iProperties in Inventor’s Programming Interface
The object model for iProperties is shown to the right. The diagram starts with the
Application object and goes through the Documents collection to get the
Document object. Remember that the Document object is the base class for all
document types so it can represent any type of Inventor document. From the
Document object we then access the PropertySets object which is the top-level
property related object and provides access to the various iProperties associated
with that particular document. Before we look at accessing the iProperties lets look at some different ways
of accessing documents using the programming interface.

Accessing the Active Document
This sample gets the document currently being edited by the end-user. It uses the ActiveDocument
property of the Application object.

Public Sub ActiveDocumentSample()
 ' Declare a variable to handle a reference to a document.
 Dim invDoc As Document

 ' Set a reference to the active document.
 Set invDoc = ThisApplication.ActiveDocument
 MsgBox "Got document: " & invDoc.DisplayName
End Sub

Accessing iProperites
Accessing iProperties through Inventor’s programming interface is reasonably simple. The first thing to
notice is that they’re accessed through the Document object. Properties are owned by documents and
to get access to properties you need to go through the document that owns them. The PropertySets
object serves as the access point to iProperties. The PropertySets object itself doesn’t have a name but
is simply a utility collection object that provides access to the various PropertySet objects. Using the Item
method of the PropertySets object you’ll specify which PropertySet object you want. The Item method
accepts an Integer value indicating the index of the PropertySet object you want, but more important, it
also accepts the name of the PropertySet object you want.

PropertySet Objects
The PropertySet object is a collection object and provides access to a set of iProperties. The PropertySet
object is roughly equivalent to a tab on the iProperties dialog. The Summary, Project, Status, and
Custom tabs of the dialog contain the iProperties that are exposed through the programming interface.
There are four PropertySet objects in an Inventor document; Summary Information, Document
Summary Information, Design Tracking Properties, and User Defined Properties.

PropertySet objects are named so that you can find a particular PropertySet
object. The Name property cannot be changed, is guaranteed to be consistent
over time, and is an English human readable string. The Display Name is not
guaranteed to remain constant. The Display Name is the localized version of
the name and will change for each language. Below is an example of obtaining
one of the PropertySet objects. In this case the summary information set of
iProperties.

Public Sub GetPropertySetSample()

Document

Property

PropertySets

PropertySet

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API
 7

 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the summary information property set.
 Dim invSummaryInfo As PropertySet
 Set invSummaryInfo = invDoc.PropertySets.Item("Inventor Summary Information")
End Sub

Property Objects
A Property object represents an individual property. The Name is an English string that is guaranteed to
remain constant. The following code gets the iProperty that represents the part number.

Public Sub GetPropertySample()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the design tracking property set.
 Dim invDesignInfo As PropertySet
 Set invDesignInfo = invDoc.PropertySets.Item("Design Tracking Properties")

 ' Get the part number property.
 Dim invPartNumberProperty As Property
 Set invPartNumberProperty = invDesignInfo.Item("Part Number")
End Sub

Something else you’ll see in a lot of sample code is where several property calls are combined into a
single line. The code below does the same thing as the previous sample but it’s getting the PropertySet
object returned by the PropertySets Item property and immediately calling the Item property on it to get
the desired property.

Public Sub GetPropertySample()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the part number property.
 Dim invPartNumberProperty As Property
 Set invPartNumberProperty = invDoc. _
 PropertySets.Item("Design Tracking Properties").Item("Part Number")
End Sub

Now that we have a reference to a specific property we can use its programming properties to get and
set the value. The Property object supports a property called Value that provides this capability. For
example, the line below can be added to the previous sample to display the current part number.

MsgBox "The part number is: " & invPartNumberProperty.Value

This next line sets the value of the part number iProperty.

invPartNumberProperty.Value = "Part-001"

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API

 8

Creating Properties
Interactively, as shown in the previous picture, you specify the type of property you’re going to create;
Text, Date, Number, or Yes or No. When you create them using Inventor’s programming interface you
don’t explicitly specify the type but it is implicitly determined based on the type of variable you input.

New iPropertiies can only be created within the Custom (user defined) set of properties. New iProperties
are created using the Add method of the PropertySet object. The sample below illustrates creating four
new iProperties, one of each type.

Public Sub CreateCustomProperties()
 ' Get the active document.
 Dim invDoc As Document
 Set invDoc = ThisApplication.ActiveDocument

 ' Get the user defined (custom) property set.
 Dim invCustomPropertySet As PropertySet
 Set invCustomPropertySet = invDoc.PropertySets.Item(_
 "Inventor User Defined Properties")

 ' Declare some variables that will contain the various values.
 Dim strText As String
 Dim dblValue As Double
 Dim dtDate As Date
 Dim blYesOrNo As Boolean

 ' Set values for the variables.
 strText = "Some sample text."
 dblValue = 3.14159
 dtDate = Now
 blYesOrNo = True

 ' Create the properties.
 Dim invProperty As Property
 Set invProperty = invCustomPropertySet.Add(strText, "Test Test")
 Set invProperty = invCustomPropertySet.Add(dblValue, "Test Value")
 Set invProperty = invCustomPropertySet.Add(dtDate, "Test Date")
 Set invProperty = invCustomPropertySet.Add(blYesOrNo, "Test Yes or No")
End Sub

Putting it all together…

Let us change the Designer property of all the open documents to John Doe Inventor.

public Sub AddPropertiesToAllOpenDocuments()
 ' Get the Documents collection object.
 Dim invDocs As Documents
 Set invDocs = ThisApplication.Documents

 ' Iterate through the contents of the Documents collection.
 Dim invDocument As Document
 For Each invDocument In invDocs

 ' Get the Designer property.
 Dim invDesignerProperty As Property

 Autodesk Inventor® Programming

Using iProperties with Inventor VBA

Unleashing hidden powers of Inventor with the API
 9

 Set invDesignerProperty = invDoc. _
 PropertySets.Item("Design Tracking Properties").Item("Designer")
 invDesignerProperty.Value = “John Doe Inventor”

 Next
End Sub

Saving Properties

To save any changes you make to properties you need to save the document. The Save method of the
Document object does this.

invDocument.Save

What next…
Read the next part of the article on “Working with properties…” to understand the many nuances and details of
properties that we glossed over in this introduction.

