
6/20/2012

1

Autodesk® FBX® SDK

SDK Object Model

Video

ftp://sparks:Sparks2012@87.106.97.50/

or directly:

IP address: 87.106.97.50

• User name: sparks

• Password: Sparks2012

• FBX_SDK_webcast folder contains the video and
handouts from yesterday

6/20/2012

2

Exercise – Unit 2

• Create an importer and list the

nodes of a FBX file

demo

FBX SDK Webcast Agenda

• Day / Hour 1 – Welcome to FBX SDK

• Day / Hour 2 – Functionality basics

• Day / Hour 3 – SDK Object Model

• Day / Hour 4 – Geometry

• Day / Hour 5 – Animation

6/20/2012

3

SDK Object Model

• Collections

• Properties

• Connections

• Lights and Cameras

• Miscellaneous topics

Collections

6/20/2012

4

Collections

• container classes are derived from the

FbxCollection class

• Examples:

FbxAnimLayer, FbxAnimStack, FbxDocument,

and FbxScene

demo

Collections

• Add members - FbxCollection::AddMember()

• Remove members - FbxCollection::RemoveMember()

• Count members - FbxCollection::GetMemberCount()

• Get a member - FbxCollection::GetMember()

• Search its members - FbxCollection::FindMember()

demo

6/20/2012

5

Properties

FbxProperty

• Standalone class for properties

• provides methods for managing the connections between
objects

• object such as FbxNode uses FBX properties (FbxProperty)
rather than conventional C++ member variables

– ensures that the data of a FbxObject is strongly typed

• When FbxObject created, static instance of FbxProperty
are initialized

demo

6/20/2012

6

User-defined Data

• The FbxProperty class can contain user-defined

data

• can be dynamically associated to a FbxObject at

runtime

demo

FbxObject

• provides methods for managing

the connections between objects

• provides a property

(FbxProperty) mechanism to

describe characteristics of

objects in a scene

demo

6/20/2012

7

Connections

Connections

• internal data structure that manages the two-

way relationship between FBX objects and/or

FBX properties

• manipulated using the FbxObject and

FbxProperty

6/20/2012

8

Connection Example

• object-property

• object-object

• property-property

object-property connections

• Properties are contained
within objects as sources

• Calling FbxObject::GetSrcProperty() will return
the object's source property at the given index

• Symmetrically, calling
FbxProperty::GetDstObject() will return the
property's destination object

6/20/2012

9

object-object connections

• Parent-child relationships among
objects use connections (for example: the node
hierarchy of a scene)

• Typically, an object's children are sources, and are
accessed using FbxObject::GetSrcObject()

• An object's parent is a destination, and is
accessed using FbxObject::GetDstObject()

property-property connections

• Parent-child relationships among
properties also use connections
(for example: the property hierarchy
of FbxIOSettings)

• Typically, a property's children are sources,
and are accessed using FbxProperty::GetSrcProperty()

• A property's parent is referred to as a destination, and
is accessed using FbxProperty::GetDstProperty()

6/20/2012

10

Connection Example

• object-property

• object-object

• property-property

demo

Lights and Cameras

6/20/2012

11

FbxLight

• Light Types:

– ePoint

– eDirectional

– eSpot

– eArea

– eVolume

FbxLight
// Create a spotlight.

void CreateLight(FbxScene* pScene, char* pName)

{

FbxLight* light = FbxLight::Create(pScene,pName);

light->LightType.Set(FbxLight::eSPOT);

light->CastLight.Set(true);

FbxNode* lightNode = FbxNode::Create(pScene,pName);

lightNode->SetNodeAttribute(light);

FbxNode* rootNode = pScene->GetRootNode();

RootNode->AddChild(lightNode);

}

6/20/2012

12

FbxLight

• Pointing a spot/directional light
– light's node must have its target set using

FbxNode::SetTarget()

• Color
– defined in its FbxLight::Color property

• Intensity
– defined in its FbxLight::Intensity property

FbxLight

• Decay

– defined in its FbxLight::DecayType property

• Shadows

– enabled using the FbxLight::CastShadows boolean property

– color of the light's shadow is defined in the
FbxLight::ShadowColor property

– A shadow texture may also be applied using
FbxLight::SetShadowTexture().

demo

6/20/2012

13

FbxCamera

• Types:

– ePerspective

– eOrthogonal

• FbxCameraStereo

• Adds specialization for stereo cameras.

FbxCamera
void CreateCamera(FbxScene* pScene, char* pCameraName)

{

FbxCamera* camera = FbxCamera::Create(pScene, pCameraName);

FbxNode* cameraNode = FbxNode::Create(pScene, pCameraName);

cameraNode->SetNodeAttribute(camera);

FbxNode* rootNode = pScene->GetRootNode();

RootNode->AddChild(cameraNode);

// Once a camera has been created, it can be set as the scene's default camera.

// A scene must have its default camera set explicitly,

// even if there is only one camera in the scene.

pScene->GetGlobalSettings().SetDefaultCamera((char *)camera->GetName());

}

6/20/2012

14

FbxCamera

• Pointing the camera

• camera's node must have its target set using

FbxNode::SetTarget()

• See FbxCamera docs for all the properties that

can be set

– For example: Roll, Aspect, FOV, etc.

demo

Miscellaneous

6/20/2012

15

Copying an FBX Object

• An FBX object may be copied by calling its

Copy() member function

• Copies all of its associated FbxProperty

instances, and their values

• Does NOT include any of its inter-object

connections

Copying an FBX Object
// Assume that pScene is a pointer to a valid scene object.

FbxMesh* pSourceMesh = FbxMesh::Create (pScene, "");

// ... Define control points, etc. for pSourceMesh.

// This mesh will be overwritten

FbxMesh* pTargetMesh = FbxMesh::Create (pScene, "");

// Copy the data from pSourceMesh into pTargetMesh. Note that

// the source object and the target object must be instances of

// the same class (FbxMesh in this case).

pTargetMesh->Copy(pSourceMesh);

6/20/2012

16

Error Handling

• Functions typically return false for failure

• objectname->GetLastErrorString() returns
a string with an error message

• objectname->GetLastErrorID() returns an
integer value.

– use FBX enumerated values or defined values to
handle the error appropriately

Error Handling sample

• http://docs.autodesk.com/FBX/2013/ENU/FBX-SDK-

Documentation/files/GUID-5509751F-8679-4D32-

987D-8343FD8F6D1A.htm

demo

6/20/2012

17

Supported String Formats

• FBX SDK uses Unicode UTF-8 strings internally

• Converts its UTF-8 strings to the required

string format when calling a function in an

operating system’s API

• FbxString defined in fbxstring.h has string

Customizing the SDK

• Custom User Data
– FbxObject/FbxProperty have Get/SetUserDataPtr()

• Custom Properties

• Custom Classes
– FbxManager::RegisterFbxClass()

• Custom User Data for Layer Elements
– FbxLayerElementUserData

• Custom File Formats
– Customizing File Formats with FBX SDK I/O Plug-ins

6/20/2012

18

Exercise

• Create a scene that contains one camera and

one light.

• Add custom properties.

• Output the connections in the scene.

• Export the scene to an ASCII FBX file.

