Go to: Synopsis. Notes. Return value. Related. Flags. MEL examples.
xform [absolute] [boundingBox] [boundingBoxInvisible] [centerPivots] [deletePriorHistory boolean] [euler] [matrix float float float float float float float float float float float float float float float float] [objectSpace] [pivots linear linear linear] [preserve boolean] [preserveUV] [reflection] [reflectionAboutBBox] [reflectionAboutOrigin] [reflectionAboutX] [reflectionAboutY] [reflectionAboutZ] [reflectionTolerance float] [relative] [rotateAxis angle angle angle] [rotateOrder string] [rotatePivot linear linear linear] [rotateTranslation linear linear linear] [rotation angle angle angle] [scale float float float] [scalePivot linear linear linear] [scaleTranslation linear linear linear] [shear float float float] [translation linear linear linear] [worldSpace] [worldSpaceDistance] [zeroTransformPivots]
[objects...]
xform is undoable, queryable, and NOT editable.
This command can be used query/set any element in a transformation node. It can also be used to query some values that cannot be set directly such as the transformation matrix or the bounding box. It can also set both pivot points to convenient values.
All values are specified in transformation coordinates. (attributespace)
In addition, the attributes are applied/returned in the order in which they appear in the flags section. (which corresponds to the order they appear in the transformation matrix as given below)
See also: move, rotate, scale
1 1 [M] = [sp]x[s]x[sh]x[sp]x[st]x[rp]x[ar]x[ro]x[rp]x[rt]x[t]where:
[sp] =  1 0 0 0  = scale pivot matrix  0 1 0 0   0 0 1 0   spx spy spz 1 
[s] =  sx 0 0 0  = scale matrix  0 sy 0 0   0 0 sz 0   0 0 0 1 
[sh] =  1 0 0 0  = shear matrix  xy 1 0 0   xz yz 1 0   0 0 0 1 
1 [sp] =  1 0 0 0  = scale pivot inverse matrix  0 1 0 0   0 0 1 0   spx spy spz 1 
[st] =  1 0 0 0  = scale translate matrix  0 1 0 0   0 0 1 0   stx sty stz 1 
[rp] =  1 0 0 0  = rotate pivot matrix  0 1 0 0   0 0 1 0   rpx rpy rpz 1 
[ar] =  * * * 0  = axis rotation matrix  * * * 0  (composite rotation,  * * * 0  see [rx], [ry], [rz]  0 0 0 1  below for details)
[rx] =  1 0 0 0  = rotate X matrix  0 cos(x) sin(x) 0   0 sin(x) cos(x) 0   0 0 0 1 
[ry] =  cos(y) 0 sin(y) 0  = rotate Y matrix  0 1 0 0   sin(y) 0 cos(y) 0   0 0 0 1 
[rz] =  cos(z) sin(z) 0 0  = rotate Z matrix  sin(z) cos(z) 0 0   0 0 1 0   0 0 0 1 
1 [rp] =  1 0 0 0  = rotate pivot matrix  0 1 0 0   0 0 1 0   rpx rpy rpz 1 
[rt] =  1 0 0 0  = rotate translate matrix  0 1 0 0   0 0 1 0   rtx rty rtz 1 
[t] =  1 0 0 0  = translation matrix  0 1 0 0   0 0 1 0   tx ty tz 1 
None
In query mode, return type is based on queried flag.
Long name (short name)  Argument types  Properties  

absolute(a)





relative(r)





euler(eu)





deletePriorHistory(dph)

boolean




objectSpace(os)





worldSpace(ws)





worldSpaceDistance(wd)





preserve(p)

boolean




scalePivot(sp)

linear linear linear




scale(s)

float float float




shear(sh)

float float float




scaleTranslation(st)

linear linear linear




rotatePivot(rp)

linear linear linear




rotateOrder(roo)

string




rotateAxis(ra)

angle angle angle




rotation(ro)

angle angle angle




rotateTranslation(rt)

linear linear linear




translation(t)

linear linear linear




matrix(m)

float float float float float float float float float float float float float float float float




boundingBox(bb)





boundingBoxInvisible(bbi)





pivots(piv)

linear linear linear




preserveUV(puv)





reflection(rfl)





reflectionAboutOrigin(rao)





reflectionAboutBBox(rab)





reflectionAboutX(rax)





reflectionAboutY(ray)





reflectionAboutZ(raz)





reflectionTolerance(rft)

float




centerPivots(cp)





zeroTransformPivots(ztp)




Flag can appear in Create mode of command  Flag can appear in Edit mode of command 
Flag can appear in Query mode of command  Flag can be used more than once in a command. 
// create object to manipulate sphere n sphere1; // set rotation of sphere xform r ro 0 90 0; // change the rotate order but preserve the overall transformation xform p true roo yzx;