

Creating Geometric and Dimensional Constraints
Using the AutoCAD

®
 .NET API

Stephen Preston – Autodesk, Inc.

CP316-5

In AutoCAD 2010, we introduced the Parametric Drawing feature that allows geometric and dimensional
constraints to be added to AutoCAD drawing elements. AutoCAD 2011 introduces a .NET API to allow
you to add, edit, and query these constraints from your add-in applications. In this class, we will explain
the underlying architecture of this feature and demonstrate the API using some simple examples.

About the Speaker:
Stephen has been a member of the Autodesk Developer Technical Services (DevTech) team since
2000, first as a support engineer and now as manager of the EMEA (Europe, Middle East, and Africa)
team. In those roles, his responsibilities included supporting the AutoCAD APIs, including ObjectARX
and AutoCAD .NET, as well as AutoCAD OEM and RealDWG™ technologies. Currently, he manages
the Developer Technical Services Team in the Americas and serves as Workgroup Lead, working
closely with the AutoCAD engineering team on future improvements in the AutoCAD APIs.

Stephen started his career as a scientist, and has a Ph.D. in Atomic and Laser Physics from the
University of Oxford.

stephen.preston@autodesk.com

mailto:stephen.preston@autodesk.com

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

2

Introduction
The Parametric Drawing feature was introduced in AutoCAD 2010 as the first feature to make

use of the underlying Associative Framework1 architected by Jiri Kripac, Senior Architect on the

AutoCAD software development team. AutoCAD 2010 included an ObjectARX (C++) Parametric

Drawing API. A .NET API was added in AutoCAD 20112, and is a thin wrapper on top of the C++

API.

The Parametric Drawing feature allows you to apply geometric and dimensional constraints to

entities in an AutoCAD drawing:

 Geometric constraints allow you to define rules that govern the geometric relationships

between entities in your drawing – for example, these two circles must always be

concentric, or the end points of these two lines must always be coincident.

 Dimensional constraints allow you to extend the behavior of standard AutoCAD

dimensions (linear dimensions, angular dimensions, etc.) to allow them to control the

dimension they represent and not just report it – for example, a normal radial dimension

will change its value to reflect the radius of a circle as the user edits the circle; a radial

dimensional constraint will not allow the user to edit the circle‟s radius, except by editing

the dimension. Dimensional constraints can also be dependent on other dimensions in

the drawing, so (for example) a circle‟s radius can be set to always be the same as the

length of a particular line. Extend the line, and the circle‟s radius changes accordingly.

In this handout we‟ll explain the basic architecture for the Parametric Drawing feature, describe

the constraints you have available to you, and walk through some simple code examples.

All samples in the handout and in the class are in VB.NET. You can easily translate to C# using

an online translator. I‟ve found http://www.developerfusion.com/tools/convert/vb-to-csharp/ to be

very effective. The samples were created using Visual Studio 2008 Professional, but you can

use any version of Visual Studio 2008 or 2010 – including the Express editions.

This handout (and the class) assumes that you are familiar with the .NET Framework and the

AutoCAD .NET API; and that you understand how to create, build and run an AutoCAD .NET

addin. If you‟re not familiar with these, then please work through some of the resources listed in

the Further Reading section before the class.

1
 See the ObjectARX Developers Guide section ‘Advanced Topics->Associative Framework’ for a detailed

conceptual overview of the framework.
2 AutoCAD 2011 also included a second feature based on the Associative Framework – the Associative Surface API.

See Philippe Leefsma’s “AutoCAD® .NET: Exploring the Associative Surfaces API” Product Clinic (CP232-1C) at AU

Virtual 2010 to find out more about the Associative Surfaces API.

http://www.developerfusion.com/tools/convert/vb-to-csharp/

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

3

Overview of the Parametric Drawing Architecture
The Parametric Drawing feature is implemented using the Associative Framework architecture.

The same architecture is used for the Associative Surfaces feature. The building blocks of the

Associative Framework (and therefore the Parametric Drawing feature) are very simple – you

have Actions and Dependencies:

 Actions take some inputs, perform some calculations, and then create some output.

The inputs are usually the properties of objects in the drawing. The outputs are usually

to change the properties of objects in the drawing. An Action is represented in the API by

the AssocAction class.

 Dependencies simply define the links between the Actions and the objects in the

drawing the actions depend on. Dependencies are represented by the

AssocDependency and AssocDependencyBody classes.

Keep these two definitions in mind when you‟re using the API, and everything else will fall into

place for you.

In the Parametric Drawing API, we have some specific classes to consider3:

AssocNetwork
The AssocNetwork class is a type of (is derived from) AssocAction. The AssocNetwork contains

all the AssocActions that make up the Parametric Drawing API. There is a master

AssocNetwork in the Named Objects Dictionary (in a sub-dictionary named

ACAD_ASSOCNETWORK). This master AssocNetwork references child AssocNetworks – one

for each BlockTableRecord you‟ve added geometric or dimensional constraints to. The

AssocNetwork for a BlockTableRecord is stored in the BlockTableRecord‟s extension dictionary

in a sub dictionary named ACAD_ASSOCNETWORK.

3
 These classes are very well documented in the ObjectARX Reference Guide – both the unmanaged and managed

references.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

4

The AssocNetwork is not specific to the Parametric Drawing API. It holds the actions and

dependencies for all Associative Framework features –that‟s Parametric Drawing and

Associative Surfaces. in AutoCAD 2011

Assoc2dConstraintGroup
The Assoc2dConstraintGroup class is also a type of AssocAction. Assoc2dConstraintGroups

are stored in the BlockTableRecord‟s AssocNetwork, along with all the other AssocActions.

Because the Parametric Drawing feature is for two-dimensional geometry only, a new

Assoc2dConstraintGroup is created to store the constraints that apply to a specific geometric

plane. This means that you may find several Assoc2dConstraintGroups within a single

AssocNetwork, and you have to query each Assoc2dConstraintGroup to determine the plane it

is defined for4.

Each Assoc2dConstraintGroup stores a list of AssocDependencies (the links to all geometry

being constrained on its geometric plane, and a list of the constraints being applied to that

geometry. The Assoc2dConstraintGroup won‟t allow you to add geometry that is not on the

correct plane.

4
 See the section Code Walkthrough – Creating a Constraint Group for a code sample showing how to walkthrough

the actions in an AssocNetwork to find all the Assoc2dConstraintGroups, and how to query the plane the
constraint group Is defined for.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

5

The most important functions you‟ll use in this class are the „add‟ functions:

 AddConstrainedGeometry

 Add3PointAngularConstraint

 AddAngularConstraint

 AddDistanceConstraint

 AddGeometricConstraint

 AddRadiusDiameterConstraint

AssocVariable
An AssocVariable is another type of AssocAction. It stores User Parameters - the variables you

see when you open the Parameter Manager. Each AssocVariable has a name, an expression

(which can reference other AssocVariables by name), and a value (calculated from the name).

For example, I could have four AssocVariables defined like this:

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

6

AssocDependency
An AssocDependency represents the dependency (or link) we mentioned earlier between an

action and a database resident object5. There are three main types of AssocDependency in the

Parametric Drawing API:

AssocGeomDependency

The AssocGeomDependency class stores the dependency of an action on specific subentities

(i.e. the edges and vertices) of a geometric entity. You don‟t have to deal with these when

adding geometric constraints.

AssocValueDependency

The AssocValueDependency class stores the dependency of an action on a value (the value of

an AssocVariable). You will use these when you create dimensional constraints.

AssocDimDependencyBody

The AssocGeomDependency and AssocValueDependency classes are concrete classes

derived from AssocDependency. Dimensional dependencies are implemented slightly

differently. If (in ObjectARX) you want to create a custom dependency, you do so by deriving

from AcDbAssocDependencyBody6. The custom AcDbAssocDependencyBody class is owned

by an AcDbAssocDependency class, which refers calls to the „body‟ class. This is how

dimensional dependencies are implemented - as an AssocDimDependencyBody in .NET.

You‟ll use this class when you create a dimensional dependency. It links the action to the

(database resident) Dimension entity.

5
 Which may be an AssocAction.

6
 The API won’t allow you to derive from AcDbAssocDependency.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

7

So now you understand the basic architecture of the Parametric Drawing API, let‟s take a look

at what it can actually do.

Available Constraints
The API provides access to all the constraints you can add through the user interface. These

are documented in the ObjectARX helpfiles, but I‟m reproducing that information here to bring it

all together in one place.

Geometric Constraints
You can create any of the following constraints using the AddGeometricalConstraint method of

the Assoc2dConstraintGroup and the GeometricalConstraint.ConstraintType enum. The

enum allows you to define the following constraint types (the names are self-explanatory):

Horizontal - Can be applied to a line or two points.

Vertical - Can be applied to a line or two points.

Parallel - Can be applied between two lines.

Perpendicular - Can be applied between two lines.

Normal - Currently can only be applied between a line and circle (or arc).

Collinear - Can be applied between two lines.

Coincident - Can be applied between two points, a point and a curve.

Concentric - Can be applied between any two of circles, ellipses, arcs or bounded

ellipses.

Tangent - Can be applied between two of curves (except two lines). This constraint is

not applicable for closed splines; for bounded splines, the tangent point can only be the

start or end point which is coincident with start or end point of the other bounded curve.

EqualRadius - Can be applied between any two of circles or arcs.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

8

EqualLength - Can be applied between two bounded lines (not rays).

Symmetric - Can be applied between two same type geometries. Circle and arc are

considered to be the same type of geometry. The symmetry axis is a line.

Smooth (G2Smooth constraint) - Can be applied between a bounded spline and a

bounded curve (including spline).

Fix - Can be applied on any supported geometry. [That‟s normally fixing an edge, or

fixing an edge at its vertex].

The Parametric_API_Demo_VB sample demonstrates adding all these geometric constraint

types.

Dimensional Constraints
Assoc2dConstraintGroup has four methods for adding dimensional constraints, each with an

associated enum:

 Add3PointAngularConstraint and AddAngularConstraint use the

AngularConstraint.AngularSectorType enum.

 AddDistanceConstraint uses the DistanceConstraint.DistanceDirectionType enum.

 AddRadiusDiameterConstraint uses the RadiusDiameterConstraint.RadDiaConstrType

enum.

Here are the values those enums can take:

AngularConstraint.AngularSectorType enum

ParallelAntiClockwise - The angle measured from the forward direction of line 1 to the

forward direction of line 2 anticlockwise.

AntiParallelClockwise - The angle measured from the forward direction of line 1 to the

non forward direction of line 2 clockwise.

ParallelClockwise - The angle measured from the forward direction of line 1 to the

forward direction of line 2 clockwise.

AntiParallelAntiClockwise - The angle measured from the forward direction of line 1 to

the non forward direction of line 2 anticlockwise.

DistanceConstraint.DistanceDirectionType enum

NotDirected - Not directed distance. The minimum distance between the two

geometries is measured.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

9

FixedDirection - Directed distance with fixed direction. The distance between the two

geometries is measured along the fixed direction.

PerpendicularToLine - Directed distance with relative direction. The distance between

the two geometries is measured along the direction which is perpendicular to an existing

constraint line.

ParallelToLine - Directed distance with relative direction. The distance between the two

geometries is measured along the direction which is parallel to an existing constraint

line.

RadiusDiameterConstraint.RadDiaConstrType enum

CircleRadius - The radius of a constrained circle or arc is measured.

CircleDiameter - The diameter of a constrained circle or arc is measured.

MinorRadius - The minor radius of a constrained (bounded) ellipse is measured.

MajorRadius - The major radius of a constrained (bounded) ellipse is measured.

The Parametric_API_Demo_VB sample project demonstrates all four dimensional constraint

methods, but doesn‟t cover every enum value.

Code Walkthrough – Adding a Fixed Constraint
So now you understand the basic structure of the Parametric Drawing API and the range of

constraints you have available, let‟s take a look at the code you need to write to create some of

these constraints. The Parametric API is a relatively low level API. This gives you a lot of power

and flexibility, but it also means that even adding the simplest constraint requires quite a lot of

code. Fortunately, once you‟ve worked out how to add one constraint type, it‟s pretty easy to

work out how to add the others.

In this first example, we‟re simply going to add a „Fix‟ constraint to a line‟s start point. I‟ll list the

code in full first and then explain what‟s happening step-by-step after wards. Here‟s the code7:

 <CommandMethod("TESTFIXED")> _

 Public Shared Sub testFixedCommand()

 Dim db As Database = Application.DocumentManager.MdiActiveDocument.Database

 Dim tm As Autodesk.AutoCAD.DatabaseServices.TransactionManager =

db.TransactionManager

 Using myT As Transaction = tm.StartTransaction()

7
 This code is part of the Parametric_API_Demo_VB sample. The same sample contains examples of adding many

other constraint types. Also, check the sample for the latest version of this code – if the code differs, the sample
should be the correct version.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

10

 'Create DB resident line

 Dim bt As BlockTable = DirectCast(myT.GetObject(db.BlockTableId,

OpenMode.ForRead, False), BlockTable)

 Dim btr As BlockTableRecord =

DirectCast(myT.GetObject(bt(BlockTableRecord.ModelSpace), OpenMode.ForWrite, False),

BlockTableRecord)

 Dim entity As Entity = New Line(New Point3d(12, 5, 0), New Point3d(15, 12, 0))

 btr.AppendEntity(entity)

 myT.AddNewlyCreatedDBObject(entity, True)

 'To query the subentities of the line, we create and use a protocol extension

(PE) provided by the associativity API

 Dim subentityIdPE As AssocPersSubentityIdPE

 Dim peCls As RXClass =

AssocPersSubentityIdPE.GetClass(GetType(AssocPersSubentityIdPE))

 Dim pSubentityIdPE As IntPtr = entity.QueryX(peCls)

 If pSubentityIdPE = IntPtr.Zero Then

 System.Windows.MessageBox.Show("cannot get pSubentityIdPE")

 Exit Sub

 End If

 subentityIdPE = TryCast(AssocPersSubentityIdPE.Create(pSubentityIdPE, False),

AssocPersSubentityIdPE)

 If subentityIdPE Is Nothing Then

 System.Windows.MessageBox.Show("cannot get subentityIdPE")

 Exit Sub

 End If

 'Now we have the PE, we query the subentities

 Dim edgeSubentityIds As SubentityId() = Nothing

 'First we retrieve a list of all edges (a line has one edge)

 edgeSubentityIds = subentityIdPE.GetAllSubentities(entity, SubentityType.Edge)

 'Now we retrieve the vertices associated with the first edge in our array.

 'In this case we have one edge, and the edge has three vertices - start, end

and middle.

 Dim startSID As SubentityId = SubentityId.Null, endSID As SubentityId =

SubentityId.Null

 Dim other As SubentityId() = Nothing

 subentityIdPE.GetEdgeVertexSubentities(entity, edgeSubentityIds(0), startSID,

endSID, other)

 'The PE returns a SubEntId. We want a FullSubentityPath

 Dim subentPathEdge As FullSubentityPath, subentPath1 As FullSubentityPath

 subentPathEdge = New FullSubentityPath(New ObjectId(0) {entity.ObjectId},

edgeSubentityIds(0)) 'The line edge

 subentPath1 = New FullSubentityPath(New ObjectId(0) {entity.ObjectId},

startSID) 'The edge's startpoint.

 'We call a helper function to retrieve or create a constraints group

 Dim consGrpId As ObjectId = GetConstraintGroup(True)

 Using constGrp As Assoc2dConstraintGroup = DirectCast(myT.GetObject(consGrpId,

OpenMode.ForWrite, False), Assoc2dConstraintGroup)

 'Pass in geometry to constrain (the line edge)

 Dim consGeom As ConstrainedGeometry =

constGrp.AddConstrainedGeometry(subentPathEdge)

 'Now create the constraint, a Fixed constraint applied to the line's

startpoint.

 Dim paths As FullSubentityPath() = New FullSubentityPath(0) {subentPath1}

 Dim newConstraint As GeometricalConstraint =

constGrp.AddGeometricalConstraint(GeometricalConstraint.ConstraintType.Fix, paths)

 End Using

 myT.Commit()

 End Using

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

11

 End Sub

The first part of the code is simply adding a new line to the database so we can constrain it. The

interesting part starts with:

 'To query the subentities of the line, we create and use a protocol extension

(PE) provided by the associativity API

 Dim subentityIdPE As AssocPersSubentityIdPE

 Dim peCls As RXClass =

AssocPersSubentityIdPE.GetClass(GetType(AssocPersSubentityIdPE))

 Dim pSubentityIdPE As IntPtr = entity.QueryX(peCls)

 If pSubentityIdPE = IntPtr.Zero Then

 System.Windows.MessageBox.Show("cannot get pSubentityIdPE")

 Exit Sub

 End If

 subentityIdPE = TryCast(AssocPersSubentityIdPE.Create(pSubentityIdPE, False),

AssocPersSubentityIdPE)

 If subentityIdPE Is Nothing Then

 System.Windows.MessageBox.Show("cannot get subentityIdPE")

 Exit Sub

 End If

The Parametric API is implemented using protocol extensions. If you‟re not an ObjectARX

programmer, then this is probably the first time you‟ve seen a protocol extension in the

AutoCAD API. A protocol extension is a way to dynamically extend a class at runtime (i.e. add

new methods and properties to the class without having to rewrite the class itself). You can find

out more in the ObjectARX Developers Guide in the „Advanced Topics->Protocol Extension‟

section. The code here is querying the entity (the line we created earlier) to see if a protocol

extension class with name AssocPersSubentityIdPE has been registered for the entity‟s class. If

it does, then the protocol extension class is instantiated using its Create method.

We now use the protocol extension to query the subentities (edges and vertices) we can use to

constrain the entity. Normally, you will constrain an edge by its vertex, and the next section of

code retrieves all the edges for this entity. Note that we specifically request edge subentities by

passing SubentityType.Edge into GetAllSubentities:

 'Now we have the PE, we query the subentities

 Dim edgeSubentityIds As SubentityId() = Nothing

 'First we retrieve a list of all edges (a line has one edge)

 edgeSubentityIds = subentityIdPE.GetAllSubentities(entity, SubentityType.Edge)

Note: Some commands in the Parametric_API_Demo_VB sample project combine the code to

create the Protocol Extension creation and return the FullSubentityPath of the first edge into a

helper function – GetFullSubentityPath.

As this is a line we know it has just one edge - other entities may have more. We use the first

edge from the array returned by our call to GetAllSubentities to retrieve the vertices for that

edge (GetEdgeVertexSubentities):

 'Now we retrieve the vertices associated with the first edge in our array.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

12

 'In this case we have one edge, and the edge has three vertices - start, end

and middle.

 Dim startSID As SubentityId = SubentityId.Null, endSID As SubentityId =

SubentityId.Null

 Dim other As SubentityId() = Nothing

 subentityIdPE.GetEdgeVertexSubentities(entity, edgeSubentityIds(0), startSID,

endSID, other)

Next we convert the SubentityIds for the edge and the edge startpoint into FullSubentityPaths:

 'The PE returns a SubEntId. We want a FullSubentityPath

 Dim subentPathEdge As FullSubentityPath, subentPath1 As FullSubentityPath

 subentPathEdge = New FullSubentityPath(New ObjectId(0) {entity.ObjectId},

edgeSubentityIds(0)) 'The line edge

 subentPath1 = New FullSubentityPath(New ObjectId(0) {entity.ObjectId},

startSID) 'The edge's startpoint.

All constraints are added to an Assoc2dConstraintGroup. We‟re using a helper function

(GetConstraintGroup8) to retrieve the ObjectId of the existing constraint group (or create a new

one if the constraint group doesn‟t exist already). Then we open the constraint group in our

transaction.

 'We call a helper function to retrieve or create a constraints group

 Dim consGrpId As ObjectId = GetConstraintGroup(True)

 Using constGrp As Assoc2dConstraintGroup = DirectCast(myT.GetObject(consGrpId,

OpenMode.ForWrite, False), Assoc2dConstraintGroup)

Now we have our edge and vertex FullSubentityPaths, and we‟ve opened our

Assoc2dConstraintGroup for write, we‟re ready to create our constraint. We have to tell the

constraint group the geometry we‟re constraining (the line‟s edge). We call the

AddConstrainedGeometry function for this. Then we tell the constraint group what type of

constraint we‟re adding (a Fix constraint) and what we‟re constraining the edge by (its start

point) using the AddGeometricalGonstraint function:

 'Pass in geometry to constrain (the line edge)

 Dim consGeom As ConstrainedGeometry =

constGrp.AddConstrainedGeometry(subentPathEdge)

 'Now create the constraint, a Fixed constraint applied to the line's

startpoint.

 Dim paths As FullSubentityPath() = New FullSubentityPath(0) {subentPath1}

 Dim newConstraint As GeometricalConstraint =

constGrp.AddGeometricalConstraint(GeometricalConstraint.ConstraintType.Fix, paths)

 End Using

 myT.Commit()

 End Using

 End Sub

Congratulations, you‟ve created your first geometric constraint. When you run this code, you‟ll

probably find that the constraint works, but you can‟t see the constraint glyph. Just invoke the

_CONSTRAINTBAR _SHOWALL command, and it will be displayed.

8
 We’ll explain what the helper function does in the next section.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

13

The steps you‟ll take to add any geometric constraint are always the same as this:

1. Use the AssocPersSubentityIdPE protocol extension to retrieve the subentities of the

entities you‟re interested in.

2. Get or create the Assoc2dConstraintGroup for the plane the entities lie in.

3. Add the geometry (subentities) you want to constrain to the Assoc2dConstraintGroup.

4. Create the constraint.

Code walkthrough – Creating a Constraint Group
When adding our Fix constraint, we used a helper function – GetConstraintGroup – to create a

constraint group. Here is that function:

 ' Helper function to retrieve (or create) constraint group

 Private Shared Function GetConstraintGroup(ByVal createIfDoesNotExist As Boolean)

As ObjectId

 ' Calculate the current plane on which new entities are added by the editor

 ' (A combination of UCS and ELEVATION sysvar).

 Dim ed As Autodesk.AutoCAD.EditorInput.Editor =

Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDocument.Edi

tor

 Dim ucsMatrix As Matrix3d = ed.CurrentUserCoordinateSystem

 Dim origin As Point3d = ucsMatrix.CoordinateSystem3d.Origin

 Dim xAxis As Vector3d = ucsMatrix.CoordinateSystem3d.Xaxis

 Dim yAxis As Vector3d = ucsMatrix.CoordinateSystem3d.Yaxis

 Dim zAxis As Vector3d = ucsMatrix.CoordinateSystem3d.Zaxis

 origin = origin + CDbl(Application.GetSystemVariable("ELEVATION")) * zAxis

 Dim currentPlane As New Plane(origin, xAxis, yAxis)

 ' get the constraint group from block table record

 Dim idConstrGroup As ObjectId = ObjectId.Null

 Dim db As Database = Application.DocumentManager.MdiActiveDocument.Database

 Dim networkId As ObjectId =

AssocNetwork.GetInstanceFromObject(SymbolUtilityServices.GetBlockModelSpaceId(db),

createIfDoesNotExist, True, "")

 If networkId.IsNull Then

 System.Windows.MessageBox.Show("network id is null")

 Return idConstrGroup

 End If

 ' Try to find the constraint group in the associative network

 Dim tm As Autodesk.AutoCAD.DatabaseServices.TransactionManager =

db.TransactionManager

 Using myT As Transaction = tm.StartTransaction()

 Using network As AssocNetwork = DirectCast(myT.GetObject(networkId,

OpenMode.ForRead, False), AssocNetwork)

 If network Is Nothing Then

 Return idConstrGroup

 End If

 ' Iterate all actions in network to find Assoc2dConstraintGroups

 Dim actionsInNetwork As ObjectIdCollection = network.GetActions

 For nCount As Integer = 0 To actionsInNetwork.Count - 1

 Dim idAction As ObjectId = actionsInNetwork(nCount)

 If idAction = ObjectId.Null Then

 Continue For

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

14

 End If

 ' Is this action a type of Assoc2dConstraintGroup?

 If

idAction.ObjectClass.IsDerivedFrom(RXObject.GetClass(GetType(Autodesk.AutoCAD.Database

Services.Assoc2dConstraintGroup))) Then

 Using action As AssocAction = DirectCast(myT.GetObject(idAction,

OpenMode.ForRead, False), AssocAction)

 If action Is Nothing Then

 Continue For

 End If

 Dim constGrp As Assoc2dConstraintGroup = DirectCast(action,

Assoc2dConstraintGroup)

 ' Is this the Assoc2dConstraintGroup for our plane of interest?

 If constGrp.GetWorkPlane.IsCoplanarTo(currentPlane) Then

 ' If it is then we've found an existing constraint group we can use.

 Return idAction

 End If

 End Using

 End If

 Next

 End Using

 ' If we get to here, a suitable contraint group doesn't exist, create a new

one if that's what calling fn wanted.

 If idConstrGroup.IsNull AndAlso createIfDoesNotExist Then

 Using network As AssocNetwork = DirectCast(myT.GetObject(networkId,

OpenMode.ForWrite, False), AssocNetwork)

 ' Create construction plane

 Dim constraintPlane As New Plane(currentPlane)

 ' If model extent is far far away from origin then we need to shift

 ' construction plane origin within the model extent.

 ' (Use Pextmin, PExtmax in paper space)

 Dim extmin As Point3d = db.Extmin

 Dim extmax As Point3d = db.Extmax

 If extmin.GetAsVector().Length > 100000000.0 Then

 Dim originL As Point3d = extmin + (extmax - extmin) / 2.0

 Dim result As PointOnSurface = currentPlane.GetClosestPointTo(originL)

 constraintPlane.[Set](result.GetPoint(), currentPlane.Normal)

 End If

 ' Create the new constraint group and add it to the associative network.

 Using constGrp As New Assoc2dConstraintGroup(constraintPlane)

 idConstrGroup = db.AddDBObject(constGrp)

 End Using

 network.AddAction(idConstrGroup, True)

 End Using

 End If

 myT.Commit()

 End Using

 Return idConstrGroup

 End Function

The Parametric Drawing feature is a 2d constraints system, so we have to create a new

Assoc2dConstraintGroup for each unique plane within the BlockTableRecord in which we‟re

working (normally that would be model space). We can have multiple constraint groups

associated with a single block, but each will be for a different geometric plane. We assume the

user wants to use a constraint group defined for the current default entity insertion point for a

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

15

drawing, which is defined by the current UCS with a possible offset due to the ELEVATION

sysvar. The first part of our code calculates that plane:

 ' Calculate the current plane on which new entities are added by the editor

 ' (A combination of UCS and ELEVATION sysvar).

 Dim ed As Autodesk.AutoCAD.EditorInput.Editor =

Autodesk.AutoCAD.ApplicationServices.Application.DocumentManager.MdiActiveDocument.Edi

tor

 Dim ucsMatrix As Matrix3d = ed.CurrentUserCoordinateSystem

 Dim origin As Point3d = ucsMatrix.CoordinateSystem3d.Origin

 Dim xAxis As Vector3d = ucsMatrix.CoordinateSystem3d.Xaxis

 Dim yAxis As Vector3d = ucsMatrix.CoordinateSystem3d.Yaxis

 Dim zAxis As Vector3d = ucsMatrix.CoordinateSystem3d.Zaxis

 origin = origin + CDbl(Application.GetSystemVariable("ELEVATION")) * zAxis

 Dim currentPlane As New Plane(origin, xAxis, yAxis)

An important note about this sample code – All the sample commands in the

Parametric_API_Demo_VB sample create entities using the WCS, but this helper function

creates a constraint group using the UCS. Therefore, it’s possible that if you run this code with

the UCS set to something other than World, you will find an eNonCoplanarGeometry exception

being thrown by calls to Assoc2dConstraintGroup.AddConstrainedGeometry. These examples

could have used a much simpler version of the GetConstraintGroup helper function. I’ve

included this more complex version to highlight that constraint groups are plane dependent.

Now we‟ve calculated our working plane, we can check if there‟s already a constraint group

defined for this plane. To do this we must first open the associative network (AssocNetwork)

object:

 ' get the constraint group from block table record

 Dim idConstrGroup As ObjectId = ObjectId.Null

 Dim db As Database = Application.DocumentManager.MdiActiveDocument.Database

 Dim networkId As ObjectId =

AssocNetwork.GetInstanceFromObject(SymbolUtilityServices.GetBlockModelSpaceId(db),

createIfDoesNotExist, True, "")

 If networkId.IsNull Then

 System.Windows.MessageBox.Show("network id is null")

 Return idConstrGroup

 End If

Each BlockTableRecord can have up to one AssocNetwork. In the unlikely event that we can‟t

find or create one (if networkId is null), then something has gone wrong and we return a null

ObjectId from the function to indicate a problem.

Each AssocNetwork holds a collection of Actions, so we next open the AssocNetwork for read

and iterate through all its actions looking for AssocActions that are also

Assoc2dConstraintGroups (and doing a little error checking along the way):

 ' Try to find the constraint group in the associative network

 Dim tm As Autodesk.AutoCAD.DatabaseServices.TransactionManager =

db.TransactionManager

 Using myT As Transaction = tm.StartTransaction()

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

16

 Using network As AssocNetwork = DirectCast(myT.GetObject(networkId,

OpenMode.ForRead, False), AssocNetwork)

 If network Is Nothing Then

 Return idConstrGroup

 End If

 ' Iterate all actions in network to find Assoc2dConstraintGroups

 Dim actionsInNetwork As ObjectIdCollection = network.GetActions

 For nCount As Integer = 0 To actionsInNetwork.Count - 1

 Dim idAction As ObjectId = actionsInNetwork(nCount)

 If idAction = ObjectId.Null Then

 Continue For

 End If

 ' Is this action a type of Assoc2dConstraintGroup?

 If

idAction.ObjectClass.IsDerivedFrom(RXObject.GetClass(GetType(Autodesk.AutoCAD.Database

Services.Assoc2dConstraintGroup))) Then

 Using action As AssocAction = DirectCast(myT.GetObject(idAction,

OpenMode.ForRead, False), AssocAction)

 If action Is Nothing Then

 Continue For

 End If

Once we‟ve found a constraint group, we open it for read and check if it is the group for our
working plane. If it is, we return its ObjectId to the calling function

 Dim constGrp As Assoc2dConstraintGroup = DirectCast(action,

Assoc2dConstraintGroup)

 ' Is this the Assoc2dConstraintGroup for our plane of interest?

 If constGrp.GetWorkPlane.IsCoplanarTo(currentPlane) Then

 ' If it is then we've found an existing constraint group we can use.

 Return idAction

If we get to the end of the loop and haven‟t found a constraint group for our working plane, then

we create one (if the caller specified that we should). Note how we add the constraint group to

the database and also to the AssocNetwork:

 If idConstrGroup.IsNull AndAlso createIfDoesNotExist Then

 Using network As AssocNetwork = DirectCast(myT.GetObject(networkId,

OpenMode.ForWrite, False), AssocNetwork)

 ' Create construction plane

 Dim constraintPlane As New Plane(currentPlane)

 ' If model extent is far far away from origin then we need to shift

 ' construction plane origin within the model extent.

 ' (Use Pextmin, PExtmax in paper space)

 Dim extmin As Point3d = db.Extmin

 Dim extmax As Point3d = db.Extmax

 If extmin.GetAsVector().Length > 100000000.0 Then

 Dim originL As Point3d = extmin + (extmax - extmin) / 2.0

 Dim result As PointOnSurface = currentPlane.GetClosestPointTo(originL)

 constraintPlane.[Set](result.GetPoint(), currentPlane.Normal)

 End If

 ' Create the new constraint group and add it to the associative network.

 Using constGrp As New Assoc2dConstraintGroup(constraintPlane)

 idConstrGroup = db.AddDBObject(constGrp)

 End Using

 network.AddAction(idConstrGroup, True)

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

17

 End Using

 End If

Then we return the ObjectId of the constraint group we created and we‟re done.

Code Walkthrough – Defining a User Parameter
We‟ve seen how to create geometric constraints, so now it‟s time to move on to dimensional

constraints. But before we do, let‟s take a helpful detour and look at how to add user parameters

(AssocVariables) to our network.

Dimensional constraints are fairly limited unless we can also define user parameters (or

variables) to include in the expressions governing those constraints. The

Parametric_API_Demo_VB samples includes a helper function for this – AddOrModifyVariable –

that is used by all the functions that add dimensional constraints. We‟ll examine this code now:

 ' Add a new variable to the associative network or modify expression of the

existing one

 Public Shared Function AddOrModifyVariable(ByVal varName As String, ByVal

varExpression As String) As ObjectId

 Dim varId As ObjectId = ObjectId.Null

 Dim doc As Document = Application.DocumentManager.MdiActiveDocument

 Dim db As Database = doc.Database

 Using myT As Transaction = db.TransactionManager.StartTransaction()

 ' Open the AssocNetwork

 Dim networkId As ObjectId =

AssocNetwork.GetInstanceFromObject(SymbolUtilityServices.GetBlockModelSpaceId(db),

True, True, "")

 Dim network As AssocNetwork = DirectCast(myT.GetObject(networkId,

OpenMode.ForWrite), AssocNetwork)

 Dim var As AssocVariable = Nothing

 ' Iterate through all actions in the network

 Dim actionIds As ObjectIdCollection = network.GetActions

 For Each actionId As ObjectId In network.GetActions

 ' Is this action an AssocVariable?

 If

actionId.ObjectClass.IsDerivedFrom(RXObject.GetClass(GetType(Autodesk.AutoCAD.Database

Services.AssocVariable))) Then

 ' If so, we check if it has the name we're looking for.

 var = DirectCast(myT.GetObject(actionId, OpenMode.ForWrite),

AssocVariable)

 If var IsNot Nothing Then

 ' If name matches, then we exit loop and set its expression

 If var.Name = varName Then

 Exit For

 Else

 var = Nothing

 End If

 End If

 End If

 Next

 ' If variable with correct name wasn't found, we create it.

 If var Is Nothing Then

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

18

 var = New AssocVariable()

 varId = network.Database.AddDBObject(var)

 network.AddAction(varId, True)

 myT.AddNewlyCreatedDBObject(var, True)

 var.SetName(varName, True)

 End If

 ' Finally we set its expression to the new value.

 Dim errMsg As String = ""

 var.SetExpression(varExpression, "", True, True, errMsg, False)

 Dim rb As New ResultBuffer()

 errMsg = var.EvaluateExpression(rb)

 var.Value = rb

 myT.Commit()

 End Using

 Return varId

 End Function

The code to access the AssocNetwork should be familiar by now:

 Dim networkId As ObjectId =

AssocNetwork.GetInstanceFromObject(SymbolUtilityServices.GetBlockModelSpaceId(db),

True, True, "")

 Dim network As AssocNetwork = DirectCast(myT.GetObject(networkId,

OpenMode.ForWrite), AssocNetwork)

Next we iterate all actions in the network, looking for AssocVariables. If we find one, then we

check if it has the name we need:

 Dim var As AssocVariable = Nothing

 ' Iterate through all actions in the network

 Dim actionIds As ObjectIdCollection = network.GetActions

 For Each actionId As ObjectId In network.GetActions

 ' Is this action an AssocVariable?

 If

actionId.ObjectClass.IsDerivedFrom(RXObject.GetClass(GetType(Autodesk.AutoCAD.Database

Services.AssocVariable))) Then

 ' If so, we check if it has the name we're looking for.

 var = DirectCast(myT.GetObject(actionId, OpenMode.ForWrite),

AssocVariable)

 If var IsNot Nothing Then

 ' If name matches, then we exit loop and set its expression

 If var.Name = varName Then

 Exit For

 Else

 var = Nothing

 End If

 End If

 End If

 Next

When we exit this loop, „var‟ is either pointing to the AssocVariable with the correct name or it is

Nothing. A value of Nothing indicates that no variable with that name was found. If we didn‟t find

the variable we wanted, then we create a new one:

 If var Is Nothing Then

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

19

 var = New AssocVariable()

 varId = network.Database.AddDBObject(var)

 network.AddAction(varId, True)

 myT.AddNewlyCreatedDBObject(var, True)

 var.SetName(varName, True)

 End If

Finally, whether it was an existing variable or one we just created, we set its value and return

the variable‟s ObjectId to indicate success. Variable expressions are strings, because an

expression can be a value or an equation (the TESTVARIABLECREATE command in the

sample demonstrates setting the expression to an equation); variable values are result buffers,

because the values could have different types:

 ' Finally we set its expression to the new value.

 Dim errMsg As String = ""

 var.SetExpression(varExpression, "", True, True, errMsg, False)

 Dim rb As New ResultBuffer()

 errMsg = var.EvaluateExpression(rb)

 var.Value = rb

 myT.Commit()

 End Using

 Return varId

Code Walkthrough – Adding a Radial Dimension Constraint
Now we‟re ready to create our dimensional constraint – a simple radial dimension in this case.

Creating a dimensional constraint requires a little more work than creating a geometric

constraint: you still have to query the entity you‟re constraining for its subentities (via its Protocol

Extension), but you also have to create a Dimension entity, define the user parameters that

drive the dimension, and link them all together via „dependency‟ objects. Here‟s the code for

constraining a Circle using a RadialDimension:

 ' Add a radial dimensional constraint to a circle

 <CommandMethod("TESTRADIUS")> _

 Public Shared Sub testRadiusCommand()

 Dim db As Database = Application.DocumentManager.MdiActiveDocument.Database

 Dim tm As Autodesk.AutoCAD.DatabaseServices.TransactionManager =

db.TransactionManager

 Dim circle As Circle

 Using myT As Transaction = tm.StartTransaction()

 ' Create new circle entity

 Dim bt As BlockTable = DirectCast(myT.GetObject(db.BlockTableId,

OpenMode.ForRead, False), BlockTable)

 Dim btr As BlockTableRecord =

DirectCast(myT.GetObject(bt(BlockTableRecord.ModelSpace), OpenMode.ForWrite, False),

BlockTableRecord)

 circle = New Circle(New Point3d(25, 25, 0), New Vector3d(0, 0, 1), 3)

 btr.AppendEntity(circle)

 myT.AddNewlyCreatedDBObject(circle, True)

 ' Create new radial dimension entity

 Dim chordPoint As New Point3d(circle.Center.X + circle.Radius,

circle.Center.Y, circle.Center.Z)

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

20

 Dim dimRadius As New RadialDimension(circle.Center, chordPoint, circle.Radius,

"", db.DimStyleTableId)

 btr.AppendEntity(dimRadius)

 myT.AddNewlyCreatedDBObject(dimRadius, True)

 ' Get FullSubentityPath of circle edge.

 Dim subentPath As FullSubentityPath = GetFullSubentityPath(circle,

SubentityType.Edge)

 Dim varId As ObjectId, valDepId As ObjectId

 'create user parameter

 varId = AddOrModifyVariable("Radius", "2.0")

 ' Create value dependency (the relationship between the AssocAction and a

scalar value - the variable value)

 Using valDep As New AssocValueDependency()

 valDepId = db.AddDBObject(valDep)

 Dim compoundId As New CompoundObjectId(varId, db)

 valDep.AttachToObject(compoundId)

 End Using

 ' Create dim dependency (the relationship between the AssocAction and an

Entity)

 Dim dimDepId As ObjectId = ObjectId.Null

 Dim dimDepBodyId As ObjectId = ObjectId.Null

 AssocDimDependencyBody.CreateAndPostToDatabase(dimRadius.ObjectId, dimDepId,

dimDepBodyId)

 ' If adding constraint fails, we want to keep our dimension. We reset to the

old value later

 Dim bPreviousValue As Boolean =

AssocDimDependencyBodyBase.SetEraseDimensionIfDependencyIsErased(False)

 ' Add dimensional constraint to the circle

 Dim consGrpId As ObjectId = GetConstraintGroup(True)

 Dim consGeom As ConstrainedGeometry = Nothing

 Using constGrp As Assoc2dConstraintGroup = DirectCast(myT.GetObject(consGrpId,

OpenMode.ForWrite, False), Assoc2dConstraintGroup)

 ' Constrain circle edge

 consGeom = constGrp.AddConstrainedGeometry(subentPath)

 ' Add constraint to constraint group

 constGrp.AddRadiusDiameterConstraint(consGeom,

RadiusDiameterConstraint.RadDiaConstrType.CircleRadius, valDepId, dimDepId)

 ' Reset SetEraseDimensionIfDependencyIsErased back to old value

AssocDimDependencyBodyBase.SetEraseDimensionIfDependencyIsErased(bPreviousValue)

 End Using

 End Sub

As usual, the first part of the code is simply creating our Circle and adding it to model space. We

do the same for the RadialDimension that is going to be driven by our constraint.

Then we create our AssocPersSubentityIdPE protocol extension for the circle and use it to find

the edge subentities of the circle. This time we‟ve wrapped up all that code into the

GetFullSubentityPath helper function. This function returns the FullSubentityPath of the first

(edge) subentity in the array returned by the protocol extension for the circle. We use that

FullSubentityPath later when we specify the geometry we‟re constraining.

 ' Get FullSubentityPath of circle edge.

 Dim subentPath As FullSubentityPath = GetFullSubentityPath(circle,

SubentityType.Edge)

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

21

Then we use our helper function to create the user parameter that defines the size of the

dimension. Notice that we‟re setting this to a value of 2.0, but we created the circle with a radius

of 3. Just like through the user interface, you can construct your geometry with arbitrary sizes

and positions and then constrain them to bring them all into line.

 'create user parameter

 varId = AddOrModifyVariable("Radius", "2.0")

Next we have to create an AssocValueDependency class to link the variable to the constraint.

We‟ll use this later when we create the actual constraint in the constraint group. This is slightly

unusual in using a CompoundObjectId instead of just an ObjectId:

 ' Create value dependency (the relationship between the AssocAction and a

scalar value - the variable value)

 Using valDep As New AssocValueDependency()

 valDepId = db.AddDBObject(valDep)

 Dim compoundId As New CompoundObjectId(varId, db)

 valDep.AttachToObject(compoundId)

 End Using

Similarly, we create an AssocDimDependencyBody that we‟ll later use to link the constraint to

the RadialDimension entity. Notice that we don‟t explicitly instantiate the

AssocDimDependencyBody. Instead, we call the shared CreateAndPostToDatabase method,

which sets dimDepId to the ObjectId of the created AssocDependency object:

 ' Create dim dependency (the relationship between the AssocAction and an

Entity)

 Dim dimDepId As ObjectId = ObjectId.Null

 Dim dimDepBodyId As ObjectId = ObjectId.Null

 AssocDimDependencyBody.CreateAndPostToDatabase(dimRadius.ObjectId, dimDepId,

dimDepBodyId)

Next we create or open our Assoc2dConstraintGroup and add the FullSubentityPath of the

circle‟s edge to the constrained geometry list:

 ' If adding constraint fails, we want to keep our dimension. We reset to the

old value later

 Dim bPreviousValue As Boolean =

AssocDimDependencyBodyBase.SetEraseDimensionIfDependencyIsErased(False)

 Dim consGrpId As ObjectId = GetConstraintGroup(True)

 Dim consGeom As ConstrainedGeometry = Nothing

 Using constGrp As Assoc2dConstraintGroup = DirectCast(myT.GetObject(consGrpId,

OpenMode.ForWrite, False), Assoc2dConstraintGroup)

 ' Constrain circle edge

 consGeom = constGrp.AddConstrainedGeometry(subentPath)

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

22

Then we create our constraint. Notice how we use the ObjectIds of the value and dimension

dependencies (valDepId and dimDepId) rather than the ObjectIds of the RadialDimension and

the AssocVariable themselves.

 ' Add constraint to constraint group

 constGrp.AddRadiusDiameterConstraint(consGeom,

RadiusDiameterConstraint.RadDiaConstrType.CircleRadius, valDepId, dimDepId)

 ' Reset SetEraseDimensionIfDependencyIsErased back to old value

AssocDimDependencyBodyBase.SetEraseDimensionIfDependencyIsErased(bPreviousValue)

Miscellany

Dimensional Constraints without Dimensions
Here is an edited version of the TESTRADIUS command, where I‟m no longer creating a

RadialDimension or its associated dependency object. Instead I pass a null ObjectId

(highlighted in yellow in the code below9) to the AddRadiusDiameterConstraint function. If you

run this code, you‟ll find the circle is still constrained and you can edit the „Radius‟ variable in the

Parameter Manager palette. But there‟s no dimension in the drawing.

 ' Add a radial dimensional constraint to a circle

 <CommandMethod("TESTRADIUS2")> _

 Public Shared Sub testRadius2Command()

 Dim db As Database = Application.DocumentManager.MdiActiveDocument.Database

 Dim tm As Autodesk.AutoCAD.DatabaseServices.TransactionManager =

db.TransactionManager

 Dim circle As Circle

 Using myT As Transaction = tm.StartTransaction()

 ' Create new circle entity

 Dim bt As BlockTable = DirectCast(myT.GetObject(db.BlockTableId,

OpenMode.ForRead, False), BlockTable)

 Dim btr As BlockTableRecord =

DirectCast(myT.GetObject(bt(BlockTableRecord.ModelSpace), OpenMode.ForWrite, False),

BlockTableRecord)

 circle = New Circle(New Point3d(25, 25, 0), New Vector3d(0, 0, 1), 3)

 btr.AppendEntity(circle)

 myT.AddNewlyCreatedDBObject(circle, True)

 ' Get FullSubentityPath of circle edge.

 Dim subentPath As FullSubentityPath = GetFullSubentityPath(circle,

SubentityType.Edge)

 Dim varId As ObjectId, valDepId As ObjectId

 'create user parameter

 varId = AddOrModifyVariable("Radius", "2.0")

 ' Create value dependency (the relationship between the AssocAction and a

scalar value - the variable value)

 Using valDep As New AssocValueDependency()

 valDepId = db.AddDBObject(valDep)

 Dim compoundId As New CompoundObjectId(varId, db)

 valDep.AttachToObject(compoundId)

 End Using

 ' Add dimensional constraint to the circle

9
 Sorry if you printed this in black and white .

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

23

 Dim consGrpId As ObjectId = GetConstraintGroup(True)

 Dim consGeom As ConstrainedGeometry = Nothing

 Using constGrp As Assoc2dConstraintGroup = DirectCast(myT.GetObject(consGrpId,

OpenMode.ForWrite, False), Assoc2dConstraintGroup)

 ' Constrain circle edge

 consGeom = constGrp.AddConstrainedGeometry(subentPath)

 ' Add constraint to constraint group

 constGrp.AddRadiusDiameterConstraint(consGeom,

RadiusDiameterConstraint.RadDiaConstrType.CircleRadius, valDepId, ObjectId.Null)

 End Using

 Dim networkId As ObjectId =

AssocNetwork.GetInstanceFromObject(SymbolUtilityServices.GetBlockModelSpaceId(db),

True, True, "")

 myT.Commit()

 End Using

 End Sub

Anonymous constraints
Setting dimensional constraints without inserting dimensions in the drawing isn‟t that useful.

After all, you could have just put the dimension on a hidden layer.

But what if the user also couldn‟t see or edit the „Radius‟ variable?

Then you‟d have a constraint system that can only be edited through your application. (No

chance for those pesky users to mess things up by editing stuff they shouldn‟t). Well this is

possible. Just like you can create an anonymous block or an anonymous group, you can create

an anonymous variable.

In the above code, change this line

 varId = AddOrModifyVariable("Radius", "2.0")

to

 varId = AddOrModifyVariable("*Radius", "2.0")

i.e. prefix the variable name with a „*‟.

Then run the command and open up the Parameters Manager palette – there is no „*Radius‟

variable10.

Now the user can‟t see the dimension, and they can‟t edit the dimension value.

10

 There is a limitation to using anonymous variables – you can’t use an anonymous variable name in the
expression of another AssocVariable. For example, if I have an AssocVariable with name ‘*MyVar1’, I can’t set the
expression of another AssocVar to ‘*MyVar+1’.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

24

Exceptions aren’t always errors
Most of the time an exception means that an error has occurred. And sometimes, when we‟re

feeling a bit lazy, we don‟t always check the exception to see if it‟s something we can manage

or ignore.

I‟ve already mentioned that the Parametric Drawing API is a shallow wrapper on top of our C++

ObjectARX API. ObjectARX functions return Acad::ErrorStatus values to provide information to

the caller about whether the function call was successfully. A return code of

Acad::ErrorStatus::eOk means everything worked fine. A return code of something else can

mean “it‟s all gone horribly wrong”, but it can sometimes mean “everything worked ok, but

there‟s something you might be interested to know”.

Being a shallow wrapper, the Parametric Drawing .NET API simply takes any ErrorStatus

returned from the underlying ObjectARX code that isn‟t eOk, wraps it in an exception, and

throws it at you.

There‟s one place in particular where this behavior is rather bothersome – in the

Assoc2dConstraintGroup.AddConstrainedGeometry function. If you‟re adding several

constraints to a drawing, it‟s likely you‟ll be adding more than one constraint to the same

geometry11. When you call AddConstrainedGeometry for the second time with the same

geometry, the underlying ObjectARX code says “nothing to worry about, but I just wanted you to

know that that geometry was already in the list”. The result is that you end up with an exception

being thrown with ErrorStatus = AlreadyInGroup12.

Now I know what you‟re wondering – Is there a function to retrieve geometry I already added to

the constraint group?

Yes there is – there‟s Assoc2dConstraintGroup.GetConstrainedGeometry.

And now you‟re thinking – Well that‟s easy. We can use that function to check if the geometry is

already in the group before we try to add it, and so avoid throwing the exception.

Unfortunately it‟s not that simple - GetConstrainedGeometry throws an exception with

ErrorStatus = NotApplicable if we try to retrieve geometry that isn‟t in the group.

So, whatever you do, you end up throwing an exception. Doh!

You can handle this in your code using a helper function something like this:

 ' Helper function to handle exceptions being thrown if you try to add the same

constrained geometry twice.

 ' You could work out what constrained geometry to add up front. That would be more

efficient as no exceptions would be thrown,

11

 For example, if you want to fix a line and also make its end point coincident with another point.
12

 This is unfortunate, because routinely throwing exceptions can have a significant impact on the performance of
your code.

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

25

 ' but isn't always possible (e.g. if running a command multiple times to

constrain existing geometry in a drawing.

 ' (This helper function isn't used by any functions in this sample project).

 Private Shared Function AddConstrainedGeometry(ByVal constGrp As

Assoc2dConstraintGroup, ByVal path As FullSubentityPath) As ConstrainedGeometry

 Dim consGeom As ConstrainedGeometry = Nothing

 Try

 consGeom = constGrp.AddConstrainedGeometry(path)

 Catch ex As Autodesk.AutoCAD.Runtime.Exception

 ' This error isn't really an an error

 If ex.ErrorStatus <> ErrorStatus.AlreadyInGroup Then

 Throw ex

 End If

 ' If we get to here, then 'path' was already in the group so we can retrieve

it.

 consGeom = constGrp.GetConstrainedGeometry(path, False)

 End Try

 Return consGeom

 End Function

Conclusion
And so we come to the end of this introduction to the Parametric Drawing .NET API: we‟ve

covered the basic architecture of the associative framework and the Parametric Drawing feature

that uses it; and we‟ve stepped through some simple examples of creating geometric and

dimensional constraints. This should be enough for you to start using the API in your own

applications. Make sure you review the Parametric_API_Demo_VB project downloadable from

the AU Online website – it has lots more examples, covering most constraint types.

Good luck and have fun using this API in your own applications!

Creating Geometric and Dimensional Constraints Using the AutoCAD® .NET API

26

Further Reading
 A good starting point for all .NET developers is the resources listed on the AutoCAD

Developer Center – www.autodesk.com/developautocad. These include:

o Training material, recorded presentations, and our AutoCAD .NET Wizards.

o The AutoCAD .NET Developers Guide - http://www.autodesk.com/autocad-net-

developers-guide.

o Information on joining the Autodesk Developer Network –

www.autodesk.com/joinadn

o Information on training classes and webcasts – www.autodesk.com/apitraining

o Links to the Autodesk discussion groups – www.autodesk.com/discussion. (Click on

the AutoCAD link from there to access the AutoCAD API discussion groups).

 You‟ll find a conceptual overview of the Associative Framework in the ObjectARX

Developer‟s Guide section „Advanced Topics->Associative Framework‟. This is an overview

of the framework in general, and doesn‟t describe the Parametric Drawing API.

 The ObjectARX Reference Guide has detailed descriptions of the Parametric Drawing API

classes. All classes begin with „Assoc‟ („AcDbAssoc‟ in ObjectARX). Sometimes, the

ObjectARX class documentation is more detailed than the .NET documentation (and vice

versa) so make sure you review both.

 Protocol Extensions are described (from a C++ standpoint) in the ObjectARX Developer‟s

Guide section „Advanced Topics->Protocol Extension‟.

 If you‟re an ADN partner, there is a wealth of Autodesk API information on the members-

only ADN website – http://adn.autodesk.com.

o And ADN members can ask unlimited API questions through our DevHelp Online

interface

 Watch out for our regular ADN DevLab events. DevLab is a programmers‟ workshop (free to

ADN and non-ADN members) where you can come and discuss your AutoCAD

programming problems with the ADN DevTech team. They are advertised on our API

training schedule accessible from www.autodesk.com/apitraining.

http://www.autodesk.com/developautocad
http://www.autodesk.com/autocad-net-developers-guide
http://www.autodesk.com/autocad-net-developers-guide
http://www.autodesk.com/joinadn
http://www.autodesk.com/apitraining
http://www.autodesk.com/discussion
http://adn.autodesk.com/
http://www.autodesk.com/apitraining

