blindDataMesh.cpp

//-
// ==========================================================================
// Copyright 1995,2006,2008 Autodesk, Inc. All rights reserved.
//
// Use of this software is subject to the terms of the Autodesk
// license agreement provided at the time of installation or download,
// or which otherwise accompanies this software in either electronic
// or hard copy form.
// ==========================================================================
//+

#include <maya/MFnMesh.h>
#include <maya/MFloatPoint.h>
#include <maya/MFloatPointArray.h>
#include <maya/MIntArray.h>
#include <maya/MFnTypedAttribute.h>
#include <maya/MFnNumericAttribute.h>
#include <maya/MPxNode.h>
#include <maya/MObject.h>
#include <maya/MPlug.h>
#include <maya/MDataBlock.h>
#include <maya/MFnMeshData.h>
#include <maya/MIOStream.h>
#include <maya/MItMeshVertex.h>

#include "blindDataMesh.h"

MStatus returnStatus;

#define McheckErr(stat,msg)         \
    if ( MS::kSuccess != stat ) {   \
        cerr << msg;                \
        return MS::kFailure;        \
    }

MObject blindDataMesh::seed;
MObject blindDataMesh::outputMesh;
MTypeId blindDataMesh::id( 0x60EA );

void* blindDataMesh::creator()
{
    return new blindDataMesh;
}

MStatus blindDataMesh::initialize()
{
    MFnTypedAttribute typedAttr;
    MStatus returnStatus;

    blindDataMesh::outputMesh = typedAttr.create( "outputMesh", "out",
        MFnData::kMesh, &returnStatus ); 
    McheckErr(returnStatus, "ERROR creating blindDataMesh output attribute\n");
    typedAttr.setStorable(false);

    returnStatus = addAttribute(blindDataMesh::outputMesh);
    McheckErr(returnStatus, "ERROR adding outputMesh attribute\n");

    MFnNumericAttribute numAttr;
    blindDataMesh::seed = numAttr.create( "randomSeed", "seed",
        MFnNumericData::kLong, 0, &returnStatus );
    McheckErr(returnStatus, "ERROR creating blindDataMesh input attribute\n");

    returnStatus = addAttribute(blindDataMesh::seed);
    McheckErr(returnStatus, "ERROR adding input attribute\n");

    returnStatus = attributeAffects(blindDataMesh::seed,
                                    blindDataMesh::outputMesh);
    McheckErr(returnStatus, "ERROR in attributeAffects\n");

    return MS::kSuccess;
}

MObject blindDataMesh::createMesh(long seed, MObject& outData, MStatus& stat)
{
    MFloatPointArray vertices;
    MIntArray faceDegrees;
    MIntArray faceVertices;
    int i, j;

    srand(seed);

    float planeSize = 20.0f;
    float planeOffset = planeSize / 2.0f;
    float planeDim = 0.5f;

    int numDivisions = (int) (planeSize / planeDim);
    // int numVertices = (numDivisions + 1) * (numDivisions + 1);
    // int numEdge = (2 * numDivisions) * (numDivisions + 1);
    int numFaces = numDivisions * numDivisions;

    // Set up an array containing the vertex positions for the plane. The
    // vertices are placed equi-distant on the X-Z plane to form a square
    // grid that has a side length of "planeSize".
    //
    // The Y-coordinate of each vertex is the average of the neighbors already
    // calculated, if there are any, with a small random offset added. Because
    // of the way the vertices are calculated, the whole plane will look like
    // it is streaked in a diagonal direction with mountains and depressions.
    //
    for (i = 0; i < (numDivisions + 1); ++i)
    {
        for (j = 0; j < (numDivisions + 1); ++j)
        {
            float height;

            if (i == 0 && j == 0)
            {
                height = ((rand() % 101) / 100.0f - 0.5f);
            }
            else if (i == 0)
            {
                float previousHeight = vertices[j - 1][1];
                height = previousHeight + ((rand() % 101) / 100.0f - 0.5f);
            }
            else if (j == 0)
            {
                float previousHeight = vertices[(i-1)*(numDivisions + 1)][1];
                height = previousHeight + ((rand() % 101) / 100.0f - 0.5f);
            }
            else
            {
                float previousHeight
                    = vertices[(i-1)*(numDivisions + 1) + j][1];
                float previousHeight2
                    = vertices[i*(numDivisions + 1) + j - 1][1];
                height = (previousHeight + previousHeight2)
                    / 2.0f + ((rand() % 101) / 100.0f - 0.5f);
            }

            MFloatPoint vtx( i * planeDim - planeOffset, height,
                j * planeDim - planeOffset );
            vertices.append(vtx);
        }
    }

    // Set up an array containing the number of vertices
    // for each of the plane's faces
    //
    for (i = 0; i < numFaces; ++i)
    {
        faceDegrees.append(4);
    }

    // Set up an array to assign the vertices for each face
    //
    for (i = 0; i < numDivisions; ++i)
    {
        for (j = 0; j < numDivisions; ++j)
        {
            faceVertices.append(i*(numDivisions+1) + j);
            faceVertices.append(i*(numDivisions+1) + j + 1);
            faceVertices.append((i+1)*(numDivisions+1) + j + 1);
            faceVertices.append((i+1)*(numDivisions+1) + j);
        }
    }

    MFnMesh meshFn;
    MObject newMesh = meshFn.create(vertices.length(), numFaces, vertices,
        faceDegrees, faceVertices, outData, &stat);

    return newMesh;
}

MStatus blindDataMesh::compute(const MPlug& plug, MDataBlock& data)

{
    MStatus returnStatus;

    if (plug == outputMesh) {

        // Get the given random number generator seed. We need to use a
        // seed, because a pseudo-random number generator will always give
        // the same random numbers for a constant seed. This means that the
        // mesh will not change when it is recalculated.
        //
        MDataHandle seedHandle = data.inputValue(seed, &returnStatus);
        McheckErr(returnStatus,"ERROR getting random number generator seed\n");

        long seed = seedHandle.asLong();

        // Get the handle to the output mesh. The creation of the output mesh
        // is done in two steps. First, the mesh is created. That involves
        // calculating the position of the vertices and their connectivity.
        //
        // Second, blind data is associated to the vertices on the mesh.
        // For this example, three double blind data values is associated
        // to each vertex: "red", "green" and "blue".
        //
        MFnMeshData dataCreator;
        MDataHandle outputHandle = data.outputValue(outputMesh, &returnStatus);
        McheckErr(returnStatus, "ERROR getting polygon data handle\n");
        MObject newOutputData = dataCreator.create(&returnStatus);
        McheckErr(returnStatus, "ERROR creating outputData");
        createMesh(seed, newOutputData, returnStatus);
        McheckErr(returnStatus, "ERROR creating new plane");
        returnStatus = setMeshBlindData(newOutputData);
        McheckErr(returnStatus, "ERROR setting the blind Data on the plane");

        outputHandle.set(newOutputData);
        data.setClean( plug );
    } else
        return MS::kUnknownParameter;

    return MS::kSuccess;
}

MStatus blindDataMesh::setMeshBlindData(MObject& mesh)
{
    MStatus stat = MS::kSuccess;
    MFnMesh meshFn(mesh);

    // First, make sure that the blind data attribute exists,
    // Otherwise, create it.
    //
    int blindDataID = 60;
    if (!meshFn.isBlindDataTypeUsed(blindDataID, &stat))
    {
        MStringArray longNames, shortNames, formatNames;
        
        longNames.append("red_color");
        shortNames.append("red");
        formatNames.append("double");

        longNames.append("green");
        shortNames.append("grn");
        formatNames.append("double");
        
        longNames.append("blue_color");
        shortNames.append("blue");
        formatNames.append("double");

        stat = meshFn.createBlindDataType(
            blindDataID, longNames, shortNames, formatNames );
        if (!stat) return stat;
    }
    else if (!stat) return stat;

    // Iterate through the mesh vertices and assign to each some
    // color value that is related to the height of the vertex
    // so that it goes from dark blue at the lowest point to
    // white at the highest..
    //
    // Find the lowest and the highest points.
    //
    MItMeshVertex itVertex(mesh);
    double lowest = 1e10, highest = -1e10;
    for ( ; !itVertex.isDone(); itVertex.next() )
    {
        MPoint vertexPosition = itVertex.position();
        double height = vertexPosition[1];
        if (height < lowest) lowest = height;
        if (height > highest) highest = height;
    }

    double range = highest - lowest;
    for ( itVertex.reset(mesh); !itVertex.isDone(); itVertex.next() )
    {
        MPoint vertexPosition = itVertex.position();
        double height = vertexPosition[1] - lowest;
        double red, green, blue;

        // Calculate the interpolated color for each vertex
        // using its relative height
        //
        red = 2.0 * ( height / range ) - 1.0;
        if (height > range/2.0) {
            if (red < 0.7) green = 0.7;
            else green = red;
        }
        else green = 0.7 * (1.0 - (((range/2.0) - height) / (range/2.0))
            * (((range/2.0) - height) / (range/2.0)));
        if (height > range/2.0) blue = red;
        else blue = 1.0 - (green*green);
        if (red < 0.0) red = 0.0;

        // Set the color values in the blind data
        //
        stat = meshFn.setDoubleBlindData(itVertex.index(),
            MFn::kMeshVertComponent, blindDataID, "red", red);
        if (!stat) return stat;
        stat = meshFn.setDoubleBlindData(itVertex.index(),
            MFn::kMeshVertComponent, blindDataID, "green", green);
        if (!stat) return stat;
        stat = meshFn.setDoubleBlindData(itVertex.index(),
            MFn::kMeshVertComponent, blindDataID, "blue", blue);
        if (!stat) return stat;
    }

    return stat;
}