[image: C:\Documents and Settings\morig.ADS\Local Settings\Temporary Internet Files\Content.Word\au_2009_logo_Tag_long_clr_rgb_200.png]
Insert Class Title as per Title Page
Zero to 3D in 60 Minutes
Zero to 3D in 60 Minutes
Fenton Webb – Autodesk

[image:]
About the Speaker:

Fenton has been a member of the Autodesk DevTech team since 2000. Originally a member of our EMEA team, he has recently relocated to California to work for DevTech Americas. Fenton is an expert in all the AutoCAD® APIs, AutoCAD OEM, RealDWG™ and Revit®. He particularly enjoys traveling to evangelize the APIs he supports at our annual Developer Days conferences. Before joining Autodesk, Fenton worked for an ADN partner developing ObjectARX® applications in the civil and structural engineering domain.
About Me
I'm very tall, 6'8" to be precise, and love all sports and outdoor activities. As a keen motorcycle rider, I've just invested in a new Aprilia RXV550 motorcycle which I'm really enjoying! :-)
Twitter http://twitter.com/fentonwebb
Email Fenton.webb@autodesk.com

By Fenton Webb, DevTech, Americas

If you’re like me, then you are someone who grew up on AutoCAD not needing 3D and therefore not really knowing much about it at all, and to some point a little scared by it. I really liked to play with it, spending hours creating random shapes that meant nothing or spending hours trying to create something that did mean something, but then giving up because I couldn’t align what I had in my mind with that inside of AutoCAD. The main problem, I think, was the field of work that I was in at that time - Reinforced Concrete detailing. This was an extremely well established trade that did not like to budge an inch (or mm - sorry Europe, and Canada) in the way things had always been done. At the end of the day, all a site cared about were accurate 2D details on paper so why waste your time designing in 3D when 2D worked well, and had always been working well for years and years?
Well, times have really changed, and 3D is becoming an extremely important side of AutoCAD (and CAD in general) which cannot be ignored.
This realization really only came to light recently for me, probably only in the last 2 years has it really gained significant forward thinking and the kind of thoughts which make me go “yeah…. that’s a really good idea, I could use that”. It started with some new 3D features emerging inside of AutoCAD 2007 which not only got me playing with 3D again but more importantly actually starting to see objects appear that I actually meant to draw! What sealed it for me really was a visit to our San Francisco 1 Market Street office last year - that gained me a true insight into the future of 3D and really what was to come …
By the way, our 1 Market Street office has an amazing Customer Briefing Center hosted inside of the Autodesk Gallery of Design Processes space. If you are in the area you should go see it, it’s really cool.
One of the gallery areas shows what is possible with 3D printers – all of the printed sample items were of course really impressive, but two of them really stood out from all the rest in my opinion – one was a working motorcycle shock absorber and even more impressive was a working motorcycle chain! The shock absorber was clearly screwed together but was still amazing to me as I measured the increasing spring return the more I pressed it. The chain, however, was much more impressive in my opinion – it had no visible joints or fasteners, it was totally joint-free! Apparently it was printed as is and pretty much came out of the printer working! And Yes, just to reiterate each link moves properly, as it was intended! The amazing thing about this is that no part was printed separately and put together or built! Ok it’s really hard to believe that this is possible until of course I describe the process of how it’s done. So the 3D printer that was used has different grade plastics that it prints, one of them is a construction plastic which can be dissolved in a mild acid bath, so as long as the model builds in the tolerances for moveable parts then once the construction plastic is dissolved then the parts will move as designed. Really cool.
The next thing was the laser scanners. Up until recently a laser scanner was a very large and very expensive piece of kit, generating massive point clouds of information which quickly ran a computer’s memory to failure. But again, 3D technology has really advanced. I watched a demo where the guy scanned his watch with a hand held laser scanner, then printed it out! Amazing to see… and something that really got my imagination going. Just imagine in the future, scanning an Autodesk coffee mug, redesigning it then printing out a new and improved version or scanning your mobile phone case which just broke and printing a new one… I mean the sky is the limit here, it really is – and all because of 3D!

Like all things great, they take time to evolve so I thought a brief look at the history of 3D in AutoCAD might be something interesting so here goes…

The History of 3D in AutoCAD

When AutoCAD first started out in life it was, of course, purely a 2D CAD system. The ground breaking step in version 2.1 of adding a Z coordinate enabled the first steps towards 3D CAD! This simply gave elevation to a normal X-Y oriented view, but it was a start.

Now I’m sure you have at some point heard of ACIS, ASM, AME, AModeler, SubD, SAT etc so let’s roundup what all of these are…

AME - AutoCAD Modeling Extension
After the Z dimension was added, AME eventually came to light as an ADS based Solid Modeling API for AutoCAD. In case you are not aware about ADS, this was the first C language general AutoCAD API released in AutoCAD R11. The AME technology was bought from a company called CADETron. This modeler had something called a solid “history” which described how the solid was manipulated and also allowed access to the individual components/primitives (or edit history) which made up the solid. As this technology was pre-R13 (and therefore pre-C++ Custom Entities, under the hood, the objects were implemented using a new API feature of the time - Anonymous Blocks. By the way, Anonymous meaning that they could not be seen by the user, their Block Names were prefixed “*U”. AME was a great step forward. However, AME was only single precision, and the industry were starting to standardize on another double precision modeler called ACIS.

ACIS – Sorry, but I have no idea what it stands for!
ACIS is an object oriented C++ API written by Spatial Technologies that really started the ball rolling with complex solid modeling capabilities in CAD. It was the technology, that back then, the industry was standardizing on, and from what I understand, partly also because of its fully accessible open file format (SAT file (ASCII text) and SAB file (binary)).

Autodesk, decided to license this technology from Spatial starting in the R13 time frame not only because of the industry push but also because it supported double precision numbers just like AutoCAD. The early implementations of ACIS inside of AutoCAD saw the solid History feature previously seen with AME become hidden to the general user due to contractual restrictions for using ACIS. This trend carried on until AutoCAD 2007 when the History came back to life with the all new modeling capabilities that that version brought.

By the way, the History wasn’t completely gone to everyone - we did have some access to a Solid’s History, be it read-only, and that was exposed via the AcBr and the less known AcGeX ObjectARX APIs.

In 2001 Autodesk exercised a contractual right to take a perpetual license of the then current version of the ACIS (ACIS 7), for a fee, and use it as the basis for our own kernel development work from then on – thus creating the new ACIS based ASM. You can have a read of how this worked out here.

ASM – Autodesk Solid Modeler
Once we took the code base from ACIS, a team of Autodesk minds also known as boffins (some of which old Spatial boffins) over in Cambridge England developed and released a new version in AutoCAD 2004, and here’s where the History feature resurfaced again - via the ObjectARX API. Once proved, the AutoCAD editor was extended in AutoCAD 2007 to provide surface modeling and editing using the CTRL+Pick selection method to enable the picking of the faces and edges which made up the solid or surface thus allowing a really cool visual push and pull of the geometry. AutoCAD 2007 saw the birth of a new generation of generic solid modeling enabling much more intuitive design to be carried out.

AModeler – Autodesk Modeler
As I’m sure you may have grasped by now, ASM is actually really good at doing everything, but sometimes this is not always a good thing especially if 90% of the functionality or more importantly the data is not used. The AModeler was licensed by Autodesk from Jiri Kripac (actually now one of our chief AutoCAD architects) as a surface modeler, not a solid modeler. The point to this modeler was its speed and low memory usage when designing specific types of shapes – for instance more commonly used object shapes like cubes, spheres, etc. Where this framework really excelled was with our Autodesk Architecture products where Doors and Windows were commonplace, and the need for a more focused modeler was required.

Nowadays though, advances that we have made in ASM’s technology mean that the AModeler is increasingly losing its position above ASM as being faster and having a lower memory footprint.

Creating Standard Geometry

After that brief history lesson, let’s move on to some practical examples.

I think we are all aware of how to create standard 3D geometry inside of AutoCAD. Commands like Box, Cylinder, Cone, Sphere, Pyramid, Wedge and Torus are all fairly simple commands to run and give instant 3D which is understandable.

Unlike other Entity types in AutoCAD like Line and Polyline for instance, each shape is described by a single class (ObjectARX = AcDb3dSolid, .NET = Solid3d and VBA = Acad3Dsolid). You can see when selecting a Box or Cone that the AutoCAD Property Manager shows them both as 3D Solid’s. Notice that there although the Entity type is 3D Solid, we have a Solid type of Sphere with Position, Radius and Diameter properties which can be modified…

[image:]

Now notice the differences when I select a Cone – different Solid Type (“Cone”) and some different properties also like Elliptical, Base Radius, Top radius and Height.

[image:]

I’ll come back to editing Solids in a short while as it can be quite tricky. In the meantime, let’s look at creating some 3D Solid Geometry using the .NET API.

Here’s some code which I stole from Kean’s Through-the-Interface site (sorry Kean) which creates a Cylinder Solid in the current space. One thing you’ll notice about this code is that it has been edited so that it is written in more of my style and also so that it doesn’t use Transactions. Now, I have to point out here that this is my personal preference, this isn’t the right way or better way – I prefer making use of the “using” statement to open and then auto dispose/close my AutoCAD objects because I personally think that it reads much more cleanly and is great for sample applications to show what’s going on more clearly. It is also another way of doing things, so you may find it interesting. There are some performance hits when using Transactions vs. Open/Close, nothing that we would ever notice here so don’t worry.

You’ll also notice that I go directly to the “Current Space” rather than painfully finding the ModelSpace BlockTableRecord by using the Database.CurrentSpaceId, one of my favorite shortcuts when coding.

Anyway, here’s the code…

 // create an ASM cylinder, taken from Kean's blog - condensed by Fenton Webb
 [CommandMethod("mycylinder")]
 public void mycylinder()
 {
 // get the usuals
 Document doc = Application.DocumentManager.MdiActiveDocument;
 Database db = doc.Database;
 Editor ed = doc.Editor;

 // Ask the user whether to create history
 bool createHistory = false;
 PromptKeywordOptions pko = new PromptKeywordOptions("Record history for this cylinder?");
 pko.AllowNone = true;
 pko.Keywords.Add("Yes");
 pko.Keywords.Add("No");
 pko.Keywords.Default = "Yes";
 PromptResult pkr = ed.GetKeywords(pko);
 // if ok
 if (pkr.Status == PromptStatus.OK)
 {
 // and he pressed Yes
 if (pkr.StringResult == "Yes")
 createHistory = true;

 // select the insertion point
 PromptPointResult ppr = ed.GetPoint("Select point");
 // if ok
 if (ppr.Status == PromptStatus.OK)
 {
 Point3d pt = ppr.Value;
 // Create the solid and set the history flag
 using (Solid3d solid = new Solid3d())
 {
 // setup the history flag as per the user request
 solid.RecordHistory = createHistory;
 // Hardcode the dimensions of the cylinder for the purpose of this example
 solid.CreateFrustum(10, 3, 3, 3);
 // Add the Solid3d to the modelspace
 using (BlockTableRecord curSpace = db.CurrentSpaceId.Open(OpenMode.ForWrite) as BlockTableRecord)
 {
 curSpace.AppendEntity(solid);
 // And transform it to the selected point
 solid.TransformBy(Matrix3d.Displacement(pt - Point3d.Origin));
 }
 }
 }
 }
 }

Notice that all the properties of the Cylinder are set up via the CreateFrustrum call, all except the insertion point – this is done via a manual call to transformBy at the end.

Here’s what it draws.

[image:]

And same thing but this time a Sphere…

 // create an ASM Sphere - by Fenton Webb, DevTech, 08/27/09
 [CommandMethod("mySphere")]
 public void mySphere()
 {
 // get the usuals
 Document doc = Application.DocumentManager.MdiActiveDocument;
 Database db = doc.Database;
 Editor ed = doc.Editor;

 // Ask the user whether to create history
 bool createHistory = false;
 PromptKeywordOptions pko = new PromptKeywordOptions("RecordHistory for this?");
 pko.AllowNone = true;
 pko.Keywords.Add("Yes");
 pko.Keywords.Add("No");
 pko.Keywords.Default = "Yes";
 PromptResult pkr = ed.GetKeywords(pko);
 // if ok
 if (pkr.Status == PromptStatus.OK)
 {
 // and he pressed Yes
 if (pkr.StringResult == "Yes")
 createHistory = true;

 // select the insertion point
 PromptPointResult ppr = ed.GetPoint("Select point");
 // if ok
 if (ppr.Status == PromptStatus.OK)
 {
 Point3d pt = ppr.Value;
 // Create the solid and set the history flag
 using (Solid3d solid = new Solid3d())
 {
 // setup the history flag as per the user request
 solid.RecordHistory = createHistory;
 // Hardcode the dimensions of the cylinder for the purpose of this example
 solid.CreateSphere(5);
 // Add the Solid3d to the modelspace
 using (BlockTableRecord curSpace = db.CurrentSpaceId.Open(OpenMode.ForWrite) as BlockTableRecord)
 {
 curSpace.AppendEntity(solid);
 // and transform it to the selected point
 solid.TransformBy(Matrix3d.Displacement(pt - Point3d.Origin));
 }
 }
 }
 }
 }

And the output… (using CreateSphere)

[image:]

I think you get the idea. Basically, all of the general shapes are created via the Solid3d using the Create* functions listed in that class.

3D Rotation
Now say we want to do some 3D manipulation of the Cylinder… Say we want to rotate it about the X, Y or Z-axis a set number of degrees… That's simple - we just use call the TransformBy function and pass in the appropriate transformation matrix

 // rotate an object by set number of degrees about axis, by Fenton Webb
 [CommandMethod("myRotate")]
 public void myRotate()
 {
 // get the usuals
 Document doc = Application.DocumentManager.MdiActiveDocument;
 Database db = doc.Database;
 Editor ed = doc.Editor;

 // pick the object to rotate
 PromptEntityResult res = ed.GetEntity("Pick entity to rotate");
 // of ok
 if (res.Status == PromptStatus.OK)
 {
 // ask how many degrees to rotate by
 PromptPointResult point = ed.GetPoint("Pick a point to Rotate about");
 // if ok
 if (point.Status == PromptStatus.OK)
 {
 // ask how many degrees to rotate by
 PromptDoubleResult rotation = ed.GetDouble("Degrees to rotate by");
 // if ok
 if (rotation.Status == PromptStatus.OK)
 {
 // finally ask which axis to rotate around
 PromptResult axis = ed.GetKeywords("Which Axis do you want to rotate around", "Xaxis Yaxis Zaxis");
 // if ok
 if (axis.Status == PromptStatus.OK)
 {
 Vector3d axisVector = Vector3d.XAxis;
 // now find out what axis he wants
 switch (axis.StringResult)
 {
 case "Yaxis": axisVector = Vector3d.YAxis; break;
 case "Zaxis": axisVector = Vector3d.ZAxis; break;
 }
 // open the entity for write
 using (Entity ent = res.ObjectId.Open(OpenMode.ForWrite) as Entity)
 {
 double pi = System.Math.Acos(-1);
 // set up a rotation matrix
 Matrix3d rotateMatrix = new Matrix3d();
 rotateMatrix = Matrix3d.Rotation(rotation.Value / 180 * pi, axisVector, point.Value);
 // now apply it to the object
 ent.TransformBy(rotateMatrix);
 }
 }
 }
 }
 }
 }

And the output from a random point selection, 90 degrees rotation about the XAxis…

[image:]

A point to note here is that obviously my code is extremely simplistic in that I’m assuming a very simple X-Y plane for the point to rotate about. You may have a UCS which doesn’t match your view, in which case “Pick a point to Rotate about” becomes really difficult to achieve because your view is not logically setup for the input or rather the input is not intuitive. What you need is a way to set the view to a more intuitive view, check out Kean’s blog posting on how to do this.

Unioning Solids
Something else with Solids is the ability to make many intersecting solids into a single solid… This is called Unioning and the process for using the UNION command is described in the online AutoCAD 2010 help here.

What I’m going to do is to create a Polar array of the original Solid, to make this…

[image:]

You’ll notice that I have selected the objects just so you can see that they are indeed 4 single instances of Kean’s Cylinder. In case you are wondering how I created these, I used the “array” command with these settings below…

[image:]

If you want the Polar array to work on a different Axis then you have to change your UCS to suit, for me I like to orbit until I have the correct view then set the UCS to the view – command: UCS->View

Next we run the UNION command and select all of the objects together… As long as they are intersecting and are of the same type, i.e. 3D Solids (like here), 3D Surfaces or 2D Regions, then we will get a single composite version of all the items that were selected, thus…

[image:]
Creating a Union (Boolean Unite) via Code

Notice that I open both Solids for write, this is because they both get changed.

Also, I have to admit that the looping that I ended up doing here is kind of confusing in my opionion, but I left it in anyway so that I could follow up what I was doing. What I was trying to handle was when two solids don’t intersect or when I had already unioned the solid in a previous iteration – the strange thing was that no matter how I changed the loop it always seemed to work The reason is that when you union two solids together, intersecting or not, they become one anyway – a very useful point to note.

 // Union some selected objects, by Fenton Webb
 [CommandMethod("myUnion")]
 public void myUnion()
 {
 // get the usuals
 Document doc = Application.DocumentManager.MdiActiveDocument;
 Database db = doc.Database;
 Editor ed = doc.Editor;

 // select some solids to union together
 PromptSelectionOptions opts = new PromptSelectionOptions();
 opts.MessageForAdding = "Pick the solids that you want to Union";
 // setup selection filter so that only classes of type Solid3d are selected
 TypedValue[] dxfFilter = new TypedValue[1];
 // create the dxf name - now I could just have used “3DSOLID” but I always
 // get frustrated that I have to start autocad to find out, so here's code
 string dxfName = RXClass.GetClass(new Solid3d().GetType()).DxfName;
 dxfFilter[0] = new TypedValue(0, dxfName/*"3DSolid"*/);
 SelectionFilter selectionFilter = new SelectionFilter(dxfFilter);
 // finally do the selection
 PromptSelectionResult res = ed.GetSelection(opts, selectionFilter);
 // if ok
 if (res.Status == PromptStatus.OK)
 {
 // loop each item and try to union it together
 for (int i=0; i<res.Value.Count; ++i)
 {
 ObjectId id = res.Value[i].ObjectId;
 // open the current solid for write
 using (Solid3d solid = id.Open(OpenMode.ForWrite) as Solid3d)
 {
 // now loop the others and try and union to it
 for (int j=i+1; j<res.Value.Count; ++j)
 {
 id = res.Value[j].ObjectId;
 // open the union-to solid for write
 using (Solid3d solidTo = id.Open(OpenMode.ForWrite) as Solid3d)
 {
 // now union them together
 solid.BooleanOperation(BooleanOperationType.BoolUnite, solidTo);
 }
 }
 }
 }
 }
 }

Other operations we can do are SUBTRACT and INTERSECT.

Subracting Solids (Subtracting 1 or more Volumes from 2 or more Objects)
The SUBTRACT command in AutoCAD allows you create a 3D Solid by subtracting overlapping Solids, and again just like the UNION command it also works for surfaces and regions. So if I run the SUBTRACT command selecting 2 opposite Cylinders to subtract from, then the 2 Cylinders that are left as the solids to actual subtract we get this…

[image:]

Creating a 3D Subtract via Code (Boolean Subtract)

Notice that the selection of the Solids has changed and also the loop for processing them, I’m going for a much more thorough loop mechanism. I’m getting the main solid selection first (I’m calling this the parent solids) then in the other selection I get the Solid masses which we will use to Subtract from the parent solids.

 // Subtract Solids from some parent host solids, by Fenton Webb
 [CommandMethod("mySubtract")]
 public void mySubtract()
 {
 // get the usuals
 Document doc = Application.DocumentManager.MdiActiveDocument;
 Database db = doc.Database;
 Editor ed = doc.Editor;

 // select some solids to subtract from
 PromptSelectionOptions opts = new PromptSelectionOptions();
 opts.MessageForAdding = "Pick Solids that you want to Subtract From";
 // setup selection filter so that only classes of type Solid3d are selected
 TypedValue[] dxfFilter = new TypedValue[1];
 // create the dxf name - now I could just have used 3DSOLID but I always
 // get frustrated that I have to start autocad to find out, so here's code
 string dxfName = RXClass.GetClass(new Solid3d().GetType()).DxfName;
 dxfFilter[0] = new TypedValue(0, dxfName/*"3DSolid"*/);
 SelectionFilter selectionFilter = new SelectionFilter(dxfFilter);
 // finally do the selection
 PromptSelectionResult solidParentsRes = ed.GetSelection(opts, selectionFilter);
 // if ok
 if (solidParentsRes.Status == PromptStatus.OK)
 {
 // select some solids to subtract
 opts.MessageForAdding = "Now the Solids that you want to Subtract";
 // finally do the selection
 PromptSelectionResult subtractRes = ed.GetSelection(opts, selectionFilter);
 // if ok
 if (subtractRes.Status == PromptStatus.OK)
 {
 // loop each item and try to subtract them together
 for (int i = 0; i < solidParentsRes.Value.Count; ++i)
 {
 ObjectId id = solidParentsRes.Value[i].ObjectId;
 // open the current solid for write
 using (Solid3d solid = id.Open(OpenMode.ForWrite) as Solid3d)
 {
 solid.RecordHistory = true;
 // now loop the others and try to subtract them
 for (int j = 0; j < subtractRes.Value.Count; ++j)
 {
 id = subtractRes.Value[j].ObjectId;
 // open the union-to solid for write
 using (Solid3d solidTo = id.Open(OpenMode.ForWrite) as Solid3d)
 {
 solidTo.RecordHistory = true;
 // ok ready to subtract them from each other
 solid.BooleanOperation(BooleanOperationType.BoolSubtract, solidTo);
 }
 }
 }
 }
 }
 }
 }

Intersecting Solids (Creating a Common Volume from 2 or more Objects)

[image:]

Creating a 3D Intersection via Code

Notice that it’s very similar code to the Union except a different flag passed to the BooleanOperation, actually I have to be honest – I copied it directly so of course any bugs in the Union code will be reflected here also!!

 // Intersect selected objects producing a solid consisting of everything
 // that intersects, by Fenton Webb
 [CommandMethod("myIntersect")]
 public void myIntersect()
 {
 // get the usuals
 Document doc = Application.DocumentManager.MdiActiveDocument;
 Database db = doc.Database;
 Editor ed = doc.Editor;

 // select some solids to union together
 PromptSelectionOptions opts = new PromptSelectionOptions();
 opts.MessageForAdding = "Pick the solids that you want to Intersect";
 // setup selection filter so that only classes of type Solid3d are selected
 TypedValue[] dxfFilter = new TypedValue[1];
 // create the dxf name - now I could just have used 3DSOLID but I always
 // get frustrated that I have to start autocad to find out, so here's code
 string dxfName = RXClass.GetClass(new Solid3d().GetType()).DxfName;
 dxfFilter[0] = new TypedValue(0, dxfName/*"3DSolid"*/);
 SelectionFilter selectionFilter = new SelectionFilter(dxfFilter);
 // finally do the selection
 PromptSelectionResult res = ed.GetSelection(opts, selectionFilter);
 // if ok
 if (res.Status == PromptStatus.OK)
 {
 // loop each item and try to union it together
 for (int i = 0; i < res.Value.Count; ++i)
 {
 ObjectId id = res.Value[i].ObjectId;
 // open the current solid for write
 using (Solid3d solid = id.Open(OpenMode.ForWrite) as Solid3d)
 {
 // now loop the others and try and union to it
 for (int j = i + 1; j < res.Value.Count; ++j)
 {
 id = res.Value[j].ObjectId;
 // open the union-to solid for write
 using (Solid3d solidTo = id.Open(OpenMode.ForWrite) as Solid3d)
 {
 solid.RecordHistory = true;
 // now union them together
 solid.BooleanOperation(BooleanOperationType.BoolIntersect, solidTo);
 }
 }
 }
 }
 }
 }

SubDMeshes

[image: Image:Catmull-Clark subdivision of a cube.svg][image: Image:Catmull-Clark subdivision of a cube.svg]

Next I wanted to tell you about SubDMeshes.

New in AutoCAD 2010 is a brand new modelling Entity called a SubDMesh, which stands for Subdivision surface. It allows for very sophisticated yet simple modeling techniques by adjusting the Mesh Tesselation. As you can see from the picture above, Subdividing a Cube can quickly convert it into a Sphere, and from each of these stages you have the ability to sub-select each face and modify it as you see fit.

[image:]

In case you are interested, this technology was originally adopted from Autodesk Maya and enhanced to bring it inside of the extremely acurate AutoCAD world.

One thing to note is that you can create similar objects to ASM such as Box, Cone, Cylinder, Sphere, etc via the MESH command, but SubDMeshes are not ASM objects. There are a few reasons why we needed a new entity type, the first reason is that ASM doesn’t support meshing nor the tessalation control of of the faces, only the tessalation control of the display. Another reason is that the SubDMesh object is much more efficient with memory and has no built in limit on the total number of faces that it can handle, the limit is pretty much the memory limit of your machine, whereas ASM shapes, for legacy drawing compatibility, have a limit of 32k number faces.

It’s very easy to convert between ASM and SubDMeshes, you simply use the CONVTOSOLID and back again using CONVTOSURFACE. But why would you do that? Well the main reason is that SubDMeshes use a lot of interpolation to create the geometry and this plays havoc with Boolean operations in that the accuracy is not good enough for a CAD environment, hence the requirement to easily convert back and forth depending on what you are doing. One point to note is that you must be careful when freely converting back and forth between Surface and Solid because doing so can cause the entity to become unnecessarily complex. Basically, the tip is to only convert when you really need too.

What about some sample code. Well, we already have a great sample posted on the ADN site here - you should check it out, it’s really cool.

[image:]

On a closing note, Autodesk are actively enhancing 3D in all of our products so watch this space for more really cool 3D API’s emerging in the coming years.

All the best and Happy 3D!
Fenton

Further Reading
SDK Samples
· www.objectarx.com
Developer Centre
· www.autodesk.com/developautocad
Discussion Groups
· http://discussion.autodesk.com
· news://discussion.autodesk.com/autodesk.autocad.customization.dotnet
API Training Classes
· www.autodesk.com/apitraining
Autodesk Developer Network
· www.autodesk.com/joinadn

Y

X

Z

Makes 3D!

2

22

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.jpeg

image15.png

